SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Cullen Nicholas C) srt2:(2020-2024)"

Sökning: WFRF:(Cullen Nicholas C) > (2020-2024)

  • Resultat 1-19 av 19
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Conti, David, V, et al. (författare)
  • Trans-ancestry genome-wide association meta-analysis of prostate cancer identifies new susceptibility loci and informs genetic risk prediction
  • 2021
  • Ingår i: Nature Genetics. - : Springer Nature. - 1061-4036 .- 1546-1718. ; 53:1, s. 65-75
  • Tidskriftsartikel (refereegranskat)abstract
    • Prostate cancer is a highly heritable disease with large disparities in incidence rates across ancestry populations. We conducted a multiancestry meta-analysis of prostate cancer genome-wide association studies (107,247 cases and 127,006 controls) and identified 86 new genetic risk variants independently associated with prostate cancer risk, bringing the total to 269 known risk variants. The top genetic risk score (GRS) decile was associated with odds ratios that ranged from 5.06 (95% confidence interval (CI), 4.84-5.29) for men of European ancestry to 3.74 (95% CI, 3.36-4.17) for men of African ancestry. Men of African ancestry were estimated to have a mean GRS that was 2.18-times higher (95% CI, 2.14-2.22), and men of East Asian ancestry 0.73-times lower (95% CI, 0.71-0.76), than men of European ancestry. These findings support the role of germline variation contributing to population differences in prostate cancer risk, with the GRS offering an approach for personalized risk prediction. A meta-analysis of genome-wide association studies across different populations highlights new risk loci and provides a genetic risk score that can stratify prostate cancer risk across ancestries.
  •  
2.
  • Sumaila, U. Rashid, et al. (författare)
  • WTO must ban harmful fisheries subsidies
  • 2021
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 374:6567, s. 544-544
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)
  •  
3.
  • Brum, Wagner S., et al. (författare)
  • A two-step workflow based on plasma p-tau217 to screen for amyloid β positivity with further confirmatory testing only in uncertain cases
  • 2023
  • Ingår i: Nature Aging. - 2662-8465. ; 3:9, s. 1079-1090
  • Tidskriftsartikel (refereegranskat)abstract
    • Cost-effective strategies for identifying amyloid-beta (A beta) positivity in patients with cognitive impairment are urgently needed with recent approvals of anti-A beta immunotherapies for Alzheimer's disease (AD). Blood biomarkers can accurately detect AD pathology, but it is unclear whether their incorporation into a full diagnostic workflow can reduce the number of confirmatory cerebrospinal fluid (CSF) or positron emission tomography (PET) tests needed while accurately classifying patients. We evaluated a two-step workflow for determining A beta-PET status in patients with mild cognitive impairment (MCI) from two independent memory clinic-based cohorts (n = 348). A blood-based model including plasma tau protein 217 (p-tau217), age and APOE epsilon 4 status was developed in BioFINDER-1 (area under the curve (AUC) = 89.3%) and validated in BioFINDER-2 (AUC = 94.3%). In step 1, the blood-based model was used to stratify the patients into low, intermediate or high risk of A beta-PET positivity. In step 2, we assumed referral only of intermediate-risk patients to CSF A beta 42/A beta 40 testing, whereas step 1 alone determined A beta-status for low-and high-risk groups. Depending on whether lenient, moderate or stringent thresholds were used in step 1, the two-step workflow overall accuracy for detecting A beta-PET status was 88.2%, 90.5% and 92.0%, respectively, while reducing the number of necessary CSF tests by 85.9%, 72.7% and 61.2%, respectively. In secondary analyses, an adapted version of the BioFINDER-1 model led to successful validation of the two-step workflow with a different plasma p-tau217 immunoassay in patients with cognitive impairment from the TRIAD cohort (n = 84). In conclusion, using a plasma p-tau217-based model for risk stratification of patients with MCI can substantially reduce the need for confirmatory testing while accurately classifying patients, offering a cost-effective strategy to detect AD in memory clinic settings.
  •  
4.
  • Tustison, Nicholas J., et al. (författare)
  • The ANTsX ecosystem for quantitative biological and medical imaging
  • 2021
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 11:1, s. 9068-9068
  • Tidskriftsartikel (refereegranskat)abstract
    • The Advanced Normalizations Tools ecosystem, known as ANTsX, consists of multiple open-source software libraries which house top-performing algorithms used worldwide by scientific and research communities for processing and analyzing biological and medical imaging data. The base software library, ANTs, is built upon, and contributes to, the NIH-sponsored Insight Toolkit. Founded in 2008 with the highly regarded Symmetric Normalization image registration framework, the ANTs library has since grown to include additional functionality. Recent enhancements include statistical, visualization, and deep learning capabilities through interfacing with both the R statistical project (ANTsR) and Python (ANTsPy). Additionally, the corresponding deep learning extensions ANTsRNet and ANTsPyNet (built on the popular TensorFlow/Keras libraries) contain several popular network architectures and trained models for specific applications. One such comprehensive application is a deep learning analog for generating cortical thickness data from structural T1-weighted brain MRI, both cross-sectionally and longitudinally. These pipelines significantly improve computational efficiency and provide comparable-to-superior accuracy over multiple criteria relative to the existing ANTs workflows and simultaneously illustrate the importance of the comprehensive ANTsX approach as a framework for medical image analysis.
  •  
5.
  • Cullen, Nicholas C., et al. (författare)
  • Individualized prognosis of cognitive decline and dementia in mild cognitive impairment based on plasma biomarker combinations
  • 2021
  • Ingår i: Nature Aging. - : Springer Science and Business Media LLC. - 2662-8465. ; 1, s. 114-123
  • Tidskriftsartikel (refereegranskat)abstract
    • We developed models for individualized risk prediction of cognitive decline in mild cognitive impairment (MCI) using plasma biomarkers of β-amyloid (Aβ), tau and neurodegeneration. A total of 573 patients with MCI from the Swedish BioFINDER study and the Alzheimer’s Disease Neuroimaging Initiative (ADNI) were included in the study. The primary outcomes were longitudinal cognition and conversion to Alzheimer’s disease (AD) dementia. A model combining tau phosphorylated at threonine 181 (P-tau181) and neurofilament light (NfL), but not Aβ42/Aβ40, had the best prognosis performance of all models (area under the curve = 0.88 for 4-year conversion to AD in BioFINDER, validated in ADNI), was stronger than a basic model of age, sex, education and baseline cognition, and performed similarly to cerebrospinal fluid biomarkers. A publicly available online tool for individualized prognosis in MCI based on our combined plasma biomarker models is introduced. Combination of plasma biomarkers may be of high value to identify individuals with MCI who will progress to AD dementia in clinical trials and in clinical practice.
  •  
6.
  • Salvadó, Gemma, et al. (författare)
  • Optimal combinations of CSF biomarkers for predicting cognitive decline and clinical conversion in cognitively unimpaired participants and mild cognitive impairment patients: A multi-cohort study
  • 2023
  • Ingår i: Alzheimers & Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 19:7, s. 2943-2955
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: Our objective was determining the optimal combinations of cerebrospinal fluid (CSF) biomarkers for predicting disease progression in Alzheimer's disease (AD) and other neurodegenerative diseases.Methods: We included 1,983 participants from three different cohorts with longitudinal cognitive and clinical data, and baseline CSF levels of A beta 42, A beta 40, phosphorylated tau at threonine-181 (p-tau), neurofilament light (NfL), neurogranin, alpha-synuclein, soluble triggering receptor expressed on myeloid cells 2 (sTREM2), glial fibrillary acidic protein (GFAP), YKL-40, S100b, and interleukin 6 (IL-6) (Elecsys NeuroToolKit).Results: Change of modified Preclinical Alzheimer's Cognitive Composite (mPACC) in cognitively unimpaired (CU) was best predicted by p-tau/A beta 42 alone (R-2 >= 0.31) or together with NfL (R-2 = 0.25), while p-tau/A beta 42 (R-2 >= 0.19) was sufficient to accurately predict change of the Mini-Mental State Examination (MMSE) in mild cognitive impairment (MCI) patients. P-tau/A beta 42 (AUC >= 0.87) and p-tau/A beta 42 together with NfL (AUC >= 0.75) were the best predictors of conversion to AD and all-cause dementia, respectively.Discussion: P-tau/A beta 42 is sufficient for predicting progression in AD, with very high accuracy. Adding NfL improves the prediction of all-cause dementia conversion and cognitive decline.
  •  
7.
  • Scheeren Brum, Wagner, 1997, et al. (författare)
  • A blood-based biomarker workflow for optimal tau-PET referral in memory clinic settings.
  • 2024
  • Ingår i: Nature communications. - 2041-1723. ; 15:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Blood-based biomarkers for screening may guide tau positrion emissition tomography (PET) scan referrals to optimize prognostic evaluation in Alzheimer's disease. Plasma Aβ42/Aβ40, pTau181, pTau217, pTau231, NfL, and GFAP were measured along with tau-PET in memory clinic patients with subjective cognitive decline, mild cognitive impairment or dementia, in the Swedish BioFINDER-2 study (n=548) and in the TRIAD study (n=179). For each plasma biomarker, cutoffs were determined for 90%, 95%, or 97.5% sensitivity to detect tau-PET-positivity. We calculated the percentage of patients below the cutoffs (who would not undergo tau-PET; "saved scans") and the tau-PET-positivity rate among participants above the cutoffs (who would undergo tau-PET; "positive predictive value"). Generally, plasma pTau217 performed best. At the 95% sensitivity cutoff in both cohorts, pTau217 resulted in avoiding nearly half tau-PET scans, with a tau-PET-positivity rate among those who would be referred for a scan around 70%. And although tau-PET was strongly associated with subsequent cognitive decline, in BioFINDER-2 it predicted cognitive decline only among individuals above the referral cutoff on plasma pTau217, supporting that this workflow could reduce prognostically uninformative tau-PET scans. In conclusion, plasma pTau217 may guide selection of patients for tau-PET, when accurate prognostic information is of clinical value.
  •  
8.
  • Alifier, Marek, et al. (författare)
  • Cardiac Surgery is Associated with Biomarker Evidence of Neuronal Damage.
  • 2020
  • Ingår i: Journal of Alzheimer's disease : JAD. - 1875-8908. ; 74:4, s. 1211-1220
  • Tidskriftsartikel (refereegranskat)abstract
    • Anesthesia and surgery is commonly associated with central nervous system sequelae and cognitive symptoms, which may be caused by neuronal injury. Neuronal injury can be monitored by plasma concentrations of the neuronal biomarkers tau and neurofilament light protein (NFL). Currently, there are no studies examining whether neuronal injury varies between surgical procedures.Our aim was to investigate if neuronal damage is more frequent after cardiac than after otolaryngeal surgery, as estimated by tau and NFL concentrations in plasma.Blood samples were drawn before, during, and after surgery and concentrations of tau, NFL, Aβ40, and Aβ42 were measured in 25 patients undergoing cardiac surgery (9 off-pump and 16 on-pump) and 26 patients undergoing otolaryngeal surgery.Tau increased during surgery (1752%, p=0.0001) and NFL rose seven days post-surgery (1090%, p<0.0001) in patients undergoing cardiac surgery; even more in patients on-pump than off-pump. No changes were observed in patients undergoing otolaryngeal surgery and only minor fluctuations were observed for Aβ40 and Aβ42.Cardiac surgery is associated with neuronal injury, which is aggravated by extracorporeal circulation. Analyses of NFL and tau in blood may guide development of surgical procedures to minimize neuronal damage, and may also be used in longitudinal clinical studies to assess the relationship of surgery with future neurocognitive impairment or dementia.
  •  
9.
  • Cullen, Nicholas C., et al. (författare)
  • Accelerated inflammatory aging in Alzheimer’s disease and its relation to amyloid, tau, and cognition
  • 2021
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • It is unclear how pathological aging of the inflammatory system relates to Alzheimer’s disease (AD). We tested whether age-related inflammatory changes in cerebrospinal fluid (CSF) and plasma exist across different stages of AD, and whether such changes related to AD pathology. Linear regression was first used model chronological age in amyloid-β negative, cognitively unimpaired individuals (Aβ− CU; n = 312) based on a collection of 73 inflammatory proteins measured in both CSF and plasma. Fitted models were then applied on protein levels from Aβ+ individuals with mild cognitive impairment (Aβ+ MCI; n = 150) or Alzheimer’s disease dementia (Aβ+ AD; n = 139) to test whether the age predicted from proteins alone (“inflammatory age”) differed significantly from true chronological age. Aβ− individuals with subjective cognitive decline (Aβ− SCD; n = 125) or MCI (Aβ− MCI; n = 104) were used as an independent contrast group. The difference between inflammatory age and chronological age (InflammAGE score) was then assessed in relation to core AD biomarkers of amyloid, tau, and cognition. Both CSF and plasma inflammatory proteins were significantly associated with age in Aβ− CU individuals, with CSF-based proteins predicting chronological age better than plasma-based counterparts. Meanwhile, the Aβ− SCD and validation Aβ− CU groups were not characterized by significant inflammatory aging, while there was increased inflammatory aging in Aβ− MCI patients for CSF but not plasma inflammatory markers. Both CSF and plasma inflammatory changes were seen in the Aβ+ MCI and Aβ+ AD groups, with varying degrees of change compared to Aβ− CU and Aβ− SCD groups. Finally, CSF inflammatory changes were highly correlated with amyloid, tau, general neurodegeneration, and cognition, while plasma changes were mostly associated with amyloid and cognition. Inflammatory pathways change during aging and are specifically altered in AD, tracking closely with pathological hallmarks. These results have implications for tracking AD progression and for suggesting possible pathways for drug targeting.
  •  
10.
  • Cullen, Nicholas C., et al. (författare)
  • Comparing progression biomarkers in clinical trials of early Alzheimer's disease
  • 2020
  • Ingår i: Annals of Clinical and Translational Neurology. - : Wiley. - 2328-9503. ; 7:9, s. 1661-1673
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: To investigate the statistical power of plasma, imaging, and cognition biomarkers as Alzheimer's disease (AD) clinical trial outcome measures. Methods: Plasma neurofilament light, structural magnetic resonance imaging, and cognition were measured longitudinally in the Alzheimer's Disease Neuroimaging Initiative (ADNI) in control (amyloid PET or CSF A beta 42 negative [A beta-] with Clinical Dementia Rating scale [CDR] = 0; n = 330), preclinical AD (A beta + with CDR = 0; n = 218) and mild AD (A beta + with CDR = 0.5-1; n = 697) individuals. A statistical power analysis was performed across biomarkers and groups based on longitudinal mixed effects modeling and using several different clinical trial designs. Results: For a 30-month trial of preclinical AD, both the temporal composite and hippocampal volumes were superior to plasma neurofilament light and cognition. For an 18-month trial of mild AD, hippocampal volume was superior to all other biomarkers. Plasma neurofilament light became more effective with increased trial duration or sampling frequency. Imaging biomarkers were characterized by high slope and low within-subject variability, while plasma neurofilament light and cognition were characterized by higher within-subject variability. Interpretation: MRI measures had properties that made them preferable to cognition and pNFL as outcome measures in clinical trials of early AD, regardless of cognitive status. However, pNfL and cognition can still be effective depending on inclusion criteria, sampling frequency, and response to therapy. Future trials will help to understand how sensitive pNfL and MRI are to detect downstream effects on neurodegeneration of drugs targeting amyloid and tau pathology in AD.
  •  
11.
  • Cullen, Nicholas C., et al. (författare)
  • Efficacy assessment of an active tau immunotherapy in Alzheimer's disease patients with amyloid and tau pathology : a post hoc analysis of the “ADAMANT” randomised, placebo-controlled, double-blind, multi-centre, phase 2 clinical trial
  • 2024
  • Ingår i: EBioMedicine. - 2352-3964. ; 99
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Tau pathology correlates with and predicts clinical decline in Alzheimer's disease. Approved tau-targeted therapies are not available. Methods: ADAMANT, a 24-month randomised, placebo-controlled, parallel-group, double-blinded, multicenter, Phase 2 clinical trial (EudraCT2015-000630-30, NCT02579252) enrolled 196 participants with Alzheimer's disease; 119 are included in this post-hoc subgroup analysis. AADvac1, active immunotherapy against pathological tau protein. A machine learning model predicted likely Amyloid+Tau+ participants from baseline MRI. Statistical methods: MMRM for change from baseline in cognition, function, and neurodegeneration; linear regression for associations between antibody response and endpoints. Results: The prediction model achieved PPV of 97.7% for amyloid, 96.2% for tau. 119 participants in the full analysis set (70 treatment and 49 placebo) were classified as A+T+. A trend for CDR-SB 104-week change (estimated marginal means [emm] = −0.99 points, 95% CI [−2.13, 0.13], p = 0.0825]) and ADCS-MCI-ADL (emm = 3.82 points, CI [−0.29, 7.92], p = 0.0679) in favour of the treatment group was seen. Reduction was seen in plasma NF-L (emm = −0.15 log pg/mL, CI [−0.27, −0.03], p = 0.0139). Higher antibody response to AADvac1 was related to slowing of decline on CDR-SB (rho = −0.10, CI [−0.21, 0.01], p = 0.0376) and ADL (rho = 0.15, CI [0.03, 0.27], p = 0.0201), and related to slower brain atrophy (rho = 0.18–0.35, p < 0.05 for temporal volume, whole cortex, and right and left hippocampus). Conclusions: In the subgroup of ML imputed or CSF identified A+T+, AADvac1 slowed AD-related decline in an antibody-dependent manner. Larger anti-tau trials are warranted. Funding: AXON Neuroscience SE.
  •  
12.
  • Cullen, Nicholas C., et al. (författare)
  • Plasma amyloid-β42/40 and apolipoprotein E for amyloid PET pre-screening in secondary prevention trials of Alzheimer's disease
  • 2023
  • Ingår i: Brain Communications. - : Oxford University Press (OUP). - 2632-1297. ; 5:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The extent to which newly developed blood-based biomarkers could reduce screening costs in secondary prevention trials of Alzheimer's disease is mostly unexplored. We collected plasma amyloid-β42/40, apolipoprotein E ϵ4 status and amyloid PET at baseline in 181 cognitively unimpaired participants [the age of 72.9 (5.3) years; 61.9% female; education of 11.9 (3.4) years] from the Swedish BioFINDER-1 study. We tested whether a model predicting amyloid PET status from plasma amyloid-β42/40, apolipoprotein E status and age (combined) reduced cost of recruiting amyloid PET + cognitively unimpaired participants into a theoretical trial. We found that the percentage of cognitively unimpaired participants with an amyloid PET + scan rose from 29% in an unscreened population to 64% [(49, 79); P < 0.0001] when using the biomarker model to screen for high risk for amyloid PET + status. In simulations, plasma screening also resulted in a 54% reduction of the total number of amyloid PET scans required and reduced total recruitment costs by 43% [(31, 56), P < 0.001] compared to no pre-screening when assuming a 16× PET-to-plasma cost ratio. Total savings remained significant when the PET-to-plasma cost ratio was assumed to be 8× or 4×. This suggests that a simple plasma biomarker model could lower recruitment costs in Alzheimer's trials requiring amyloid PET positivity for inclusion.
  •  
13.
  • Cullen, Nicholas C., et al. (författare)
  • Plasma biomarkers of Alzheimer’s disease improve prediction of cognitive decline in cognitively unimpaired elderly populations
  • 2021
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Plasma biomarkers of amyloid, tau, and neurodegeneration (ATN) need to be characterized in cognitively unimpaired (CU) elderly individuals. We therefore tested if plasma measurements of amyloid-β (Aβ)42/40, phospho-tau217 (P-tau217), and neurofilament light (NfL) together predict clinical deterioration in 435 CU individuals followed for an average of 4.8 ± 1.7 years in the BioFINDER study. A combination of all three plasma biomarkers and basic demographics best predicted change in cognition (Pre-Alzheimer’s Clinical Composite; R2 = 0.14, 95% CI [0.12–0.17]; P < 0.0001) and subsequent AD dementia (AUC = 0.82, 95% CI [0.77–0.91], P < 0.0001). In a simulated clinical trial, a screening algorithm combining all three plasma biomarkers would reduce the required sample size by 70% (95% CI [54–81]; P < 0.001) with cognition as trial endpoint, and by 63% (95% CI [53–70], P < 0.001) with subsequent AD dementia as trial endpoint. Plasma ATN biomarkers show usefulness in cognitively unimpaired populations and could make large clinical trials more feasible and cost-effective.
  •  
14.
  • Cullen, Nicholas C., et al. (författare)
  • Test-retest variability of plasma biomarkers in Alzheimer's disease and its effects on clinical prediction models
  • 2023
  • Ingår i: Alzheimers & Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 19:3, s. 797-806
  • Tidskriftsartikel (refereegranskat)abstract
    • INTRODUCTION The effect of random error on the performance of blood-based biomarkers for Alzheimer's disease (AD) must be determined before clinical implementation. METHODS We measured test-retest variability of plasma amyloid beta (A beta)42/A beta 40, neurofilament light (NfL), glial fibrillary acidic protein (GFAP), and phosphorylated tau (p-tau)217 and simulated effects of this variability on biomarker performance when predicting either cerebrospinal fluid (CSF) A beta status or conversion to AD dementia in 399 non-demented participants with cognitive symptoms. RESULTS Clinical performance was highest when combining all biomarkers. Among single-biomarkers, p-tau217 performed best. Test-retest variability ranged from 4.1% (A beta 42/A beta 40) to 25% (GFAP). This variability reduced the performance of the biomarkers (approximate to Delta AUC [area under the curve] -1% to -4%) with the least effects on models with p-tau217. The percent of individuals with unstable predicted outcomes was lowest for the multi-biomarker combination (14%). DISCUSSION Clinical prediction models combining plasma biomarkers-particularly p-tau217-exhibit high performance and are less effected by random error. Individuals with unstable predicted outcomes ("gray zone") should be recommended for further tests.
  •  
15.
  • Leuzy, Antoine, et al. (författare)
  • Biomarker-Based Prediction of Longitudinal Tau Positron Emission Tomography in Alzheimer Disease
  • 2022
  • Ingår i: JAMA Neurology. - : American Medical Association (AMA). - 2168-6149. ; 79:2, s. 149-158
  • Tidskriftsartikel (refereegranskat)abstract
    • Importance: There is currently no consensus as to which biomarkers best predict longitudinal tau accumulation at different clinical stages of Alzheimer disease (AD). Objective: To describe longitudinal [18F]RO948 tau positron emission tomography (PET) findings across the clinical continuum of AD and determine which biomarker combinations showed the strongest associations with longitudinal tau PET and best optimized clinical trial enrichment. Design, Setting, and Participants: This longitudinal cohort study consecutively enrolled amyloid-β (Aβ)-negative cognitively unimpaired (CU) participants, Aβ-positive CU individuals, Aβ-positive individuals with mild cognitive impairment (MCI), and individuals with AD dementia between September 2017 and November 2020 from the Swedish BioFINDER-2 (discovery cohort) and BioFINDER-1 (validation cohort) studies. Exposures: Baseline plasma and cerebrospinal fluid Aβ42/Aβ40, tau phosphorylated at threonine-217 (p-tau217), p-tau181 and neurofilament light, magnetic resonance imaging, amyloid PET ([18F]flutemetamol), and tau PET ([18F]RO948 in the BioFINDER-2 study; [18F]flortaucipir in the BioFINDER-1 study). Main Outcomes and Measures: Baseline tau PET standardized uptake value ratio (SUVR) and annual percent change in tau PET SUVR across regions of interest derived using a data-driven approach combining clustering and event-based modeling. Regression models were used to examine associations between individual biomarkers and longitudinal tau PET and to identify which combinations best predicted longitudinal tau PET. These combinations were then entered in a power analysis to examine how their use as an enrichment strategy would affect sample size in a simulated clinical trial. Results: Of 343 participants, the mean (SD) age was 72.56 (7.24) years, and 157 (51.1%) were female. The clustering/event-based modeling-based approach identified 5 regions of interest (stages). In Aβ-positive CU individuals, the largest annual increase in tau PET SUVR was seen in stage I (entorhinal cortex, hippocampus, and amygdala; 4.04% [95% CI, 2.67%-5.32%]). In Aβ-positive individuals with MCI and with AD dementia, the greatest increases were seen in stages II (temporal cortical regions; 4.45% [95% CI, 3.41%-5.49%]) and IV (certain frontal regions; 5.22% [95% CI, 3.95%-6.49%]), respectively. In Aβ-negative CU individuals and those with MCI, modest change was seen in stage I (1.38% [95% CI, 0.78%-1.99%] and 1.80% [95% CI, 0.76%-2.84%], respectively). When looking at individual predictors and longitudinal tau PET in the stages that showed most change, plasma p-tau217 (R2= 0.27, P <.005), tau PET (stage I baseline SUVR; R2= 0.13, P <.05) and amyloid PET (R2= 0.10, P <.05) were significantly associated with longitudinal tau PET in stage I in Aβ-positive CU individuals. In Aβ-positive individuals with MCI, plasma p-tau217 (R2= 0.24, P <.005) and tau PET (stage II baseline SUVR; R2= 0.44, P <.001) were significantly associated with longitudinal tau PET in stage II. Findings were replicated in BioFINDER-1 using longitudinal [18F]flortaucipir. For the power analysis component, plasma p-tau217 with tau PET resulted in sample size reductions of 43% (95% CI, 34%-46%; P <.005) in Aβ-positive CU individuals and of 68% (95% CI, 61%-73%; P <.001) in Aβ-positive individuals with MCI. Conclusions and Relevance: In trials using tau PET as the outcome, plasma p-tau217 with tau PET may prove optimal for enrichment in preclinical and prodromal AD. However, plasma p-tau217 was most important in preclinical AD, while tau PET was more important in prodromal AD..
  •  
16.
  • Leuzy, Antoine, et al. (författare)
  • Current advances in plasma and cerebrospinal fluid biomarkers in Alzheimer's disease
  • 2021
  • Ingår i: Current Opinion in Neurology. - 1473-6551. ; 34:2, s. 266-274
  • Tidskriftsartikel (refereegranskat)abstract
    • PURPOSE OF REVIEW: This review provides a concise overview of recent advances in cerebrospinal fluid (CSF) and blood-based biomarkers of Alzheimer's disease lesions. RECENT FINDINGS: Important recent advances for CSF Alzheimer's disease biomarkers include the introduction of fully automated assays, the development and implementation of certified reference materials for CSF Aβ42 and a unified protocol for handling of samples, which all support reliability and availability of CSF Alzheimer's disease biomarkers. Aβ deposition can be detected using Aβ42/Aβ40 ratio in both CSF and plasma, though a much more modest change is seen in plasma. Tau aggregation can be detected using phosphorylated tau (P-tau) at threonine 181 and 217 in CSF, with similar accuracy in plasma. Neurofilament light (NfL) be measured in CSF and shows similar diagnostic accuracy in plasma. Though total tau (T-tau) can also be measured in plasma, this measure is of limited clinical relevance for Alzheimer's disease in its current immunoassay format. SUMMARY: Alzheimer's disease biomarkers, including Aβ, P-tau and NfL can now be reliably measured in both CSF and blood. Plasma-based measures of P-tau show particular promise, with potential applications in both clinical practice and in clinical trials.
  •  
17.
  • Leuzy, Antoine, et al. (författare)
  • Robustness of CSF Aβ42/40 and Aβ42/P-tau181 measured using fully automated immunoassays to detect AD-related outcomes
  • 2023
  • Ingår i: Alzheimer's and Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 19:7, s. 2994-3004
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: This study investigated the comparability of cerebrospinal fluid (CSF) cutoffs for Elecsys immunoassays for amyloid beta (Aβ)42/Aβ40 or Aβ42/phosphorylated tau (p-tau)181 and the effects of measurement variability when predicting Alzheimer's disease (AD)-related outcomes (i.e., Aβ-positron emission tomography [PET] visual read and AD neuropathology). Methods: We studied 750 participants (BioFINDER study, Alzheimer's Disease Neuroimaging Initiative [ADNI], and University of California San Francisco [UCSF]). Youden's index was used to identify cutoffs and to calculate accuracy (Aβ-PET visual read as outcome). Using longitudinal variability in Aβ-negative controls, we identified a gray zone around cut-points where the risk of an inconsistent predicted outcome was >5%. Results: For Aβ42/Aβ40, cutoffs across cohorts were <0.059 (BioFINDER), <0.057 (ADNI), and <0.058 (UCSF). For Aβ42/p-tau181, cutoffs were <41.90 (BioFINDER), <39.20 (ADNI), and <46.02 (UCSF). Accuracy was ≈90% for both Aβ42/Aβ40 and Aβ42/p-tau181 using these cutoffs. Using Aβ-PET as an outcome, 8.7% of participants fell within a gray zone interval for Aβ42/Aβ40, compared to 4.5% for Aβ42/p-tau181. Similar findings were observed using a measure of overall AD neuropathologic change (7.7% vs. 3.3%). In a subset with CSF and plasma Aβ42/40, the number of individuals within the gray zone was ≈1.5 to 3 times greater when using plasma Aβ42/40. Discussion: CSF Aβ42/p-tau181 was more robust to the effects of measurement variability, suggesting that it may be the preferred Elecsys-based measure in clinical practice and trials.
  •  
18.
  • Palmqvist, Sebastian, et al. (författare)
  • An accurate fully automated panel of plasma biomarkers for Alzheimer's disease
  • 2023
  • Ingår i: Alzheimers & Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 19:4, s. 1204-1215
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction There is a great need for fully automated plasma assays that can measure amyloid beta (A beta) pathology and predict future Alzheimer's disease (AD) dementia. Methods Two cohorts (n = 920) were examined: Panel A+ (n = 32 cognitively unimpaired [CU], n = 106 mild cognitive impairment [MCI], and n = 89 AD) and BioFINDER-1 (n = 461 CU, n = 232 MCI). Plasma A beta 42/A beta 40, phosphorylated tau (p-tau)181, two p-tau217 variants, ApoE4 protein, neurofilament light, and GFAP were measured using Elecsys prototype immunoassays. Results The best biomarker for discriminating A beta-positive versus A beta-negative participants was A beta 42/A beta 40 (are under the curve [AUC] 0.83-0.87). Combining A beta 42/A beta 40, p-tau181, and ApoE4 improved the AUCs significantly (0.90 to 0.93; P< 0.01). Adding additional biomarkers had marginal effects (Delta AUC <= 0.01). In BioFINDER, p-tau181, p-tau217, and ApoE4 predicted AD dementia within 6 years in CU (AUC 0.88) and p-tau181, p-tau217, and A beta 42/A beta 40 in MCI (AUC 0.87). Discussion The high accuracies for A beta pathology and future AD dementia using fully automated instruments are promising for implementing plasma biomarkers in clinical trials and clinical routine.
  •  
19.
  • Smith, Ruben, et al. (författare)
  • Tau-PET is superior to phospho-tau when predicting cognitive decline in symptomatic AD patients
  • 2023
  • Ingår i: Alzheimer's and Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 19:6, s. 2497-2507
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: Biomarkers for the prediction of cognitive decline in patients with amnestic mild cognitive impairment (MCI) and amnestic mild dementia are needed for both clinical practice and clinical trials. Methods: We evaluated the ability of tau-PET (positron emission tomography), cortical atrophy on magnetic resonance imaging (MRI), baseline cognition, apolipoprotein E gene (APOE) status, plasma and cerebrospinal fluid (CSF) levels of phosphorylated tau-217, neurofilament light (NfL), and amyloid beta (Aβ)42/40 ratio (individually and in combination) to predict cognitive decline over 2 years in BioFINDER-2 and Alzheimer's Disease Neuroimaging Initiative (ADNI). Results: Baseline tau-PET and a composite baseline cognitive score were the strongest independent predictors of cognitive decline. Cortical thickness and NfL provided some additional information. Using a predictive algorithm to enrich patient selection in a theoretical clinical trial led to a significantly lower required sample size. Discussion: Models including baseline tau-PET and cognition consistently provided the best prediction of change in cognitive function over 2 years in patients with amnestic MCI or mild dementia.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-19 av 19

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy