SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Loiseau B) "

Sökning: WFRF:(Loiseau B)

  • Resultat 1-24 av 24
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Ferrari, A. C., et al. (författare)
  • Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems
  • 2015
  • Ingår i: Nanoscale. - : Royal Society of Chemistry (RSC). - 2040-3372 .- 2040-3364. ; 7:11, s. 4598-4810
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems, targeting an evolution in technology, that might lead to impacts and benefits reaching into most areas of society. This roadmap was developed within the framework of the European Graphene Flagship and outlines the main targets and research areas as best understood at the start of this ambitious project. We provide an overview of the key aspects of graphene and related materials (GRMs), ranging from fundamental research challenges to a variety of applications in a large number of sectors, highlighting the steps necessary to take GRMs from a state of raw potential to a point where they might revolutionize multiple industries. We also define an extensive list of acronyms in an effort to standardize the nomenclature in this emerging field.
  •  
4.
  • Kyle, R. A., et al. (författare)
  • Monoclonal gammopathy of undetermined significance (MGUS) and smoldering (asymptomatic) multiple myeloma: IMWG consensus perspectives risk factors for progression and guidelines for monitoring and management
  • 2010
  • Ingår i: Leukemia. - : Springer Science and Business Media LLC. - 1476-5551 .- 0887-6924. ; 24:6, s. 1121-1127
  • Forskningsöversikt (refereegranskat)abstract
    • Monoclonal gammopathy of undetermined significance (MGUS) was identified in 3.2% of 21 463 residents of Olmsted County, Minnesota, 50 years of age or older. The risk of progression to multiple myeloma, Waldenstrom's macroglobulinemia, AL amyloidosis or a lymphoproliferative disorder is approximately 1% per year. Low-risk MGUS is characterized by having an M protein < 15 g/l, IgG type and a normal free light chain (FLC) ratio. Patients should be followed with serum protein electrophoresis at six months and, if stable, can be followed every 2-3 years or when symptoms suggestive of a plasma cell malignancy arise. Patients with intermediate and high-risk MGUS should be followed in 6 months and then annually for life. The risk of smoldering (asymptomatic) multiple myeloma (SMM) progressing to multiple myeloma or a related disorder is 10% per year for the first 5 years, 3% per year for the next 5 years and 1-2% per year for the next 10 years. Testing should be done 2-3 months after the initial recognition of SMM. If the results are stable, the patient should be followed every 4-6 months for 1 year and, if stable, every 6-12 months. Leukemia (2010) 24, 1121-1127; doi:10.1038/leu.2010.60; published online 22 April 2010
  •  
5.
  • Smati, S., et al. (författare)
  • Integrative study of diet-induced mouse models of NAFLD identifies PPARα as a sexually dimorphic drug target
  • 2022
  • Ingår i: Gut. - : BMJ Publishing Group. - 0017-5749 .- 1468-3288. ; 71:4, s. 807-821
  • Tidskriftsartikel (refereegranskat)abstract
    • We evaluated the influence of sex on the pathophysiology of non-alcoholic fatty liver disease (NAFLD). We investigated diet-induced phenotypic responses to define sex-specific regulation between healthy liver and NAFLD to identify influential pathways in different preclinical murine models and their relevance in humans. Different models of diet-induced NAFLD (high-fat diet, choline-deficient high-fat diet, Western diet or Western diet supplemented with fructose and glucose in drinking water) were compared with a control diet in male and female mice. We performed metabolic phenotyping, including plasma biochemistry and liver histology, untargeted large-scale approaches (liver metabolome, lipidome and transcriptome), gene expression profiling and network analysis to identify sex-specific pathways in the mouse liver. The different diets induced sex-specific responses that illustrated an increased susceptibility to NAFLD in male mice. The most severe lipid accumulation and inflammation/fibrosis occurred in males receiving the high-fat diet and Western diet, respectively. Sex-biased hepatic gene signatures were identified for these different dietary challenges. The peroxisome proliferator-activated receptor α (PPARα) co-expression network was identified as sexually dimorphic, and in vivo experiments in mice demonstrated that hepatocyte PPARα determines a sex-specific response to fasting and treatment with pemafibrate, a selective PPARα agonist. Liver molecular signatures in humans also provided evidence of sexually dimorphic gene expression profiles and the sex-specific co-expression network for PPARα. These findings underscore the sex specificity of NAFLD pathophysiology in preclinical studies and identify PPARα as a pivotal, sexually dimorphic, pharmacological target. NCT02390232.
  •  
6.
  • Ament, A, et al. (författare)
  • Cost-Effectiveness of Pneumococcal Vaccination of Older People: A Study in 5 Western European Countries
  • 2000
  • Ingår i: Clinical infectious diseases. - : The University of Chicago Press. - 1537-6591 .- 1058-4838. ; 31:2, s. 444-450
  • Tidskriftsartikel (refereegranskat)abstract
    • Pneumococcal vaccination of older persons is thought to be cost-effective in preventing pneumococcal pneumonia, but evidence of clinical protection is uncertain. Because there is better evidence of vaccination effectiveness against invasive pneumococcal disease, we determined the cost-effectiveness of pneumococcal vaccination of persons aged ≥65 years in preventing hospital admission for both invasive pneumococcal disease and pneumococcal pneumonia in 5 western European countries. In the base case analyses, the cost-effectiveness ratios for preventing invasive disease varied from ∼11,000 to ∼33,000 European currency units (ecu) per quality-adjusted life year (QALY). Assuming a common incidence (50 cases per 100,000) and mortality rate (20%-40%) for invasive disease, the cost-effectiveness ratios were <12,000 ecu per QALY in all 5 countries. For preventing pneumococcal pneumonia, vaccinating all elderly persons would be highly cost-effective to cost saving. Public health authorities should consider policies for encouraging pneumococcal vaccination for all persons aged ≥65 years.
  •  
7.
  • Backes, Claudia, et al. (författare)
  • Production and processing of graphene and related materials
  • 2020
  • Ingår i: 2D Materials. - : IOP Publishing. - 2053-1583. ; 7:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present an overview of the main techniques for production and processing of graphene and related materials (GRMs), as well as the key characterization procedures. We adopt a 'hands-on' approach, providing practical details and procedures as derived from literature as well as from the authors' experience, in order to enable the reader to reproduce the results. Section I is devoted to 'bottom up' approaches, whereby individual constituents are pieced together into more complex structures. We consider graphene nanoribbons (GNRs) produced either by solution processing or by on-surface synthesis in ultra high vacuum (UHV), as well carbon nanomembranes (CNM). Production of a variety of GNRs with tailored band gaps and edge shapes is now possible. CNMs can be tuned in terms of porosity, crystallinity and electronic behaviour. Section II covers 'top down' techniques. These rely on breaking down of a layered precursor, in the graphene case usually natural crystals like graphite or artificially synthesized materials, such as highly oriented pyrolythic graphite, monolayers or few layers (FL) flakes. The main focus of this section is on various exfoliation techniques in a liquid media, either intercalation or liquid phase exfoliation (LPE). The choice of precursor, exfoliation method, medium as well as the control of parameters such as time or temperature are crucial. A definite choice of parameters and conditions yields a particular material with specific properties that makes it more suitable for a targeted application. We cover protocols for the graphitic precursors to graphene oxide (GO). This is an important material for a range of applications in biomedicine, energy storage, nanocomposites, etc. Hummers' and modified Hummers' methods are used to make GO that subsequently can be reduced to obtain reduced graphene oxide (RGO) with a variety of strategies. GO flakes are also employed to prepare three-dimensional (3d) low density structures, such as sponges, foams, hydro- or aerogels. The assembly of flakes into 3d structures can provide improved mechanical properties. Aerogels with a highly open structure, with interconnected hierarchical pores, can enhance the accessibility to the whole surface area, as relevant for a number of applications, such as energy storage. The main recipes to yield graphite intercalation compounds (GICs) are also discussed. GICs are suitable precursors for covalent functionalization of graphene, but can also be used for the synthesis of uncharged graphene in solution. Degradation of the molecules intercalated in GICs can be triggered by high temperature treatment or microwave irradiation, creating a gas pressure surge in graphite and exfoliation. Electrochemical exfoliation by applying a voltage in an electrolyte to a graphite electrode can be tuned by varying precursors, electrolytes and potential. Graphite electrodes can be either negatively or positively intercalated to obtain GICs that are subsequently exfoliated. We also discuss the materials that can be amenable to exfoliation, by employing a theoretical data-mining approach. The exfoliation of LMs usually results in a heterogeneous dispersion of flakes with different lateral size and thickness. This is a critical bottleneck for applications, and hinders the full exploitation of GRMs produced by solution processing. The establishment of procedures to control the morphological properties of exfoliated GRMs, which also need to be industrially scalable, is one of the key needs. Section III deals with the processing of flakes. (Ultra)centrifugation techniques have thus far been the most investigated to sort GRMs following ultrasonication, shear mixing, ball milling, microfluidization, and wet-jet milling. It allows sorting by size and thickness. Inks formulated from GRM dispersions can be printed using a number of processes, from inkjet to screen printing. Each technique has specific rheological requirements, as well as geometrical constraints. The solvent choice is critical, not only for the GRM stability, but also in terms of optimizing printing on different substrates, such as glass, Si, plastic, paper, etc, all with different surface energies. Chemical modifications of such substrates is also a key step. Sections IV-VII are devoted to the growth of GRMs on various substrates and their processing after growth to place them on the surface of choice for specific applications. The substrate for graphene growth is a key determinant of the nature and quality of the resultant film. The lattice mismatch between graphene and substrate influences the resulting crystallinity. Growth on insulators, such as SiO2, typically results in films with small crystallites, whereas growth on the close-packed surfaces of metals yields highly crystalline films. Section IV outlines the growth of graphene on SiC substrates. This satisfies the requirements for electronic applications, with well-defined graphene-substrate interface, low trapped impurities and no need for transfer. It also allows graphene structures and devices to be measured directly on the growth substrate. The flatness of the substrate results in graphene with minimal strain and ripples on large areas, allowing spectroscopies and surface science to be performed. We also discuss the surface engineering by intercalation of the resulting graphene, its integration with Si-wafers and the production of nanostructures with the desired shape, with no need for patterning. Section V deals with chemical vapour deposition (CVD) onto various transition metals and on insulators. Growth on Ni results in graphitized polycrystalline films. While the thickness of these films can be optimized by controlling the deposition parameters, such as the type of hydrocarbon precursor and temperature, it is difficult to attain single layer graphene (SLG) across large areas, owing to the simultaneous nucleation/growth and solution/precipitation mechanisms. The differing characteristics of polycrystalline Ni films facilitate the growth of graphitic layers at different rates, resulting in regions with differing numbers of graphitic layers. High-quality films can be grown on Cu. Cu is available in a variety of shapes and forms, such as foils, bulks, foams, thin films on other materials and powders, making it attractive for industrial production of large area graphene films. The push to use CVD graphene in applications has also triggered a research line for the direct growth on insulators. The quality of the resulting films is lower than possible to date on metals, but enough, in terms of transmittance and resistivity, for many applications as described in section V. Transfer technologies are the focus of section VI. CVD synthesis of graphene on metals and bottom up molecular approaches require SLG to be transferred to the final target substrates. To have technological impact, the advances in production of high-quality large-area CVD graphene must be commensurate with those on transfer and placement on the final substrates. This is a prerequisite for most applications, such as touch panels, anticorrosion coatings, transparent electrodes and gas sensors etc. New strategies have improved the transferred graphene quality, making CVD graphene a feasible option for CMOS foundries. Methods based on complete etching of the metal substrate in suitable etchants, typically iron chloride, ammonium persulfate, or hydrogen chloride although reliable, are time- and resource-consuming, with damage to graphene and production of metal and etchant residues. Electrochemical delamination in a low-concentration aqueous solution is an alternative. In this case metallic substrates can be reused. Dry transfer is less detrimental for the SLG quality, enabling a deterministic transfer. There is a large range of layered materials (LMs) beyond graphite. Only few of them have been already exfoliated and fully characterized. Section VII deals with the growth of some of these materials. Amongst them, h-BN, transition metal tri- and di-chalcogenides are of paramount importance. The growth of h-BN is at present considered essential for the development of graphene in (opto) electronic applications, as h-BN is ideal as capping layer or substrate. The interesting optical and electronic properties of TMDs also require the development of scalable methods for their production. Large scale growth using chemical/physical vapour deposition or thermal assisted conversion has been thus far limited to a small set, such as h-BN or some TMDs. Heterostructures could also be directly grown. Section VIII discusses advances in GRM functionalization. A broad range of organic molecules can be anchored to the sp(2) basal plane by reductive functionalization. Negatively charged graphene can be prepared in liquid phase (e.g. via intercalation chemistry or electrochemically) and can react with electrophiles. This can be achieved both in dispersion or on substrate. The functional groups of GO can be further derivatized. Graphene can also be noncovalently functionalized, in particular with polycyclic aromatic hydrocarbons that assemble on the sp(2) carbon network by pi-pi stacking. In the liquid phase, this can enhance the colloidal stability of SLG/FLG. Approaches to achieve noncovalent on-substrate functionalization are also discussed, which can chemically dope graphene. Research efforts to derivatize CNMs are also summarized, as well as novel routes to selectively address defect sites. In dispersion, edges are the most dominant defects and can be covalently modified. This enhances colloidal stability without modifying the graphene basal plane. Basal plane point defects can also be modified, passivated and healed in ultra-high vacuum. The decoration of graphene with metal nanoparticles (NPs) has also received considerable attention, as it allows to exploit synergistic effects between NPs and graphene. Decoration can be either achieved chemically or in the gas phase. All LMs,
  •  
8.
  •  
9.
  • Ericson, TEO, et al. (författare)
  • Direct determinations of the pi NN coupling constants
  • 1998
  • Ingår i: ACTA PHYSICA POLONICA B. - : ACTA PHYSICA POLONICA B, JAGELLONIAN UNIV, INST PHYSICS. - 0587-4254. ; 29:11, s. 3015-3024
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • A novel extrapolation method has been used to deduce directly the charged pi NN coupling constant from backward np differential scattering cross sections. The extracted value, g(c)(2) = 14.52(0.26) is higher than the indirectly deduced values obtained in
  •  
10.
  •  
11.
  •  
12.
  •  
13.
  •  
14.
  • ERICSON, TEO, et al. (författare)
  • PI-NN COUPLING FROM HIGH-PRECISION NP CHARGE-EXCHANGE AT 162 MEV
  • 1995
  • Ingår i: PHYSICAL REVIEW LETTERS. - : AMER INST PHYSICS. - 0031-9007. ; 75:6, s. 1046-1049
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Differential np cross sections for unpolarized neutrons of 162 MeV have been measured to high precision with particular attention to the absolute normalization. These data can be extrapolated precisely and model independently to the pion pole and give a p
  •  
15.
  •  
16.
  •  
17.
  • Keck, Michaela Kristina, et al. (författare)
  • Amplification of the PLAG-family genes—PLAGL1 and PLAGL2—is a key feature of the novel tumor type CNS embryonal tumor with PLAGL amplification
  • 2023
  • Ingår i: Acta Neuropathologica. - : Springer Science and Business Media LLC. - 0001-6322 .- 1432-0533. ; 145:1, s. 49-69
  • Tidskriftsartikel (refereegranskat)abstract
    • Pediatric central nervous system (CNS) tumors represent the most common cause of cancer-related death in children aged 0–14 years. They differ from their adult counterparts, showing extensive clinical and molecular heterogeneity as well as a challenging histopathological spectrum that often impairs accurate diagnosis. Here, we use DNA methylation-based CNS tumor classification in combination with copy number, RNA-seq, and ChIP-seq analysis to characterize a newly identified CNS tumor type. In addition, we report histology, patient characteristics, and survival data in this tumor type. We describe a biologically distinct pediatric CNS tumor type (n = 31 cases) that is characterized by focal high-level amplification and resultant overexpression of either PLAGL1 or PLAGL2, and an absence of recurrent genetic alterations characteristic of other pediatric CNS tumor types. Both genes act as transcription factors for a regulatory subset of imprinted genes (IGs), components of the Wnt/β-Catenin pathway, and the potential drug targets RET and CYP2W1, which are also specifically overexpressed in this tumor type. A derived PLAGL-specific gene expression signature indicates dysregulation of imprinting control and differentiation/development. These tumors occurred throughout the neuroaxis including the cerebral hemispheres, cerebellum, and brainstem, and were predominantly composed of primitive embryonal-like cells lacking robust expression of markers of glial or neuronal differentiation (e.g., GFAP, OLIG2, and synaptophysin). Tumors with PLAGL1 amplification were typically diagnosed during adolescence (median age 10.5 years), whereas those with PLAGL2 amplification were diagnosed during early childhood (median age 2 years). The 10-year overall survival was 66% for PLAGL1-amplified tumors, 25% for PLAGL2-amplified tumors, 18% for male patients, and 82% for female patients. In summary, we describe a new type of biologically distinct CNS tumor characterized by PLAGL1/2 amplification that occurs predominantly in infants and toddlers (PLAGL2) or adolescents (PLAGL1) which we consider best classified as a CNS embryonal tumor and which is associated with intermediate survival. The cell of origin and optimal treatment strategies remain to be defined.
  •  
18.
  •  
19.
  •  
20.
  • Ocio, E. M., et al. (författare)
  • New drugs and novel mechanisms of action in multiple myeloma in 2013: a report from the International Myeloma Working Group (IMWG)
  • 2014
  • Ingår i: Leukemia. - : Springer Science and Business Media LLC. - 1476-5551 .- 0887-6924. ; 28:3, s. 525-542
  • Forskningsöversikt (refereegranskat)abstract
    • Treatment in medical oncology is gradually shifting from the use of nonspecific chemotherapeutic agents toward an era of novel targeted therapy in which drugs and their combinations target specific aspects of the biology of tumor cells. Multiple myeloma (MM) has become one of the best examples in this regard, reflected in the identification of new pathogenic mechanisms, together with the development of novel drugs that are being explored from the preclinical setting to the early phases of clinical development. We review the biological rationale for the use of the most important new agents for treating MM and summarize their clinical activity in an increasingly busy field. First, we discuss data from already approved and active agents (including second- and third-generation proteasome inhibitors (PIs), immunomodulatory agents and alkylators). Next, we focus on agents with novel mechanisms of action, such as monoclonal antibodies (MoAbs), cell cycle-specific drugs, deacetylase inhibitors, agents acting on the unfolded protein response, signaling transduction pathway inhibitors and kinase inhibitors. Among this plethora of new agents or mechanisms, some are specially promising: anti-CD38 MoAb, such as daratumumab, are the first antibodies with clinical activity as single agents in MM. Moreover, the kinesin spindle protein inhibitor Arry-520 is effective in monotherapy as well as in combination with dexamethasone in heavily pretreated patients. Immunotherapy against MM is also being explored, and probably the most attractive example of this approach is the combination of the anti-CS1 MoAb elotuzumab with lenalidomide and dexamethasone, which has produced exciting results in the relapsed/refractory setting.
  •  
21.
  • Olsson, N, et al. (författare)
  • Uppsala neutron-proton scattering measurements and the pi NN coupling constant
  • 2000
  • Ingår i: PHYSICA SCRIPTA. - : ROYAL SWEDISH ACAD SCIENCES. - 0281-1847. ; T87, s. 7-13
  • Tidskriftsartikel (refereegranskat)abstract
    • The differential np scattering cross section has been measured at 96 MeV and 162 MeV at backward angles at the neutron beam facility of the The Svedberg Laboratory in Uppsala. The angular distributions have been normalized to the experimental total np cro
  •  
22.
  •  
23.
  • Rahm, J, et al. (författare)
  • np scattering measurements at 162 MeV and the pi NN coupling constant
  • 1998
  • Ingår i: PHYSICAL REVIEW C-NUCLEAR PHYSICS. - : AMERICAN PHYSICAL SOC. - 0556-2813. ; 57:3, s. 1077-1096
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • The differential np scattering cross section has been measured at 162 MeV in the angular range theta(c.m.) = 72 degrees-180 degrees, using the neutron beam facility at The Svedberg Laboratory in Uppsala. Special attention was paid to the absolute normaliz
  •  
24.
  • Rahm, J, et al. (författare)
  • np scattering measurements at 96 MeV - art. no. 044001
  • 2001
  • Ingår i: PHYSICAL REVIEW C. - : AMERICAN PHYSICAL SOC. - 0556-2813. ; 6304:4, s. 4001-
  • Tidskriftsartikel (refereegranskat)abstract
    • The differential np scattering cross section has been measured at 96 MeV in the angular range theta (c.m.) =74-180 degrees at the neutron beam facility of the The Svedberg Laboratory in Uppsala. A subset of the data, covering 116-180 degrees, has previous
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-24 av 24

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy