SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Duret Laurent) "

Search: WFRF:(Duret Laurent)

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Bolivar, Paulina, et al. (author)
  • GC-biased gene conversion conceals the prediction of the nearly neutral theory in avian genomes
  • 2019
  • In: Genome Biology. - : BMC. - 1465-6906 .- 1474-760X. ; 20
  • Journal article (peer-reviewed)abstract
    • Background: The nearly neutral theory of molecular evolution predicts that the efficacy of natural selection increases with the effective population size. This prediction has been verified by independent observations in diverse taxa, which show that life-history traits are strongly correlated with measures of the efficacy of selection, such as the d(N)/d(S) ratio. Surprisingly, avian taxa are an exception to this theory because correlations between life-history traits and d(N)/d(S) are apparently absent. Here we explore the role of GC-biased gene conversion on estimates of substitution rates as a potential driver of these unexpected observations.Results: We analyze the relationship between d(N)/d(S) estimated from alignments of 47 avian genomes and several proxies for effective population size. To distinguish the impact of GC-biased gene conversion from selection, we use an approach that accounts for non-stationary base composition and estimate d(N)/d(S) separately for changes affected or unaffected by GC-biased gene conversion. This analysis shows that the impact of GC-biased gene conversion on substitution rates can explain the lack of correlations between life-history traits and d(N)/d(S). Strong correlations between life-history traits and d(N)/d(S) are recovered after accounting for GC-biased gene conversion. The correlations are robust to variation in base composition and genomic location.Conclusions: Our study shows that gene sequence evolution across a wide range of avian lineages meets the prediction of the nearly neutral theory,the efficacy of selection increases with effective population size. Moreover, our study illustrates that accounting for GC-biased gene conversion is important to correctly estimate the strength of selection.
  •  
2.
  • Galtier, Nicolas, et al. (author)
  • Codon Usage Bias in Animals : Disentangling the Effects of Natural Selection, Effective Population Size, and GC-Biased Gene Conversion
  • 2018
  • In: Molecular biology and evolution. - : Oxford University Press (OUP). - 0737-4038 .- 1537-1719. ; 35:5, s. 1092-1103
  • Journal article (peer-reviewed)abstract
    • Selection on codon usage bias is well documented in a number of microorganisms. Whether codon usage is also generally shaped by natural selection in large organisms, despite their relatively small effective population size (Ne), is unclear. In animals, the population genetics of codon usage bias has only been studied in a handful of model organisms so far, and can be affected by confounding, nonadaptive processes such as GC-biased gene conversion and experimental artefacts. Using population transcriptomics data, we analyzed the relationship between codon usage, gene expression, allele frequency distribution, and recombination rate in 30 nonmodel species of animals, each from a different family, covering a wide range of effective population sizes. We disentangled the effects of translational selection and GC-biased gene conversion on codon usage by separately analyzing GC-conservative and GC-changing mutations. We report evidence for effective translational selection on codon usage in large-Ne species of animals, but not in small-Ne ones, in agreement with the nearly neutral theory of molecular evolution. C- and T-ending codons tend to be preferred over synonymous G- and A-ending ones, for reasons that remain to be determined. In contrast, we uncovered a conspicuous effect of GC-biased gene conversion, which is widespread in animals and the main force determining the fate of AT↔GC mutations. Intriguingly, the strength of its effect was uncorrelated with Ne.
  •  
3.
  • Glemin, Sylvain, et al. (author)
  • Quantification of GC-biased gene conversion in the human genome
  • 2015
  • In: Genome Research. - : Cold Spring Harbor Laboratory. - 1088-9051 .- 1549-5469. ; 25:8, s. 1215-1228
  • Journal article (peer-reviewed)abstract
    • Much evidence indicates that GC-biased gene conversion (gBGC) has a major impact on the evolution of mammalian genomes. However, a detailed quantification of the process is still lacking. The strength of gBGC can be measured from the analysis of derived allele frequency spectra (DAF), but this approach is sensitive to a number of confounding factors. In particular, we show by simulations that the inference is pervasively affected by polymorphism polarization errors and by spatial heterogeneity in gBGC strength. We propose a new general method to quantify gBGC from DAF spectra, incorporating polarization errors, taking spatial heterogeneity into account, and jointly estimating mutation bias. Applying it to human polymorphism data from the 1000 Genomes Project, we show that the strength of gBGC does not differ between hypermutable CpG sites and non-CpG sites, suggesting that in humans gBGC is not caused by the base-excision repair machinery. Genome-wide, the intensity of gBGC is in the nearly neutral area. However, given that recombination occurs primarily within recombination hotspots, 1%-2% of the human genome is subject to strong gBGC. On average, gBGC is stronger in African than in non-African populations, reflecting differences in effective population sizes. However, due to more heterogeneous recombination landscapes, the fraction of the genome affected by strong gBGC is larger in non-African than in African populations. Given that the location of recombination hotspots evolves very rapidly, our analysis predicts that, in the long term, a large fraction of the genome is affected by short episodes of strong gBGC.
  •  
4.
  • Ratnakumar, Abhirami, et al. (author)
  • Detecting positive selection within genomes : the problem of biased gene conversion
  • 2010
  • In: Philosophical Transactions of the Royal Society of London. Biological Sciences. - : The Royal Society. - 0962-8436 .- 1471-2970. ; 365:1552, s. 2571-2580
  • Journal article (peer-reviewed)abstract
    • The identification of loci influenced by positive selection is a major goal of evolutionary genetics. A popular approach is to perform scans of alignments on a genome-wide scale in order to find regions evolving at accelerated rates on a particular branch of a phylogenetic tree. However, positive selection is not the only process that can lead to accelerated evolution. Notably, GC-biased gene conversion (gBGC) is a recombination-associated process that results in the biased fixation of G and C nucleotides. This process can potentially generate bursts of nucleotide substitutions within hotspots of meiotic recombination. Here, we analyse the results of a scan for positive selection on genes on branches across the primate phylogeny. We show that genes identified as targets of positive selection have a significant tendency to exhibit the genomic signature of gBGC. Using a maximum-likelihood framework, we estimate that more than 20 per cent of cases of significantly elevated non-synonymous to synonymous substitution rates ratio (d(N)/d(S)), particularly in shorter branches, could be due to gBGC. We demonstrate that in some cases, gBGC can lead to very high d(N)/d(S) (more than 2). Our results indicate that gBGC significantly affects the evolution of coding sequences in primates, often leading to patterns of evolution that can be mistaken for positive selection.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view