SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Inal Sahika) "

Sökning: WFRF:(Inal Sahika)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Donahue, Mary, et al. (författare)
  • Tailoring PEDOT properties for applications in bioelectronics
  • 2020
  • Ingår i: Materials science & engineering. R, Reports. - : Elsevier. - 0927-796X .- 1879-212X. ; 140
  • Tidskriftsartikel (refereegranskat)abstract
    • Resulting from its wide range of beneficial properties, the conjugated conducting polymer poly(3,4‐ethylenedioxythiophene) (PEDOT) is a promising material in a number of emerging applications. These material properties, particularly promising in the field of bioelectronics, include its well‐known high‐degree of mechanical flexibility, stability, and high conductivity. However, perhaps the most advantageous property is its ease of fabrication: namely, low‐cost and straight‐forward deposition processes. PEDOT processing is generally carried out at low temperatures with simple deposition techniques, allowing for significant customization of the material properties through, as highlighted in this review, both process parameter variation and the addition of numerous additives. Here we aim to review the role of PEDOT in addressing an assortment of mechanical and electronic requirements as a function of the conditions used to cast or polymerize the films, and the addition of additives such as surfactants and secondary dopants. Contemporary bioelectronic research examples investigating and utilizing the effects of these modifications will be highlighted.
  •  
2.
  • Fabiano, Simone, et al. (författare)
  • On the fundamentals of organic mixed ionic/electronic conductors
  • 2023
  • Ingår i: Journal of Materials Chemistry C. - : ROYAL SOC CHEMISTRY. - 2050-7526 .- 2050-7534. ; 11:42, s. 14527-14539
  • Tidskriftsartikel (refereegranskat)abstract
    • The first Telluride Science meeting (formerly TSRC) on organic mixed ionic and electronic conductors (OMIECs), Oct 3-7, 2022, brought together researchers across the field to understand the fundamental processes and identify out-standing questions related to this exciting class of materials. OMIECs are organic materials that promote the transport of mobile electronic charge carriers while simultaneously supporting ionic transport and ionic-electronic coupling. These properties open up broad areas of applications from energy to bioelectronics. Devices include batteries, supercapacitors, actuators, electrochromic displays, and organic electrochemical transistors (OECTs). They possess the key strengths of traditional organic electronic materials, such as synthetic tunability and low-temperature processing. Despite the recent advances in devices and applications achieved with such materials, many challenges and gaps in understanding remain. These topics hold the key to designing next-generation materials and devices that continue to push the limits of performance and stability and facilitate novel functionality. This perspective aims to summarize the current understanding, conversations, and debates that made this TSRC particularly engaging, enabling new directions and searching for missing pieces of the OMIEC puzzle. This perspective offers insights from discussions conducted during the Telluride Science meeting on organic mixed ionic and electronic conductors, outlining the challenges associated with understanding the behavior of this intriguing materials class.
  •  
3.
  • Jonsson, Amanda, et al. (författare)
  • Bioelectronic neural pixel: Chemical stimulation and electrical sensing at the same site
  • 2016
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 113:34, s. 9440-9445
  • Tidskriftsartikel (refereegranskat)abstract
    • Local control of neuronal activity is central to many therapeutic strategies aiming to treat neurological disorders. Arguably, the best solution would make use of endogenous highly localized and specialized regulatory mechanisms of neuronal activity, and an ideal therapeutic technology should sense activity and deliver endogenous molecules at the same site for the most efficient feedback regulation. Here, we address this challenge with an organic electronic multifunctional device that is capable of chemical stimulation and electrical sensing at the same site, at the single-cell scale. Conducting polymer electrodes recorded epileptiform discharges induced in mouse hippocampal preparation. The inhibitory neurotransmitter, γ-aminobutyric acid (GABA), was then actively delivered through the recording electrodes via organic electronic ion pump technology. GABA delivery stopped epileptiform activity, recorded simultaneously and colocally. This multifunctional “neural pixel” creates a range of opportunities, including implantable therapeutic devices with automated feedback, where locally recorded signals regulate local release of specific therapeutic agents.
  •  
4.
  • Moser, Maximilian, et al. (författare)
  • Controlling Electrochemically Induced Volume Changes in Conjugated Polymers by Chemical Design : from Theory to Devices
  • 2021
  • Ingår i: Advanced Functional Materials. - : Wiley. - 1616-301X .- 1616-3028. ; n/a:n/a
  • Tidskriftsartikel (refereegranskat)abstract
    • Electrochemically induced volume changes in organic mixed ionic-electronic conductors (OMIECs) are particularly important for their use in dynamic microfiltration systems, biomedical machinery, and electronic devices. Although significant advances have been made to maximize the dimensional changes that can be accomplished by OMIECs, there is currently limited understanding of how changes in their molecular structures impact their underpinning fundamental processes and their performance in electronic devices. Herein, a series of ethylene glycol functionalized conjugated polymers is synthesized, and their electromechanical properties are evaluated through a combined approach of experimental measurements and molecular dynamics simulations. As demonstrated, alterations in the molecular structure of OMIECs impact numerous processes occurring during their electrochemical swelling, with sidechain length shortening decreasing the number of incorporated water molecules, reducing the generated void volumes and promoting the OMIECs to undergo different phase transitions. Ultimately, the impact of these combined molecular processes is assessed in organic electrochemical transistors, revealing that careful balancing of these phenomena is required to maximize device performance.
  •  
5.
  • Moser, Maximilian, et al. (författare)
  • Side Chain Redistribution as a Strategy to Boost Organic Electrochemical Transistor Performance and Stability
  • 2020
  • Ingår i: Advanced Materials. - : WILEY-V C H VERLAG GMBH. - 0935-9648 .- 1521-4095. ; 32
  • Tidskriftsartikel (refereegranskat)abstract
    • A series of glycolated polythiophenes for use in organic electrochemical transistors (OECTs) is designed and synthesized, differing in the distribution of their ethylene glycol chains that are tethered to the conjugated backbone. While side chain redistribution does not have a significant impact on the optoelectronic properties of the polymers, this molecular engineering strategy strongly impacts the water uptake achieved in the polymers. By careful optimization of the water uptake in the polymer films, OECTs with unprecedented steady-state performances in terms of [mu C*] and current retentions up to 98% over 700 electrochemical switching cycles are developed.
  •  
6.
  • Rivnay, Jonathan, et al. (författare)
  • Organic electrochemical transistors
  • 2018
  • Ingår i: NATURE REVIEWS MATERIALS. - : NATURE PUBLISHING GROUP. - 2058-8437. ; 3:2
  • Forskningsöversikt (refereegranskat)abstract
    • Organic electrochemical transistors (OECTs) make effective use of ion injection from an electrolyte to modulate the bulk conductivity of an organic semiconductor channel. The coupling between ionic and electronic charges within the entire volume of the channel endows OECTs with high transconductance compared with that of field-effect transistors, but also limits their response time. The synthetic tunability, facile deposition and biocompatibility of organic materials make OECTs particularly suitable for applications in biological interfacing, printed logic circuitry and neuromorphic devices. In this Review, we discuss the physics and the mechanism of operation of OECTs, focusing on their identifying characteristics. We highlight organic materials that are currently being used in OECTs and survey the history of OECT technology. In addition, form factors, fabrication technologies and applications such as bioelectronics, circuits and memory devices are examined. Finally, we take a critical look at the future of OECT research and development.
  •  
7.
  • Wang, Yazhou, et al. (författare)
  • n-Type Organic Electrochemical Transistors with High Transconductance and Stability
  • 2023
  • Ingår i: Chemistry of Materials. - : American Chemical Society (ACS). - 0897-4756 .- 1520-5002. ; 35:2, s. 405-415
  • Tidskriftsartikel (refereegranskat)abstract
    • An n-type conjugated polymer based on diazaisoindigo (AIID) and fluorinated thiophene units is introduced. Combining the strong electron-accepting properties of AIID with backbone fluorination produced gAIID-2FT, leading to organic electrochemical transistors (OECTs) with normalized values of 4.09 F cm-1 V-1 s-1 and a normalized transconductance (gm,norm) of 0.94 S cm-1. The resulting OECTs exhibit exceptional operational stability and long shelf-life in ambient conditions, preserving 100% of the original maximum drain current after over 3 h of continuous operation and 28 days of storage in the air. Our work highlights the advantages of integrating strong electron acceptors with donor fluorination to boost the performance and stability of n-type OECTs.
  •  
8.
  • Williamson, Adam, et al. (författare)
  • Controlling Epileptiform Activity with Organic Electronic Ion Pumps
  • 2015
  • Ingår i: Advanced Materials. - : Wiley-VCH Verlag. - 0935-9648 .- 1521-4095. ; 27:20, s. 3138-3144
  • Tidskriftsartikel (refereegranskat)abstract
    • In treating epilepsy, the ideal solution is to act at a seizure's onset, but only in the affected regions of the brain. Here, an organic electronic ion pump is demonstrated, which directly delivers on-demand pure molecules to specific brain regions. State-of-the-art organic devices and classical pharmacology are combined to control pathological activity in vitro, and the results are verified with electrophysiological recordings.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy