SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kramp Martin) "

Sökning: WFRF:(Kramp Martin)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Naaf, Tobias, et al. (författare)
  • Context matters : the landscape matrix determines the population genetic structure of temperate forest herbs across Europe
  • 2022
  • Ingår i: Landscape Ecology. - : Springer Science and Business Media LLC. - 0921-2973 .- 1572-9761. ; 37:5, s. 1365-1384
  • Tidskriftsartikel (refereegranskat)abstract
    • Context Plant populations in agricultural landscapes are mostly fragmented and their functional connectivity often depends on seed and pollen dispersal by animals. However, little is known about how the interactions of seed and pollen dispersers with the agricultural matrix translate into gene flow among plant populations.Objectives We aimed to identify effects of the landscape structure on the genetic diversity within, and the genetic differentiation among, spatially isolated populations of three temperate forest herbs. We asked, whether different arable crops have different effects, and whether the orientation of linear landscape elements relative to the gene dispersal direction matters.Methods We analysed the species' population genetic structures in seven agricultural landscapes across temperate Europe using microsatellite markers. These were modelled as a function of landscape composition and configuration, which we quantified in buffer zones around, and in rectangular landscape strips between, plant populations.Results Landscape effects were diverse and often contrasting between species, reflecting their association with different pollen- or seed dispersal vectors. Differentiating crop types rather than lumping them together yielded higher proportions of explained variation. Some linear landscape elements had both a channelling and hampering effect on gene flow, depending on their orientation.Conclusions Landscape structure is a more important determinant of the species' population genetic structure than habitat loss and fragmentation per se. Landscape planning with the aim to enhance the functional connectivity among spatially isolated plant populations should consider that even species of the same ecological guild might show distinct responses to the landscape structure.
  •  
2.
  • Naaf, Tobias, et al. (författare)
  • Sensitivity to habitat fragmentation across European landscapes in three temperate forest herbs
  • 2021
  • Ingår i: Landscape Ecology. - : Springer Science and Business Media LLC. - 0921-2973 .- 1572-9761. ; 36:10, s. 2831-2848
  • Tidskriftsartikel (refereegranskat)abstract
    • Context Evidence for effects of habitat loss and fragmentation on the viability of temperate forest herb populations in agricultural landscapes is so far based on population genetic studies of single species in single landscapes. However, forest herbs differ in their life histories, and landscapes have different environments, structures and histories, making generalizations difficult.Objectives We compare the response of three slow-colonizing forest herbs to habitat loss and fragmentation and set this in relation to differences in life-history traits, in particular their mating system and associated pollinators.Methods We analysed the herbs' landscape-scale population genetic structure based on microsatellite markers from replicate forest fragments across seven European agricultural landscapes.Results All species responded to reductions in population size with a decrease in allelic richness and an increase in genetic differentiation among populations. Genetic differentiation also increased with enhanced spatial isolation. In addition, each species showed unique responses. Heterozygosity in the self-compatible Oxalis acetosella was reduced in smaller populations. The genetic diversity of Anemone nemorosa, whose main pollinators are less mobile, decreased with increasing spatial isolation, but not that of the bumblebee-pollinated Polygonatum multiflorum.Conclusions Our study indicates that habitat loss and fragmentation compromise the long-term viability of slow-colonizing forest herbs despite their ability to persist for many decades by clonal propagation. The distinct responses of the three species studied within the same landscapes confirm the need of multi-species approaches. The mobility of associated pollinators should be considered an important determinant of forest herbs' sensitivity to habitat loss and fragmentation.
  •  
3.
  • Sloyan, Bernadette M., et al. (författare)
  • The global ocean ship-base hydrographic investigations program (GO-SHIP): A platform for integrated multidisciplinary ocean science
  • 2019
  • Ingår i: Frontiers in Marine Science. - : Frontiers Media SA. - 2296-7745. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • The Global Ocean Ship-Based Hydrographic Investigations Program (GO-SHIP) provides a globally coordinated network and oversight of 55 sustained decadal repeat hydrographic reference (core) lines as part of the global ocean/climate observing systems (GOOS/GCOS) for study of physical oceanography, the ocean carbon, oxygen and nutrient cycles, and marine biogeochemistry. GO-SHIP enables assessment of the ocean sequestration of heat and carbon, changing ocean circulation and ventilation patterns, and their effects on ocean health and Earth's climate. Rapid quality control and open data release along with incorporation of the GO-SHIP effort in the Joint Technical Commission for Oceanography and Marine Meteorology (JCOMM) in situ Observing Programs Support Center (JCOMMOPS) have increased the profile of, and participation in, the program and led to increased data use for a range of efforts.
  •  
4.
  • Smith, Shawn R., et al. (författare)
  • Ship-based contributions to global ocean, weather, and climate observing systems
  • 2019
  • Ingår i: Frontiers in Marine Science. - : Frontiers Media SA. - 2296-7745. ; 6
  • Forskningsöversikt (refereegranskat)abstract
    • © 2019 Smith, Alory, Andersson, Asher, Baker, Berry, Drushka, Figurskey, Freeman, Holthus, Jickells, Kleta, Kent, Kolodziejczyk, Kramp, Loh, Poli, Schuster, Steventon, Swart, Tarasova, Petit De La Villéon and Vinogradova Shiffer. The role ships play in atmospheric, oceanic, and biogeochemical observations is described with a focus on measurements made within 100 m of the ocean surface. Ships include merchant and research vessels, cruise liners and ferries, fishing vessels, coast guard, military, and other government-operated ships, yachts, and a growing fleet of automated surface vessels. The present capabilities of ships to measure essential climate/ocean variables and the requirements from a broad community to address operational, commercial, and scientific needs are described. Following the guidance from the OceanObs'19 organizing committee, the authors provide a vision to expand observations needed from ships to understand and forecast the exchanges across the ocean-atmosphere interface. The vision addresses (1) recruiting vessels to improve both spatial and temporal sampling, (2) conducting multi-variate sampling on ships, (3) raising technology readiness levels of automated shipboard sensors and ship-to-shore data communications, (4) advancing quality evaluation of observations, and (5) developing a unified data management approach for observations and metadata that meets the needs of a diverse user community. Recommendations are made focusing on integrating private and autonomous vessels into the observing system, investing in sensor and communications technology development, developing an integrated data management structure that includes all types of ships, and moving towards a quality evaluation process that will result in a subset of ships being defined as mobile reference ships that will support climate studies. We envision a future where commercial, research, and privately-owned vessels are making multivariate observations using a combination of automated and human-observed measurements. All data and metadata will be documented, tracked, evaluated, distributed, and archived to benefit users of marine data. This vision looks at ships as a holistic network, not a set of disparate commercial, research, and/or third-party activities working in isolation, to bring these communities together for the mutual benefit of all.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy