SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Johansson Malin B) "

Sökning: WFRF:(Johansson Malin B)

  • Resultat 1-50 av 85
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abele, H., et al. (författare)
  • Particle physics at the European Spallation Source
  • 2023
  • Ingår i: Physics reports. - : Elsevier. - 0370-1573 .- 1873-6270. ; 1023, s. 1-84
  • Forskningsöversikt (refereegranskat)abstract
    • Presently under construction in Lund, Sweden, the European Spallation Source (ESS) will be the world’s brightest neutron source. As such, it has the potential for a particle physics program with a unique reach and which is complementary to that available at other facilities. This paper describes proposed particle physics activities for the ESS. These encompass the exploitation of both the neutrons and neutrinos produced at the ESS for high precision (sensitivity) measurements (searches).
  •  
2.
  • Burgman, A., et al. (författare)
  • The ESSnuSB Design Study: Overview and Future Prospects
  • 2023
  • Ingår i: Universe. - : MDPI. - 2218-1997. ; 9:8
  • Forskningsöversikt (refereegranskat)abstract
    • ESSnuSB is a design study for an experiment to measure the CP violation in the leptonic sector at the second neutrino oscillation maximum using a neutrino beam driven by the uniquely powerful ESS linear accelerator. The reduced impact of systematic errors on sensitivity at the second maximum allows for a very precise measurement of the CP violating parameter. This review describes the fundamental advantages of measurement at the second maximum, the necessary upgrades to the ESS linac in order to produce a neutrino beam, the near and far detector complexes, and the expected physics reach of the proposed ESSnuSB experiment, concluding with the near future developments aimed at the project realization.
  •  
3.
  • Rodriguez-Palmero, Agusti, et al. (författare)
  • DLG4-related synaptopathy : a new rare brain disorder
  • 2021
  • Ingår i: Genetics in Medicine. - : Elsevier BV. - 1098-3600 .- 1530-0366. ; 23:5, s. 888-899
  • Tidskriftsartikel (refereegranskat)abstract
    • PurposePostsynaptic density protein-95 (PSD-95), encoded by DLG4, regulates excitatory synaptic function in the brain. Here we present the clinical and genetic features of 53 patients (42 previously unpublished) with DLG4 variants.MethodsThe clinical and genetic information were collected through GeneMatcher collaboration. All the individuals were investigated by local clinicians and the gene variants were identified by clinical exome/genome sequencing.ResultsThe clinical picture was predominated by early onset global developmental delay, intellectual disability, autism spectrum disorder, and attention deficit–hyperactivity disorder, all of which point to a brain disorder. Marfanoid habitus, which was previously suggested to be a characteristic feature of DLG4-related phenotypes, was found in only nine individuals and despite some overlapping features, a distinct facial dysmorphism could not be established. Of the 45 different DLG4 variants, 39 were predicted to lead to loss of protein function and the majority occurred de novo (four with unknown origin). The six missense variants identified were suggested to lead to structural or functional changes by protein modeling studies.ConclusionThe present study shows that clinical manifestations associated with DLG4 overlap with those found in other neurodevelopmental disorders of synaptic dysfunction; thus, we designate this group of disorders as DLG4-related synaptopathy.
  •  
4.
  • Wang, Zhaoming, et al. (författare)
  • Imputation and subset-based association analysis across different cancer types identifies multiple independent risk loci in the TERT-CLPTM1L region on chromosome 5p15.33
  • 2014
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 23:24, s. 6616-6633
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide association studies (GWAS) have mapped risk alleles for at least 10 distinct cancers to a small region of 63 000 bp on chromosome 5p15.33. This region harbors the TERT and CLPTM1L genes; the former encodes the catalytic subunit of telomerase reverse transcriptase and the latter may play a role in apoptosis. To investigate further the genetic architecture of common susceptibility alleles in this region, we conducted an agnostic subset-based meta-analysis (association analysis based on subsets) across six distinct cancers in 34 248 cases and 45 036 controls. Based on sequential conditional analysis, we identified as many as six independent risk loci marked by common single-nucleotide polymorphisms: five in the TERT gene (Region 1: rs7726159, P = 2.10 × 10(-39); Region 3: rs2853677, P = 3.30 × 10(-36) and PConditional = 2.36 × 10(-8); Region 4: rs2736098, P = 3.87 × 10(-12) and PConditional = 5.19 × 10(-6), Region 5: rs13172201, P = 0.041 and PConditional = 2.04 × 10(-6); and Region 6: rs10069690, P = 7.49 × 10(-15) and PConditional = 5.35 × 10(-7)) and one in the neighboring CLPTM1L gene (Region 2: rs451360; P = 1.90 × 10(-18) and PConditional = 7.06 × 10(-16)). Between three and five cancers mapped to each independent locus with both risk-enhancing and protective effects. Allele-specific effects on DNA methylation were seen for a subset of risk loci, indicating that methylation and subsequent effects on gene expression may contribute to the biology of risk variants on 5p15.33. Our results provide strong support for extensive pleiotropy across this region of 5p15.33, to an extent not previously observed in other cancer susceptibility loci.
  •  
5.
  • Einarsdottir, Sigrun, et al. (författare)
  • Vaccination against tick-borne encephalitis (TBE) after autologous and allogeneic stem cell transplantation
  • 2021
  • Ingår i: Vaccine. - : Elsevier BV. - 0264-410X .- 1873-2518. ; 39:7, s. 1035-1038
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: Our aim was to assess response and side effects of 4 doses of TBE vaccine to patients (pts) after allo- and autologous stem cell transplantation (SCT). PATIENTS: Included were 104 pts with leukaemia, myeloma and lymphoma, median age 61 yrs. METHODS: Vaccine (FSME-Immun (R)) was given at 9, 10, 12, and 21 months post-transplant. Serum samples were obtained before and after vaccinations. Healthy controls (n = 27) received 3 vaccinations. Assessments of TBE specific IgG antibodies were performed by Enzygnost anti-TBE ELISA test (Siemens, Sweden). Results: Antibody levels (>12 U/mL; "seropositivity") were seen in 77% and 80% of pts after allo- and autoSCT; IgG levels; 89 vs 94 U/mL. Ongoing chronic GvHD and immunosuppression (n = 29) was associated with sero-negativity in the last sample (p = 0.007). All controls (n = 27) developed protective antibody levels. Conclusions: TBE vaccination was safe, and 4 doses starting 9 months post-SCT, induced seropositivity in a vast majority of pts. (C) 2021 Elsevier Ltd. All rights reserved.
  •  
6.
  • Nonnecke, E. B., et al. (författare)
  • Human intelectin-1 (ITLN1) genetic variation and intestinal expression
  • 2021
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Intelectins are ancient carbohydrate binding proteins, spanning chordate evolution and implicated in multiple human diseases. Previous GWAS have linked SNPs in ITLN1 (also known as omentin) with susceptibility to Crohn's disease (CD); however, analysis of possible functional significance of SNPs at this locus is lacking. Using the Ensembl database, pairwise linkage disequilibrium (LD) analyses indicated that several disease-associated SNPs at the ITLN1 locus, including SNPs in CD244 and Ly9, were in LD. The alleles comprising the risk haplotype are the major alleles in European (67%), but minor alleles in African superpopulations. Neither ITLN1 mRNA nor protein abundance in intestinal tissue, which we confirm as goblet-cell derived, was altered in the CD samples overall nor when samples were analyzed according to genotype. Moreover, the missense variant V109D does not influence ITLN1 glycan binding to the glycan beta -D-galactofuranose or protein-protein oligomerization. Taken together, our data are an important step in defining the role(s) of the CD-risk haplotype by determining that risk is unlikely to be due to changes in ITLN1 carbohydrate recognition, protein oligomerization, or expression levels in intestinal mucosa. Our findings suggest that the relationship between the genomic data and disease arises from changes in CD244 or Ly9 biology, differences in ITLN1 expression in other tissues, or an alteration in ITLN1 interaction with other proteins.
  •  
7.
  • Nonnecke, E. B., et al. (författare)
  • Human intelectin-2 (ITLN2) is selectively expressed by secretory Paneth cells
  • 2022
  • Ingår i: FASEB Journal. - 0892-6638. ; 36:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Intelectins (intestinal lectins) are highly conserved across chordate evolution and have been implicated in various human diseases, including Crohn's disease (CD). The human genome encodes two intelectin genes, intelectin-1 (ITLN1) and intelectin-2 (ITLN2). Other than its high sequence similarity with ITLN1, little is known about ITLN2. To address this void in knowledge, we report that ITLN2 exhibits discrete, yet notable differences from ITLN1 in primary structure, including a unique amino terminus, as well as changes in amino acid residues associated with the glycan-binding activity of ITLN1. We identified that ITLN2 is a highly abundant Paneth cell-specific product, which localizes to secretory granules, and is expressed as a multimeric protein in the small intestine. In surgical specimens of ileal CD, ITLN2mRNA levels were reduced approximately five-fold compared to control specimens. The ileal expression of ITLN2 was unaffected by previously reported disease-associated variants in ITLN2 and CD-associated variants in neighboring ITLN1 as well as NOD2 and ATG16L1. ITLN2mRNA expression was undetectable in control colon tissue; however, in both ulcerative colitis (UC) and colonic CD, metaplastic Paneth cells were found to express ITLN2. Together, the data reported establish the groundwork for understanding ITLN2 function(s) in the intestine, including its possible role in CD. © 2022 The Authors. The FASEB Journal published by Wiley Periodicals LLC on behalf of Federation of American Societies for Experimental Biology.
  •  
8.
  • van der Post, Sjoerd, 1981, et al. (författare)
  • Site-specific O-glycosylation on the MUC2 mucin protein inhibits cleavage by the Porphyromonas gingivalis secreted cysteine protease (RgpB).
  • 2013
  • Ingår i: The Journal of biological chemistry. - 1083-351X. ; 288:20, s. 14636-46
  • Tidskriftsartikel (refereegranskat)abstract
    • The colonic epithelial surface is protected by an inner mucus layer that the commensal microflora cannot penetrate. We previously demonstrated that Entamoeba histolytica secretes a protease capable of dissolving this layer that is required for parasite penetration. Here, we asked whether there are bacteria that can secrete similar proteases. We screened bacterial culture supernatants for such activity using recombinant fragments of the MUC2 mucin, the major structural component, and the only gel-forming mucin in the colonic mucus. MUC2 has two central heavily O-glycosylated mucin domains that are protease-resistant and has cysteine-rich N and C termini responsible for polymerization. Culture supernatants of Porphyromonas gingivalis, a bacterium that secretes proteases responsible for periodontitis, cleaved the MUC2 C-terminal region, whereas the N-terminal region was unaffected. The active enzyme was isolated and identified as Arg-gingipain B (RgpB). Two cleavage sites were localized to IR↓TT and NR↓QA. IR↓TT cleavage will disrupt the MUC2 polymers. Because this site has two potential O-glycosylation sites, we tested whether recombinant GalNAc-transferases (GalNAc-Ts) could glycosylate a synthetic peptide covering the IRTT sequence. Only GalNAc-T3 was able to glycosylate the second Thr in IRTT, rendering the sequence resistant to cleavage by RgpB. Furthermore, when GalNAc-T3 was expressed in CHO cells expressing the MUC2 C terminus, the second threonine was glycosylated, and the protein became resistant to RgpB cleavage. These findings suggest that bacteria can produce proteases capable of dissolving the inner protective mucus layer by specific cleavages in the MUC2 mucin and that this cleavage can be modulated by site-specific O-glycosylation.
  •  
9.
  • Zhang, Xiaoliang, et al. (författare)
  • Inorganic CsPbI3 Perovskite Coating on PbS Quantum Dot for Highly Efficient and Stable Infrared Light Converting Solar Cells
  • 2018
  • Ingår i: Advanced Energy Materials. - : Wiley-VCH Verlagsgesellschaft. - 1614-6832 .- 1614-6840. ; 8:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Solution-processed colloidal quantum dot (CQD) solar cells harvesting the infrared part of the solar spectrum are especially interesting for future use in semitransparent windows or multilayer solar cells. To improve the device power conversion efficiency (PCE) and stability of the solar cells, surface passivation of the quantum dots is vital in the research of CQD solar cells. Herein, inorganic CsPbI3 perovskite (CsPbI3-P) coating on PbS CQDs with a low-temperature, solution-processed approach is reported. The PbS CQD solar cell with CsPbI3-P coating gives a high PCE of 10.5% and exhibits remarkable stability both under long-term constant illumination and storage under ambient conditions. Detailed characterization and analysis reveal improved passivation of the PbS CQDs with the CsPbI3-P coating, and the results suggest that the lattice coherence between CsPbI3-P and PbS results in epitaxial induced growth of the CsPbI3-P coating. The improved passivation significantly diminishes the sub-bandgap trap-state assisted recombination, leading to improved charge collection and therefore higher photovoltaic performance. This work therefore provides important insight to improve the CQD passivation by coating with an inorganic perovskite ligand for photovoltaics or other optoelectronic applications.
  •  
10.
  • Ambort, Daniel, 1978, et al. (författare)
  • Calcium and pH-dependent packing and release of the gel-forming MUC2 mucin.
  • 2012
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 1091-6490 .- 0027-8424. ; 109:15, s. 5645-50
  • Tidskriftsartikel (refereegranskat)abstract
    • MUC2, the major colonic mucin, forms large polymers by N-terminal trimerization and C-terminal dimerization. Although the assembly process for MUC2 is established, it is not known how MUC2 is packed in the regulated secretory granulae of the goblet cell. When the N-terminal VWD1-D2-D'D3 domains (MUC2-N) were expressed in a goblet-like cell line, the protein was stored together with full-length MUC2. By mimicking the pH and calcium conditions of the secretory pathway we analyzed purified MUC2-N by gel filtration, density gradient centrifugation, and transmission electron microscopy. At pH 7.4 the MUC2-N trimer eluted as a single peak by gel filtration. At pH 6.2 with Ca(2+) it formed large aggregates that did not enter the gel filtration column but were made visible after density gradient centrifugation. Electron microscopy studies revealed that the aggregates were composed of rings also observed in secretory granulae of colon tissue sections. The MUC2-N aggregates were dissolved by removing Ca(2+) and raising pH. After release from goblet cells, the unfolded full-length MUC2 formed stratified layers. These findings suggest a model for mucin packing in the granulae and the mechanism for mucin release, unfolding, and expansion.
  •  
11.
  • Andruszkiewicz, Aneta, et al. (författare)
  • Perovskite and quantum dot tandem solar cells with interlayer modification for improved optical semitransparency and stability
  • 2021
  • Ingår i: Nanoscale. - : Royal Society of Chemistry. - 2040-3364 .- 2040-3372. ; 13:12, s. 6234-6240
  • Tidskriftsartikel (refereegranskat)abstract
    • In this work, four-terminal (4T) tandem solar cells were fabricated by using a methylammonium lead iodide (MAPbI3) perovskite solar cell (PSC) as the front-cell and a lead sulfide (PbS) colloidal quantum dot solar cell (CQDSC) as the back-cell. Different modifications of the tandem interlayer, at the interface between the sub-cells, were tested in order to improve the infrared transparency of the perovskite sub-cell and consequently increase the utilization of infrared (IR) light by the tandem system. This included the incorporation of a semi-transparent thin gold electrode (Au) on the MAPbI3 solar cell, followed by adding a molybdenum(VI) oxide (MoO3) layer or a surlyn layer. These interlayer modifications resulted in an increase of the IR transmittance to the back cell and improved the optical stability, compared to that in the reference devices. This investigation shows the importance of the interlayer, connecting the PSC with a strong absorption in the visible region and the CQDSC with a strong infrared absorption to obtain efficient next-generation tandem photovoltaics (PVs).
  •  
12.
  • Ghoreishi, Farzaneh S., et al. (författare)
  • Enhanced performance of CH3NH3PbI3 perovskite solar cells via interface modification using phenyl ammonium iodide derivatives
  • 2020
  • Ingår i: Journal of Power Sources. - : ELSEVIER. - 0378-7753 .- 1873-2755. ; 473
  • Tidskriftsartikel (refereegranskat)abstract
    • Interface modification in perovskite solar cells is a key factor for achieving high power conversion efficiency by suppressing electron-hole recombination and accelerating charge carrier extraction. Here, we use a series of phenyl ammonium derivatives, phenyl ammonium iodide (PAI), benzyl ammonium iodide (BAI), and phenyl ethyl ammonium iodide (PEAI), to modify the interface between methylammonium lead triiodide (MAPbI(3)) perovskite and Spiro-OMeTAD as a hole transport layer in solar cell devices. The structural and optical properties of the perovskite films are studied and the results reveal the formation of two-dimensional perovskite interfacial layers on the surface of the MAPbI(3) film modified with PEAI and BAI whereas the MAPbI(3) layer modified with PAI gives an interface layer with slightly different properties compared to the two-dimensional perovskite. Impedance spectroscopy shows that the charge transport resistance of the interface engineered solar cells decreases when compared to pristine MAPbI(3). In addition, slower open-circuit voltage decay and longer carrier lifetime are also observed for the modified cells which in total lead to the improvement of the photovoltaic performance. The investigation therefore gives insight in the effect of interface modifications, and especially how different sizes of the molecular interface modifier results in different interface formation and characteristics.
  •  
13.
  • Jia, Qiaoying, et al. (författare)
  • Large-Grained All-Inorganic Bismuth-Based Perovskites with Narrow Band Gap via Lewis Acid-Base Adduct Approach
  • 2020
  • Ingår i: ACS Applied Materials and Interfaces. - : AMER CHEMICAL SOC. - 1944-8244 .- 1944-8252. ; 12:39, s. 43876-43884
  • Tidskriftsartikel (refereegranskat)abstract
    • Bismuth halide perovskites have recently been considered a potential alternative to lead halide analogues due to their low toxicity and high stability. However, the layered flake structure and wide band gap limit their applications in perovskite solar cells (PSCs). We herein show that large-grained all-inorganic bismuth-based perovskites with a narrow band gap can be obtained from a Lewis acid-base adduct reaction under ambient conditions. Thiourea (CH4N2S) is utilized as a Lewis base to interact with BiI3, confirmed with infrared (IR) spectra. The strong coordination between thiourea and the Bi3+ center could slow down the perovskite crystallization and promote the preferred orientation of the perovskite crystals with a hexagonal phase. The morphology of the perovskite films varies dramatically with an increase of molar ratio of BiI3 and thiourea in the precursor. The perovskites derived from a BiI3/thiourea ratio of 1:2 display extrathick grains, higher surface coverage, extended light absorption, higher crystallinity, and similar air stability compared to the pristine sample. The power conversion efficiency (PCE) of the thiourea-induced bismuth perovskite solar cells is significantly enhanced due to the higher surface coverage and the broader absorption of the perovskite film.
  •  
14.
  •  
15.
  • Johansson, Malin B, 1972-, et al. (författare)
  • Cesium Bismuth Iodide Solar Cells from Systematic Molar Ratio Variation of CsI and BiI3
  • 2019
  • Ingår i: Inorganic Chemistry. - : AMER CHEMICAL SOC. - 0020-1669 .- 1520-510X. ; 58:18, s. 12040-12052
  • Tidskriftsartikel (refereegranskat)abstract
    • Metal halide compounds with photovoltaic properties prepared from solution have received increased attention for utilization in solar cells. In this work, low-toxicity cesium bismuth iodides are synthesized from solution, and their photovoltaic and, optical properties as well as electronic and crystal structures are investigated. The X-ray diffraction patterns reveal that a CsI/BiI3 precursor ratio of 1.5:1 can convert pure rhombohedral BiI3 to pure hexagonal Cs3Bi2I9, but any ratio intermediate of this stoichiometry and pure BiI3 yields a mixture containing the two crystalline phases Cs3Bi2I9 and BiI3, with their relative fraction depending on the CsI/BiI3 ratio. Solar cells from the series of compounds are characterized, showing the highest efficiency for the compounds with a mixture of the two structures. The energies of the valence band edge were estimated using hard and soft X-ray photoelectron spectroscopy for more bulk and surface electronic properties, respectively. On the basis of these measurements, together with UV-vis-near-IR spectrophotometry, measuring the band gap, and Kelvin probe measurements for estimating the work function, an approximate energy diagram has been compiled clarifying the relationship between the positions of the valence and conduction band edges and the Fermi level.
  •  
16.
  •  
17.
  • Johansson, Malin B., et al. (författare)
  • Extended Photo-Conversion Spectrum in Low-Toxic Bismuth Halide Perovskite Solar Cells
  • 2016
  • Ingår i: The Journal of Physical Chemistry Letters. - : American Chemical Society (ACS). - 1948-7185. ; 7:17, s. 3467-3471
  • Tidskriftsartikel (refereegranskat)abstract
    • Lead-based perovskites show very promising properties for use in solar cells; however, the toxicity of lead is a potential inhibitor for large-scale application of these solar cells. Here, a low-toxic bismuth halide, CsBi3I10, is synthesized from solution and the optical properties and crystal structure are compared with previously reported Cs3Bi2I9 perovskite, and the photovoltaic properties are also investigated. The XRD pattern suggests that the CsBi3I10 film has a layered structure with a different dominating crystal growth direction than the Cs3Bi2I9 perovskite. A band gap of 1.77 eV is obtained for the CsBi3I10 film, which is smaller than the band gap of Cs3Bi2I9 at 2.03 eV, and an extended visible light absorption spectrum is therefore obtained. The solar cell device with CsBi3I10 shows a photocurrent up to 700 nm, and this work shows therefore the possibility for increased light absorption and higher photocurrents in solar cells based on bismuth halide perovskites.
  •  
18.
  • Johansson, Malin B., et al. (författare)
  • From Quantum Dots to Micro Crystals : Organolead Triiodide Perovskite Crystal Growth from Isopropanol Solution
  • 2016
  • Ingår i: ECS JOURNAL OF SOLID STATE SCIENCE AND TECHNOLOGY. - : Electrochemical Society. - 2162-8769 .- 2162-8777. ; 5:10, s. P614-P620
  • Tidskriftsartikel (refereegranskat)abstract
    • The growth mechanism and dependence on precursor conditions are vital for creation of high quality crystalline materials in many fields. Here the growth from nano sized quantum dots to micro crystalline methyl ammonium lead tri-iodide (MAPbI(3)) perovskites prepared from isopropanol solution are reported. Isopropanol is more environmental friendly compared to the commonly used solvents DMF or DMSO, both with relatively high toxicity and the proposed method can be a useful new route to prepare hybrid perovskites. Three different molar ratios of MAPbI3 perovskite solution (MAI:PbI2 of 1: 1, 2: 1 and 0.5: 1) were applied to give insights in the crystal formation mechanism also under non-stoichiometric conditions. Perovskite crystal growth is followed by TEM. From XRD powder diffraction the lattice constants have been determined and compared with results from electron diffraction (ED). Interestingly, there seems to be an occurrence of the cubic phase besides the common tetragonal phase at room temperature. (C) 2016 The Electrochemical Society. All rights reserved.
  •  
19.
  • Johansson, Malin B., 1972-, et al. (författare)
  • Highly crystalline MAPbI3 perovskite grain formation by irreversible poor-solvent diffusion aggregation, for efficient solar cell fabrication
  • 2020
  • Ingår i: Nano Energy. - : Elsevier Ltd. - 2211-2855 .- 2211-3282. ; 78
  • Tidskriftsartikel (refereegranskat)abstract
    • Energy efficient synthesis providing high quality crystalline thin films are highly desired in many applications. Here we devise a non-toxic solvent approach for production of highly crystalline MAPbI3 perovskite by exploiting diffusion aggregation processes. Isopropanol solution based methylammonium lead triiodide (MAPbI3) is used in this context, where the crystal growth initiation starts in an unstable suspension far from equilibrium and the subsequent crystallization is driven by the solubility parameters. The crystal formation is monitored by scanning transmission electron microscope (STEM), observing small crystallization centers growing as time evolves to large grains with high crystal purity. Energy dispersive X-ray spectroscopy (EDS) in STEM mode revealed a Pb rich core-shell structure in newly formed grains. Nano-beam Electron Diffraction (NBED) scan defined PbI2 crystallites in the Pb rich shell with a single crystal MAPbI3 core in newly formed grains. After a week stirring, the same aggregated suspension exhibited grains with only single crystal MAPbI3 structure. The NBED analysis shows a kinetically slow transition from a core shell structure to a single crystal grain. This research presents an impactful insight on the factors that may cause sub-stoichiometric grain boundary effects which can influence the solar cell performance. In addition, the structure, morphology and optical properties of the perovskite grains have been presented. A powder of highly crystalline particles was subsequently prepared by evaporation of the solvent in a low-vacuum oven. Thin film MAPbI3 solar cells were fabricated by dissolving the powder and applying it in a classical fabrication route. The MAPbI3 solar cells gave a champion efficiency of 20% (19.9%) and an average efficiency at approximately 17% with low hysteresis effects. Here a strategy to manufacture the material structure without toxic solvents is highlighted. The single-crystal growth devised here opens both for shelf storage of materials as well as a more flexible manufacturing of devices. The process can likely be extended to other fields, where the intermediate porous framework and large surface area would be beneficial for battery or super capacitor materials.
  •  
20.
  • Johansson, Malin E V, 1971, et al. (författare)
  • Composition and functional role of the mucus layers in the intestine.
  • 2011
  • Ingår i: Cellular and Molecular Life Sciences. - : Springer Science and Business Media LLC. - 1420-682X .- 1420-9071. ; 68, s. 3635-3641
  • Forskningsöversikt (refereegranskat)abstract
    • In discussions on intestinal protection, the protective capacity of mucus has not been very much considered. The progress in the last years in understanding the molecular nature of mucins, the main building blocks of mucus, has, however, changed this. The intestinal enterocytes have their apical surfaces covered by transmembrane mucins and the whole intestinal surface is further covered by mucus, built around the gel-forming mucin MUC2. The mucus of the small intestine has only one layer, whereas the large intestine has a two-layered mucus where the inner, attached layer has a protective function for the intestine, as it is impermeable to the luminal bacteria.
  •  
21.
  • Johansson, Ted, et al. (författare)
  • Influence of SOI-generated stress on BiCMOS performance
  • 2006
  • Ingår i: Solid-State Electronics. - : Elsevier BV. - 0038-1101 .- 1879-2405. ; 50:6, s. 935-942
  • Tidskriftsartikel (refereegranskat)abstract
    • Two BiCMOS processes were adapted for SOI and the performance of the bipolar devices was studied. Differences in electrical parameters were observed, in particular the current gain, which processing or doping profiles could not explain, but correlated with observed stress in transistors. Simulation of the process flow with stress included revealed that stress was generated to a higher degree in the SOI wafers in the presence of deep trench isolation (DTI). Theoretical estimations and electrical simulations with and without stress yielded results consistent with observed data. Thus, we conclude that the observed differences are caused by process-induced in-plane biaxial stress.
  •  
22.
  • Pazoki, Meysam, et al. (författare)
  • Bismuth Iodide Perovskite Materials for Solar Cell Applications : Electronic Structure, Optical Transitions and Directional Charge Transport
  • 2016
  • Ingår i: The Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 120, s. 29039-29046
  • Tidskriftsartikel (refereegranskat)abstract
    • Cesium and methylammonium bismuth iodides (Cs3Bi2I9 and MA(3)Bi(2)I(9)) are new low-toxic and air stable compounds in the perovskite solar cell family with promising characteristics. Here, the electronic structure and the nature of their optical transitions, dielectric constant, and charge carrier properties are assessed for photovoltaic applications with density functional theory (DFT) calculations and experiments. The calculated direct and indirect band gap values for Cs3Bi2I9 (2.17 and 2.0 eV) and MA(3)Bi(2)I(9) (2.17 and 1.97 eV) are found to be in good agreement with the experimental optical band gaps (2.2, 2.0 eV and 2.4, 2.1 eV for Cs3Bi2I9 and MA(3)Bi(2)I(9), respectively) estimated for solution-processed films. There is an error cancelation in the DFT calculated band gap similar to that for lead perovskites. However, fully relativistic DFT calculations indicate that the size of the spin orbit coupling (SOC) error cancelation for bismuth perovskite (0.5 eV) is less than for lead perovskite (1 eV), and other factors are therefore also important. Band structure calculations show high effective masses of the charge carriers along the c-axis but on the other hand lower electron effective mass in the a-b planes, revealing the interesting possibility for a directional charge transport. Calculations of dielectric constants, absorption coefficients, carrier effective masses, and exciton binding energies emphasize the fundamental differences between the lead and bismuth iodide perovskites and clarify the reasons behind the lower power conversion efficiency of bismuth iodide perovskite solar cells. Also the calculations show that the orientational disorder of the MA dipoles in the lattice has meaningful impacts on the near valence and conduction band edge of the electronic structure.
  •  
23.
  • Pazoki, Meysam, et al. (författare)
  • Photon Energy-Dependent Hysteresis Effects in Lead Halide Perovskite Materials
  • 2017
  • Ingår i: The Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 121:47, s. 26180-26187
  • Tidskriftsartikel (refereegranskat)abstract
    • Lead halide perovskites have a range of spectacular properties and interesting phenomena and are a serious candidate for the next generation of photovoltaics with high efficiencies and low fabrication costs. An interesting phenomenon is the anomalous hysteresis often seen in current-voltage scans, which complicates accurate performance measurements but has also been explored to obtain a more comprehensive understanding of the device physics. Herein, we demonstrate a wavelength and illumination intensity dependency of the hysteresis in state-of-the-art perovskite solar cells with 18% power conversion efficiency (PCE), which gives new insights into ion migration. The perovskite devices show lower hysteresis under illumination with near band edge (red) wavelengths compared to more energetic (blue) excitation. This can be rationalized with thermalization-assisted ion movement or thermalization-assisted vacancy generation. These explanations are supported by the dependency of the photovoltage decay with illumination time and excitation wavelength, as well as by impedance spectroscopy. The suggested mechanism is that high-energy photons create hot charge carriers that either through thermalization can create additional vacancies or by release of more energetic phonons play a role in overcoming the activation energy for ion movement. The excitation wavelength dependency of the hysteresis presented here gives valuable insights into the photophysics of the lead halide perovskite solar cells.
  •  
24.
  • Phuyal, Dibya, et al. (författare)
  • The electronic structure and band interface of cesium bismuth iodide on a titania heterostructure using hard X-ray spectroscopy
  • 2018
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry (RSC). - 2050-7488 .- 2050-7496. ; 6:20, s. 9498-9505
  • Tidskriftsartikel (refereegranskat)abstract
    • Bismuth halide compounds as a non-toxic alternative are increasingly investigated because of their potential in optoelectronic devices and their rich structural chemistry. Hard X-ray spectroscopy was applied to the ternary bismuth halide Cs3Bi2I9 and its related precursors BiI3 and CsI to understand its electronic structure at an atomic level. We specifically investigated the core levels and valence band using X-ray photoemission spectroscopy (PES), high-resolution X-ray absorption (HERFD-XAS), and resonant inelastic X-ray scattering (RIXS) to get insight into the chemistry and the band edge properties of the two bismuth compounds. Using these element specific X-ray techniques, our experimental electronic structures show that the primary differences between the two bismuth samples are the position of the iodine states in the valence and conduction bands and the degree of hybridization with bismuth lone pair (6s(2)) states. The crystal structure of the two layered quasi-perovskite compounds plays a minor role in modifying the overall electronic structure, with variations in bismuth lone pair states and iodine band edge states. Density Functional Theory (DFT) calculations are used to compare with experimental data. The results demonstrate the effectiveness of hard X-ray spectroscopies to identify element specific bulk electronic structures and their use in optoelectronic devices.
  •  
25.
  • Pitaro, Matteo, et al. (författare)
  • A carbazole-based self-assembled monolayer as the hole transport layer for efficient and stable Cs(0.25)FA(0.75)Sn(0.5)Pb(0.5)I(3) solar cells
  • 2023
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry. - 2050-7488 .- 2050-7496. ; 11:22, s. 11755-11766
  • Tidskriftsartikel (refereegranskat)abstract
    • Mixed tin/lead (Sn/Pb) perovskites have the potential to achieve higher performances in single junction solar cells compared to Pb-based compounds. The best Sn/Pb based devices are fabricated in a p-i-n structure, and PEDOT:PSS is frequently utilized as the hole transport layer, even if there are many doubts on a possible detrimental role of this conductive polymer. Here, we propose the use of [2-(9H-carbazol-9-yl)ethyl]phosphonic acid (2PACz) and [2-(3, 6-dibromo-9H-carbazol-9-yl) ethyl] phosphonic acid (Br-2PACz) as substitutes for PEDOT:PSS. By using Cs(0.25)FA(0.75)Sn(0.5)Pb(0.5)I(3) as the active layer, we obtained record efficiencies as high as 19.51% on Br-2PACz, while 18.44% and 16.33% efficiencies were obtained using 2PACz and PEDOT:PSS, respectively. In addition, the implemented monolayers enhance both the shelf lifetime of the device as well as the operational stability. Finally, the Br-2PACz-based devices maintained 80% of their initial efficiency under continuous illumination for 230 h, and after being stored in a N-2 atmosphere for 4224 h (176 days).
  •  
26.
  •  
27.
  • Sveinbjörnsson, Kári, et al. (författare)
  • Ambient air-processed mixed-ion perovskites for high-efficiency solar cells
  • 2016
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry (RSC). - 2050-7488 .- 2050-7496. ; 4:42, s. 16536-16545
  • Tidskriftsartikel (refereegranskat)abstract
    • Mixed-ion (FAPbI(3))(1-x)(MAPbBr(3))(x) perovskite solar cells have achieved power conversion efficiencies surpassing 20%. However, in order to obtain these high efficiencies the preparation is performed in a controlled inert atmosphere. Here, we report a procedure for manufacturing highly efficient solar cells with a mixed-ion perovskite in ambient atmosphere. By including a heating step at moderate temperatures of the mesoporous titanium dioxide substrates, and spin-coating the perovskite solution on the warm substrates in ambient air, a red intermediate phase is obtained. Annealing the red phase at 100 degrees C results in a uniform and crystalline perovskite film, whose thickness is dependent on the substrate temperature prior to spin-coating. The temperature was optimized between 20 and 100 degrees C and it was observed that 50 degrees C substrate temperature yielded the best solar cell performances. The average efficiency of the best device was 17.6%, accounting for current-voltage (I-V) measurement hysteresis, with 18.8% performance in the backward scan direction and 16.4% in the forward scan direction. Our results show that it is possible to manufacture high-efficiency mixed-ion perovskite solar cells under ambient conditions, which is relevant for large-scale and low-cost device manufacturing processing.
  •  
28.
  • Vijayan, Anuja, et al. (författare)
  • Simple Method for Efficient Slot-Die Coating of MAPbI(3) Perovskite Thin Films in Ambient Air Conditions
  • 2020
  • Ingår i: ACS Applied Energy Materials. - : American Chemical Society (ACS). - 2574-0962. ; 3:5, s. 4331-4337
  • Tidskriftsartikel (refereegranskat)abstract
    • Scalable methods for deposition of lead halide perovskite thin films are required to enable commercialization of the highly promising perovskite photovoltaics. Here, we have developed a slot-die coating process under ambient conditions for methylammonium lead iodide (MAPbI(3)) perovskite on heated substrates (about 90 degrees C on the substrate surface). Dense, highly crystalline perovskite films with large grains (100-200 mu m) were obtained by careful adjustment of the deposition parameters, using solutions that are similar but more dilute than those used in typical spin-coating procedures. Without any further after treatments, such as antisolvent treatment or vapor annealing, we achieved power conversion efficiencies up of 14.5% for devices with the following structure: conducting tin oxide glass (FTO)/TiO2/MAPbI(3)/spiro-MeOTAD/Au. The performance was limited by the significant roughness of the deposited films, resulting from the hot-casting method, and the relatively high deposition temperature, which led to a defect-rich surface due to loss of MAI.
  •  
29.
  • Wu, Hua, et al. (författare)
  • Bandgap Tuning of Silver Bismuth Iodide via Controllable Bromide Substitution for Improved Photovoltaic Performance
  • 2019
  • Ingår i: ACS Applied Energy Materials. - : American Chemical Society (ACS). - 2574-0962. ; 2:8, s. 5356-5362
  • Tidskriftsartikel (refereegranskat)abstract
    • In this work, silver-bismuth-halide thin films, exhibiting low toxicity and good stability, were explored systemically by gradually substituting iodide, I, with bromide, Br, in the AgBi2I7 system. It was found that the optical bandgap can be tuned by varying the I/Br ratio. Moreover, the film quality was improved when introducing a small amount of Br. The solar cell was demonstrated to be more stable at ambient conditions and most efficient when incorporating 10% Br, as a result of decreased recombination originating from the increased grain size. Thus, replacing a small amount of I with Br was beneficial for photovoltaic performance.
  •  
30.
  • Wu, Hua, et al. (författare)
  • Mixed-Halide Double Perovskite Cs2AgBiX6 (X=Br, I) with Tunable Optical Properties via Anion Exchange
  • 2021
  • Ingår i: ChemSusChem. - : Wiley. - 1864-5631 .- 1864-564X. ; 14:20, s. 4507-4515
  • Tidskriftsartikel (refereegranskat)abstract
    • Lead-free double perovskites, A2M+M′3+X6, are considered as promising alternatives to lead-halide perovskites, in optoelectronics applications. Although iodide (I) and bromide (Br) mixing is a versatile tool for bandgap tuning in lead perovskites, similar mixed I/Br double perovskite films have not been reported in double perovskites, which may be due to the large activation energy for ion migration. In this work, mixed Br/I double perovskites were realized utilizing an anion exchange method starting from Cs2AgBiBr6 solid thin-films with large grain-size. The optical and structural properties were studied experimentally and theoretically. Importantly, the halide exchange mechanism was investigated. Hydroiodic acid was the key factor to facilitate the halide exchange reaction, through a dissolution–recrystallization process. In addition, the common organic iodide salts could successfully perform halide-exchange while retaining high mixed-halide phase stability and strong light absorption capability.
  •  
31.
  • Yuan, Lin, et al. (författare)
  • Four-Terminal Tandem Solar Cell with Dye-Sensitized and PbS Colloidal Quantum-Dot-Based Subcells
  • 2020
  • Ingår i: ACS Applied Energy Materials. - : AMER CHEMICAL SOC. - 2574-0962. ; 3:4, s. 3157-3161
  • Tidskriftsartikel (refereegranskat)abstract
    • In this work, high-performance four-terminal solution-processed tandem solar cells were fabricated by using dye-sensitized solar cells (DSSCs) as top-cells and lead sulfide (PbS) colloidal quantum dot solar cells (CQDSCs) as bottom-cells. For dye-sensitized top-cells, three different dye combinations were used while the titanium dioxide (TiO2) scattering layer was removed to maximize the transmission. For the PbS bottom-cells, quantum dots with different sizes were compared. Over 12% power conversion efficiency has been achieved by using the XL dye mixture and 890 nm PbS QDs, which shows a significant efficiency enhancement when compared to single DSSC or CQDSC subcells.
  •  
32.
  •  
33.
  • Zhang, Jinbao, et al. (författare)
  • Efficient solid-state dye sensitized solar cells : The influence of dye molecular structures for the in-situ photoelectrochemically polymerized PEDOT as hole transporting material
  • 2016
  • Ingår i: NANO ENERGY. - : Elsevier BV. - 2211-2855. ; 19, s. 455-470
  • Tidskriftsartikel (refereegranskat)abstract
    • Solid-state dye sensitized solar cells (sDSCs) with organic small molecule hole transporting materials (HTMs) have limited efficiencies due to the incomplete pore filling of the HTMs in the thick mesoporous electrodes and the low hole conductivity of HTMs. Hereby, highly efficient sDSCs with power conversion efficiency of 7.11% and record photocurrent of 13.4 mA cm-2 are reported, prepared by effectively incorporating in-situ photoelectrochemically polymerized PEDOT as HTM in combination with a multifunctional organic, metal-free dye. In order to fundamentally understand how the dye molecules affect the photoelectrochemical polymerization (PEP), the properties of the generated PEDOT and the photovoltaic performance, sDSCs based on a series of dyes are systematically investigated. Detailed comparative studies reveal that the difference between the dye redox potential and monomer onset oxidation potential plays a crucial role in the PEP kinetics and the doping density of PEDOT HTM. The structure of the dyes, functioning as an electron blocking layer, affects the charge recombination at the TiO2/dye/PEDOT interface. The analysis shows that a donor-n-acceptor dye with well-tuned energy levels and bulky structure results in an in-situ electrochemically doped PEDOT HTM with a high hole conductivity (2.0 S cm(-1)) in sDSCs, leading to efficient dye regeneration and photocharge collection. It is hoped that this work will further encourage research on the future design of new dye molecules for an efficient PEP in order to further enhance the photovoltaic performance of solid-state dye sensitized solar cells.
  •  
34.
  • Zhang, Jinbao, et al. (författare)
  • Strategy to Boost the Efficiency of Mixed-Ion Perovskite Solar Cells : Changing Geometry of the Hole Transporting Material
  • 2016
  • Ingår i: ACS Nano. - : American Chemical Society (ACS). - 1936-0851 .- 1936-086X. ; 10:7, s. 6816-6825
  • Tidskriftsartikel (refereegranskat)abstract
    • The hole transporting material (HTM) is an essential component in perovskite solar cells (PSCs) for efficient extraction and collection of the photoinduced charges. Triphenylamine- and carbazole-based derivatives have extensively been explored as alternative and economical HTMs for PSCs. However, the improvement of their power conversion efficiency (PCE), as well as further investigation of the relationship between the chemical structure of the HTMs and the photovoltaic performance, is imperatively needed. In this respect, a simple carbazole-based HTM X25 was designed on the basis of a reference HTM, triphenylamine-based X2, by simply linking two neighboring phenyl groups in a triphenylamine unit through a carbon-carbon single bond. It was found that a lowered highest occupied molecular orbital (HOMO) energy level was obtained for X25 compared to that of X2. Besides, the carbazole moiety in X25 improved the molecular planarity as well as conductivity property in comparison with the triphenylamine unit in X2. Utilizing the HTM X25 in a solar cell with mixed-ion perovskite [HC(NH2)(2)](0.85)(CH3NH3)(0.15)Pb(I0.85Br0.15)(3), a highest reported PCE of 17.4% at 1 sun (18.9% under 0.46 sun) for carbazole-based HTM in PSCs was achieved, in comparison of a PCE of 14.7% for triphenylamine-based HTM X2. From the steady-state photoluminescence and transient photocurrent/photovoltage measurements, we conclude that (1) the lowered HOMO level for X25 compared to X2 favored a higher open-circuit voltage (V-oc) in PSCs; (2) a more uniform formation of X25 capping layer than X2 on the surface of perovskite resulted in more efficient hole transport and charge extraction in the devices. In addition, the long-term stability of PSCs with X25 is significantly enhanced compared to X2 due to its good uniformity of HTM layer and thus complete coverage on the perovskite. The results provide important information to further develop simple and efficient small molecular HTMs applied in solar cells.
  •  
35.
  •  
36.
  • Zhang, Xiaoliang, et al. (författare)
  • Dry-Deposited Transparent Carbon Nanotube Film as Front Electrode in Colloidal Quantum Dot Solar Cells
  • 2017
  • Ingår i: ChemSusChem. - : WILEY-V C H VERLAG GMBH. - 1864-5631 .- 1864-564X. ; 10:2, s. 434-441
  • Tidskriftsartikel (refereegranskat)abstract
    • Single-walled carbon nanotubes (SWCNTs) show great potential as an alternative material for front electrodes in photovoltaic applications, especially for flexible devices. In this work, a press-transferred transparent SWCNT film was utilized as front electrode for colloidal quantum dot solar cells (CQDSCs). The solar cells were fabricated on both glass and flexible substrates, and maximum power conversion efficiencies of 5.5 and 5.6 %, respectively, were achieved, which corresponds to 90 and 92% of an indium-doped tin oxide (ITO)-based device (6.1 %). The SWCNTs are therefore a very good alternative to the ITO-based electrodes especially for flexible solar cells. The optical electric field distribution and optical losses within the devices were simulated theoretically and the results agree with the experimental results. With the optical simulations that were performed it may also be possible to enhance the photovoltaic performance of SWCNT-based solar cells even further by optimizing the device configuration or by using additional optical active layers, thus reducing light reflection of the device and increasing light absorption in the quantum dot layer.
  •  
37.
  • Zhang, Xiaoliang, et al. (författare)
  • Enhanced charge carrier extraction by a highly ordered wrinkled MgZnO thin film for colloidal quantum dot solar cells
  • 2017
  • Ingår i: Journal of Materials Chemistry C. - 2050-7526 .- 2050-7534. ; 5:42, s. 11111-11120
  • Tidskriftsartikel (refereegranskat)abstract
    • Efficient charge carrier extraction from a colloidal quantum dot (CQD) solid is crucial for highperformance of CQD solar cells (CQDSCs). Herein, highly ordered wrinkled MgZnO (MZO) thin films aredemonstrated to improve the charge carrier extraction of PbS CQDSCs. The highly ordered wrinkledMZO thin films are prepared using a low-temperature combustion method. The photovoltaicperformances of CQDSCs with a combustion-processed MZO (CP-MZO) thin film as an electrontransport material (ETM) are compared to those of CQDSCs with a conventional sol–gel processed MZO(SGP-MZO) thin film as an ETM. We performed photoluminescence quenching measurements of thecolloidal quantum dot (CQD) solid and charge carrier dynamic analysis of full solar cell devices. Theresults show that the highly ordered wrinkled CP-MZO thin film significantly increases the chargecarrier extraction from the CQD solid and therefore diminishes the charge interfacial recombination atthe CQD/ETM junction, leading to a 15.5% increase in power conversion efficiency. The improvedefficiency in the CP-MZO based CQDSC is also attributed to the compact and pin-hole free CP-MZOthin film.
  •  
38.
  • Zhang, Xiaoliang, et al. (författare)
  • Fine Tuned Nanolayered Metal/Metal Oxide Electrode for Semitransparent Colloidal Quantum Dot Solar Cells
  • 2016
  • Ingår i: Advanced Functional Materials. - : Wiley. - 1616-301X .- 1616-3028. ; 26:12, s. 1921-1929
  • Tidskriftsartikel (refereegranskat)abstract
    • Semitransparent photovoltaics have great potential, for example, in buildingintegrationor in portable electronics. However, the front and back contactelectrodes signifi cantly affect the light transmission and photovoltaic performanceof the complete device. Herein, the use of a semitransparentnanolayered metal/metal oxide electrode for a semitransparent PbS colloidalquantum dot solar cell to increase the light transmission and power conversioneffi ciency is reported. The effect of the nanolayered electrode on theoptical properties within the solar cells is studied and compared to a theoreticallymodel to identify the origin of optical losses that lower the devicetransmission. The results show that the light transmission in the visibleregion and the photovoltaic performance are signifi cantly enhanced with thenanolayered electrode. The solar cell shows an effi ciency of 5.4% and averagevisible transmittance of 24.1%, which is an increase by 28.6% and 59.6%,respectively, compared to the device with a standard Au fi lm as the electrode.These results demonstrate that the optical and electrical modifi cation oftransparent electrode is possible and essential for reducing the light refl ectionand absorption of the electrode in semitransparent photovoltaics, and,meanwhile the demonstrated nanolayered materials may provide an avenuefor enhancing the device transparency and efficiency.
  •  
39.
  • Zhang, Xiaoliang, et al. (författare)
  • FTO-free top-illuminated colloidal quantum dot electro-optics in devices
  • 2017
  • Ingår i: Solar Energy. - : Elsevier BV. - 0038-092X .- 1471-1257. ; 158, s. 533-542
  • Tidskriftsartikel (refereegranskat)abstract
    • A solar cell device architecture with top-illumination, where the light does not pass through the substrate, is advantageous for many applications. It is also specifically useful for the construction of tandem or multiple junction photovoltaic devices, with illumination through the top solar cell. Here, a top-illuminated colloidal quantum dot solar cell (TI-CQDSC) is demonstrated and compared with a conventional colloidal quantum dot solar cell (C-CQDSC) constructed on a FTO (fluorine doped tin oxide) glass substrate both theoretically and experimentally. The optical electric field distribution in the solar cells with different configuration is simulated using transfer matrix formalism and a more intense optical electric field was observed in TI-CQDSC, leading to a higher exciton generation rate within the colloidal quantum dot solid. The TI-CQDSCs are constructed on both nonconductive glass and flexible substrates, and a maximum power conversion efficiency of 6.4% and 5.6% is achieved, respectively, comparing to that of 5.9% for the C-CQDSC. The improved performance of the top illuminated solar cell is attributed to a combination of enhanced optical electric field intensity in the colloidal quantum dot solid and superior conductivity of the transparent metal film electrode.
  •  
40.
  • Zhang, Xiaoliang, et al. (författare)
  • Highly Efficient Flexible Quantum Dot Solar Cells with Improved Electron Extraction Using MgZnO Nanocrystals
  • 2017
  • Ingår i: ACS Nano. - : American Chemical Society (ACS). - 1936-0851 .- 1936-086X. ; 11:8, s. 8478-8487
  • Tidskriftsartikel (refereegranskat)abstract
    • Colloidal quantum dot (CQD) solar cells have high potential for realizing an efficient and lightweight energy supply for flexible or wearable electronic devices. To achieve highly efficient and flexible CQD solar cells, the electron transport layer (ETL), extracting electrons from the CQD solid layer, needs to be processed at a low-temperature and should also suppress interfacial recombination. Herein, a highly stable MgZnO nanocrystal (MZO-NC) layer is reported for efficient flexible PbS CQD solar cells. Solar cells fabricated with MZONC ETL give a high power conversion efficiency (PCE) of 10.4% and 9.4%, on glass and flexible plastic substrates, respectively. The reported flexible CQD solar cell has the record efficiency to date of flexible CQD solar cells. Detailed theoretical simulations and extensive characterizations reveal that the MZO-NCs significantly enhance charge extraction from CQD solids and diminish the charge accumulation at the ETL/CQD interface, suppressing charge interfacial recombination. These important results suggest that the low-temperature processed MZO-NCs are very promising for use in efficient flexible solar cells or other flexible optoelectronic devices.
  •  
41.
  • Zhu, Huimin, et al. (författare)
  • High Photon-to-Current Conversion in Solar Cells Based on Light-Absorbing Silver Bismuth Iodide
  • 2017
  • Ingår i: ChemSusChem. - : WILEY-V C H VERLAG GMBH. - 1864-5631 .- 1864-564X. ; 10:12, s. 2592-2596
  • Tidskriftsartikel (refereegranskat)abstract
    • Here, a lead-free silver bismuth iodide (AgI/BiI3) with a crystal structure with space group R (3) over barm is investigated for use in solar cells. Devices based on the silver bismuth iodide deposited from solution on top of TiO2 and the conducting polymer poly(3-hexylthiophene-2,5-diyl) (P3HT) as a hole-transport layer are prepared and the photovoltaic performance is very promising with a power conversion efficiency over 2%, which is higher than the performance of previously reported bismuth-halide materials for solar cells. Photocurrent generation is observed between 350 and 700 nm, and the maximum external quantum efficiency is around 45%. The results are compared to solar cells based on the previously reported material AgBi2I7, and we observe a clearly higher performance for the devices with the new silver and bismuth iodides composition and different crystal structure. The X-ray diffraction spectrum of the most efficient silver bismuth iodide material shows a hexagonal crystal structure with space group R (3) over barm, and from the light absorption spectrum we obtain an indirect band gap energy of 1.62 eV and a direct band gap energy of 1.85 eV. This report shows the possibility for finding new structures of metal-halides efficient in solar cells and points out new directions for further exploration of lead-free metal-halide solar cells.
  •  
42.
  • Zhu, Huimin, et al. (författare)
  • The Effect of Dopant-Free Hole-Transport Polymers on Charge Generation and Recombination in Cesium-Bismuth-Iodide Solar Cells
  • 2018
  • Ingår i: ChemSusChem. - : Wiley-VCH Verlagsgesellschaft. - 1864-5631 .- 1864-564X. ; 11:6, s. 1114-1120
  • Tidskriftsartikel (refereegranskat)abstract
    • The photovoltaic characteristics of CsBi3I10-based solar cells with three dopant-free hole-conducting polymers are investigated. The effect on charge generation and charge recombination in the solar cells using the different polymers is studied and the results indicate that the choice of polymer strongly affects the device properties. Interestingly, for the solar cell with poly[[2,3-bis(3-octyloxyphenyl)-5,8-quinoxalinediyl]-2,5-thiophenediyl] (TQ1), the photon-to-current conversion spectrum is highly improved in the red wavelength region, suggesting that the polymer also contributes to the photocurrent generation in this case. This report provides a new direction for further optimization of Bi-halide solar cells by using dopant-free hole-transporting polymers and shows that the energy levels and the interaction between the Bi-halide and the conducting polymers are very important for solar cell performance.
  •  
43.
  • Zhu, Huimin, et al. (författare)
  • Tuning the Bandgap in Silver Bismuth Iodide Materials by Partly Substituting Bismuth with Antimony for Improved Solar Cell Performance
  • 2020
  • Ingår i: ACS Applied Energy Materials. - : American Chemical Society (ACS). - 2574-0962. ; 3:8, s. 7372-7382
  • Tidskriftsartikel (refereegranskat)abstract
    • Silver bismuth iodide (Ag–Bi–I) light absorbers are interesting candidates as lead-free and low-toxic metal-halide materials for solar cell applications. In this work, the partial exchange of bismuth, Bi, with antimony, Sb, is investigated in samples prepared from a solution targeting stoichiometry AgBi2I7. Samples with a gradually increased exchange of Bi by Sb are prepared and light absorption measurements show that the absorption edge is gradually blue-shifted with increasing the amount of Sb. This trend in the shift in combination with the X-ray diffraction and X-ray photoelectron spectroscopy measurements, suggest that new materials with a mixture of Sb and Bi are formed. The density functional theory based electronic structure calculations reproduce the trend observed in the experiments when including spin–orbit coupling, which indicates the importance of relativistic effects in these materials. X-ray photoelectron spectroscopy is used to characterize the materials, and confirms the exchange of Bi to Sb in the samples. When Sb is included in the material, the grain size changes between 50 and 200 nm and the solar cell performance also changes. An optimal power conversion efficiency with excellent reproducibility and stability is obtained for a solar cell with the ratio of Sb/Bi equal to 3.
  •  
44.
  • Öberg, Viktor A., et al. (författare)
  • Cubic AgBiS2 Colloidal Nanocrystals for Solar Cells
  • 2020
  • Ingår i: ACS APPLIED NANO MATERIALS. - : American Chemical Society (ACS). - 2574-0970. ; 3:5, s. 4014-4024
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent progress in colloidal quantum dot (CQD)-based solar cells indicates that low-toxicity materials such as AgBiS2 nanocrystals (NCs) show potential in replacing toxic PbS and CdS CQDs in solar cell applications. In this study, an investigation on the importance of the composition and sensitivity toward synthesis conditions was performed by adjusting concentrations and ratios of Ag and Bi precursors-first, by varying the ratio of Ag toward Bi precursors and, second, by varying the concentration of Ag with a constant ratio toward Bi precursors in the solution. Furthermore, elemental XPS studies and TEM imaging together with solar cell analysis indicated a strong correlation between the concentration of Ag precursor and the NC properties and, moreover, the solar cell properties based on these NCs. In short, a large amount of Ag precursor resulted in smaller Ag-rich NCs, which resulted in solar cells with high photovoltage but low photocurrent density, while a lower amount of Ag precursor resulted in larger NCs and solar cells with a lower photovoltage. The Ag:Bi:S ratio of 0.72:0.9:1 resulted in almost stoichiometric NCs but with a slight excess of Ag, which in turn resulted in solar cells with the highest performance. This work therefore gives insight into how the elemental composition and size of the NCs can be tuned by the precursor ratios and how this, in turn, affects the performance of the solar cell devices.
  •  
45.
  • Öberg, Viktor A., et al. (författare)
  • Hot-Injection Synthesized Ag2S Quantum Dots with Broad Light Absorption and High Stability for Solar Cell Applications
  • 2018
  • Ingår i: ChemNanoMat. - : Wiley. - 2199-692X. ; 4:12, s. 1223-1230
  • Tidskriftsartikel (refereegranskat)abstract
    • A hot-injection synthesis method was used to synthesize low-toxicity Ag2S colloidal quantum dots (CQDs) with strong and broad light absorption as an ultra-thin photo-absorber in CQD heterojunction solar cells. By using iodide and sulfur linkers it was possible to accomplish efficient charge carrier extraction, resulting in a high photocurrent due to the broad absorption spectrum. Transient photovoltage decay measurements were used to obtain information about trap states in the CQDs and the effect on the lifetime of the photoinduced carriers. The devices show very promising stability under constant long-term illumination and they are stable under ambient storage conditions with low losses to the performance over a period of over two months. These results show that Ag2S CQDs have high potential within solar cell applications, and point the direction for further improvements.
  •  
46.
  • Öberg, Viktor A., et al. (författare)
  • Solution-Processed Environmentally Friendly Ag2S Colloidal Quantum Dot Solar Cells with Broad Spectral Absorption
  • 2017
  • Ingår i: Applied Sciences. - : MDPI AG. - 2076-3417. ; 7:10
  • Tidskriftsartikel (refereegranskat)abstract
    • A facile heat-up synthesis route is used to synthesize environmentally friendly Ag2S colloidal quantum dots (CQDs) that are applied as light absorbing material in solid state p-i-n junction solar cell devices. The as-synthesized Ag2S CQDs have an average size of around 3.5 nm and exhibit broad light absorption covering ultraviolet, visible, and near infrared wavelength regions. The solar cell devices are constructed with a device architecture of FTO/TiO2/Ag2S CQDs/hole transport material (HTM) /Au using a solution-processed approach. Different HTMs, N2,N2,N2′,N2′,N7,N7,N7′,N7′-octakis(4-methoxyphenyl)-9,9′-spirobi(9H-fluorene)-2,2′,7,7′ tetramine (spiro-OMeTAD), poly(3-hexylthiophene-2,5-diyl) (P3HT), and poly((2,3-bis(3-octyloxyphenyl)-5,8-quinoxalinediyl)-2,5-thiophenediyl) TQ1 are studied for maximizing the device photovoltaic performance. The solar cell device with P3HT as a hole transport material gives the highest performance and the solar cell exhibit broad spectral absorption. These results indicate that Ag2S CQD have high potential for utilization as environmentally friendly light absorbing materials for solar cell application and that the hole transport material is critical to maximize the solar cell photovoltaic performance.
  •  
47.
  •  
48.
  • Adolf, A., et al. (författare)
  • Release of astroglial vimentin by extracellular vesicles: Modulation of binding and internalization of C3 transferase in astrocytes and neurons
  • 2019
  • Ingår i: Glia. - : Wiley. - 0894-1491. ; 67:4, s. 703-717
  • Tidskriftsartikel (refereegranskat)abstract
    • Clostridium botulinum C3 transferase (C3bot) ADP-ribosylates rho proteins to change cellular functions in a variety of cell types including astrocytes and neurons. The intermediate filament protein vimentin as well as transmembrane integrins are involved in internalization of C3bot into cells. The exact contribution, however, of these proteins to binding of C3bot to the cell surface and subsequent cellular uptake remains to be unraveled. By comparing primary astrocyte cultures derived from wild-type with Vim(-/-) mice, we demonstrate that astrocytes lacking vimentin exhibited a delayed ADP-ribosylation of rhoA concurrent with a blunted morphological response. This functional impairment was rescued by the extracellular excess of recombinant vimentin. Binding assays using C3bot harboring a mutated integrin-binding RGD motif (C3bot-G89I) revealed the involvement of integrins in astrocyte binding of C3bot. Axonotrophic effects of C3bot are vimentin dependent and postulate an underlying mechanism entertaining a molecular cross-talk between astrocytes and neurons. We present functional evidence for astrocytic release of vimentin by exosomes using an in vitro scratch wound model. Exosomal vimentin+ particles released from wild-type astrocytes promote the interaction of C3bot with neuronal membranes. This effect vanished when culturing Vim(-/-) astrocytes. Specificity of these findings was confirmed by recombinant vimentin propagating enhanced binding of C3bot to synaptosomes from rat spinal cord and mouse brain. We hypothesize that vimentin+ exosomes released by reactive astrocytes provide a novel molecular mechanism constituting axonotrophic (neuroprotective) and plasticity augmenting effects of C3bot after spinal cord injury.
  •  
49.
  • Ahlén Bergman, Emma, et al. (författare)
  • Increased CD4+ T cell lineage commitment determined by CpG methylation correlates with better prognosis in urinary bladder cancer patients
  • 2018
  • Ingår i: Clinical Epigenetics. - : BMC. - 1868-7083 .- 1868-7075. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Urinary bladder cancer is a common malignancy worldwide. Environmental factors and chronic inflammation are correlated with the disease risk. Diagnosis is performed by transurethral resection of the bladder, and patients with muscle invasive disease preferably proceed to radical cystectomy, with or without neoadjuvant chemotherapy. The anti-tumour immune responses, known to be initiated in the tumour and draining lymph nodes, may play a major role in future treatment strategies. Thus, increasing the knowledge of tumour-associated immunological processes is important. Activated CD4+ T cells differentiate into four main separate lineages: Th1, Th2, Th17 and Treg, and they are recognized by their effector molecules IFN-γ, IL-13, IL-17A, and the transcription factor Foxp3, respectively. We have previously demonstrated signature CpG sites predictive for lineage commitment of these four major CD4+ T cell lineages. Here, we investigate the lineage commitment specifically in tumour, lymph nodes and blood and relate them to the disease stage and response to neoadjuvant chemotherapy.RESULTS: Blood, tumour and regional lymph nodes were obtained from patients at time of transurethral resection of the bladder and at radical cystectomy. Tumour-infiltrating CD4+ lymphocytes were significantly hypomethylated in all four investigated lineage loci compared to CD4+ lymphocytes in lymph nodes and blood (lymph nodes vs tumour-infiltrating lymphocytes: IFNG -4229 bp p < 0.0001, IL13 -11 bp p < 0.05, IL17A -122 bp p < 0.01 and FOXP3 -77 bp p > 0.05). Examination of individual lymph nodes displayed different methylation signatures, suggesting possible correlation with future survival. More advanced post-cystectomy tumour stages correlated significantly with increased methylation at the IFNG -4229 bp locus. Patients with complete response to neoadjuvant chemotherapy displayed significant hypomethylation in CD4+ T cells for all four investigated loci, most prominently in IFNG p < 0.0001. Neoadjuvant chemotherapy seemed to result in a relocation of Th1-committed CD4+ T cells from blood, presumably to the tumour, indicated by shifts in the methylation patterns, whereas no such shifts were seen for lineages corresponding to IL13, IL17A and FOXP3.CONCLUSION: Increased lineage commitment in CD4+ T cells, as determined by demethylation in predictive CpG sites, is associated with lower post-cystectomy tumour stage, complete response to neoadjuvant chemotherapy and overall better outcome, suggesting epigenetic profiling of CD4+ T cell lineages as a useful readout for clinical staging.
  •  
50.
  • Albrecht, Franziska, et al. (författare)
  • Effects of a Highly Challenging Balance Training Program on Motor Function and Brain Structure in Parkinson's Disease
  • 2021
  • Ingår i: Journal of Parkinson's Disease. - : IOS Press. - 1877-7171 .- 1877-718X. ; 11:4, s. 2057-2071
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Parkinson's disease (PD) is characterized by motor deficits and brain alterations having a detrimental impact on balance, gait, and cognition. Intensive physical exercise can induce changes in the neural system, potentially counteracting neurodegeneration in PD and improving clinical symptoms. Objective: This randomized controlled trial investigated effects of a highly challenging, cognitively demanding, balance and gait training (HiBalance) program in participants with PD on brain structure. Methods: 95 participants were assigned to either the HiBalance or an active control speech training program. The group-based interventions were performed in 1-hour sessions, twice per week over a 10-week period. Participants underwent balance, gait, cognitive function, and structural magnetic resonance imaging assessments before and after the interventions. Voxel-based morphometry was analyzed in 34 HiBalance and 31 active controls. Additionally, structural covariance networks were assessed. Results: There was no significant time by group interaction between the HiBalance and control training in balance, gait, or brain volume. Within-HiBalance-group analyses showed higher left putamen volumes post-training. In repeated measures correlation a positive linear, non-significant relationship between gait speed and putamen volume was revealed. In the HiBalance group we found community structure changes and stronger thalamic-cerebellar connectivity in structural covariance networks. Neither brain volume changes nor topology changes were found for the active controls after the training. Conclusion: Thus, subtle structural brain changes occur after balance and gait training. Future studies need to determine whether training modifications or other assessment methods lead to stronger effects.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 85
Typ av publikation
tidskriftsartikel (76)
annan publikation (5)
forskningsöversikt (3)
konferensbidrag (1)
Typ av innehåll
refereegranskat (78)
övrigt vetenskapligt/konstnärligt (7)
Författare/redaktör
Johansson, Erik (10)
Rensmo, Håkan (9)
Christiansen, P. (3)
Boutron-Ruault, Mari ... (3)
Tumino, Rosario (3)
Riboli, Elio (3)
visa fler...
Pazoki, Meysam (3)
Philippe, Bertrand, ... (3)
Ekelöf, Tord (2)
Stavropoulos, G. (2)
Park, J (2)
Burgman, A. (2)
Efthymiopoulos, I. (2)
Overvad, Kim (2)
Clavel-Chapelon, Fra ... (2)
Kaaks, Rudolf (2)
Boeing, Heiner (2)
Khaw, Kay-Tee (2)
Wareham, Nick (2)
Fanourakis, G. (2)
Thomas, J. (2)
Terranova, F. (2)
Bogomilov, M. (2)
Tsenov, R. (2)
Kullgren, Jolla, 197 ... (2)
Mezzetto, M. (2)
Baussan, E. (2)
Kraljevic, N. Blasko ... (2)
Blennow, Malin (2)
Folsom, B. (2)
Bouquerel, E. (2)
Buchan, O. (2)
Cederkall, J. (2)
Marrelli, C. (2)
Eshraqi, M. (2)
Dancila, Dragos (2)
Danared, H. (2)
Dancila, D. (2)
Delahaye, J. P. (2)
Dracos, M. (2)
Farricker, A. (2)
Fernandez-Martinez, ... (2)
Fukuda, T. (2)
Gazis, N. (2)
Gålnander, B. (2)
Geralis, Th. (2)
Ghosh, M. (2)
Gokbulut, G. (2)
Halić, L. (2)
Jenssen, M. (2)
visa färre...
Lärosäte
Uppsala universitet (61)
Göteborgs universitet (17)
Kungliga Tekniska Högskolan (16)
Karolinska Institutet (12)
Umeå universitet (10)
Lunds universitet (9)
visa fler...
Stockholms universitet (6)
Luleå tekniska universitet (2)
Linköpings universitet (2)
Högskolan Väst (1)
Malmö universitet (1)
Högskolan i Skövde (1)
Chalmers tekniska högskola (1)
RISE (1)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (85)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (55)
Medicin och hälsovetenskap (27)
Teknik (13)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy