SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Paal Taavi) "

Search: WFRF:(Paal Taavi)

  • Result 1-6 of 6
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • De Smedt, Pallieter, et al. (author)
  • Forest edges reduce slug (but not snail) activity-density across Western Europe
  • 2019
  • In: Pedobiologia. - : Elsevier BV. - 0031-4056 .- 1873-1511. ; 75, s. 34-37
  • Journal article (peer-reviewed)abstract
    • Fragmentation strongly shapes the distribution of organisms within forest patches through contrasting environmental conditions between the edge and interior habitat. Edge-to-interior distribution patterns are, however, poorly studied for litter- and soil-dwelling fauna, such as terrestrial gastropods, despite their high densities and significant impact on ecosystem processes, as both herbivores and detritivores. Therefore, we investigated edge-to-interior abundance patterns of terrestrial gastropods in 224 fragmented forest patches across Western Europe. Catching over 15,000 gastropods, we found that slug abundance is reduced in forest edges, while snail abundance shows no response on the edge effect. We hypothesize that these patterns could be explained by higher drought tolerance of snails, since forest edges have reduced air and soil humidity and elevated temperatures compared to forest interiors. Reduced slug abundance in forest edges potentially has ecological consequences for herbivory in and outside forest patches and nutrient cycling.
  •  
2.
  • Ehrmann, Steffen, et al. (author)
  • Environmental drivers of Ixodes ricinus abundance in forest fragments of rural European landscapes
  • 2017
  • In: BMC Ecology. - : Springer Science and Business Media LLC. - 1472-6785. ; 17
  • Journal article (peer-reviewed)abstract
    • Background: The castor bean tick (Ixodes ricinus) transmits infectious diseases such as Lyme borreliosis, which constitutes an important ecosystem disservice. Despite many local studies, a comprehensive understanding of the key drivers of tick abundance at the continental scale is still lacking. We analyze a large set of environmental factors as potential drivers of I. ricinus abundance. Our multi-scale study was carried out in deciduous forest fragments dispersed within two contrasting rural landscapes of eight regions, along a macroclimatic gradient stretching from southern France to central Sweden and Estonia. We surveyed the abundance of I. ricinus, plant community composition, forest structure and soil properties and compiled data on landscape structure, macroclimate and habitat properties. We used linear mixed models to analyze patterns and derived the relative importance of the significant drivers. Results: Many drivers had, on their own, either a moderate or small explanatory value for the abundance of I. ricinus, but combined they explained a substantial part of variation. This emphasizes the complex ecology of I. ricinus and the relevance of environmental factors for tick abundance. Macroclimate only explained a small fraction of variation, while properties of macro- and microhabitat, which buffer macroclimate, had a considerable impact on tick abundance. The amount of forest and the composition of the surrounding rural landscape were additionally important drivers of tick abundance. Functional (dispersules) and structural (density of tree and shrub layers) properties of the habitat patch played an important role. Various diversity metrics had only a small relative importance. Ontogenetic tick stages showed pronounced differences in their response. The abundance of nymphs and adults is explained by the preceding stage with a positive relationship, indicating a cumulative effect of drivers. Conclusions: Our findings suggest that the ecosystem disservices of tick-borne diseases, via the abundance of ticks, strongly depends on habitat properties and thus on how humans manage ecosystems from the scale of the microhabitat to the landscape. This study stresses the need to further evaluate the interaction between climate change and ecosystem management on I. ricinus abundance.
  •  
3.
  • Ehrmann, Steffen, et al. (author)
  • Habitat properties are key drivers of Borrelia burgdorferi (s.l.) prevalence in Ixodes ricinus populations of deciduous forest fragments
  • 2018
  • In: Parasites & Vectors. - : Springer Science and Business Media LLC. - 1756-3305. ; 11
  • Journal article (peer-reviewed)abstract
    • BackgroundThe tick Ixodes ricinus has considerable impact on the health of humans and other terrestrial animals because it transmits several tick-borne pathogens (TBPs) such as B. burgdorferi (sensu lato), which causes Lyme borreliosis (LB). Small forest patches of agricultural landscapes provide many ecosystem services and also the disservice of LB risk. Biotic interactions and environmental filtering shape tick host communities distinctively between specific regions of Europe, which makes evaluating the dilution effect hypothesis and its influence across various scales challenging. Latitude, macroclimate, landscape and habitat properties drive both hosts and ticks and are comparable metrics across Europe. Therefore, we instead assess these environmental drivers as indicators and determine their respective roles for the prevalence of B. burgdorferi in I. ricinus.MethodsWe sampled I. ricinus and measured environmental properties of macroclimate, landscape and habitat quality of forest patches in agricultural landscapes along a European macroclimatic gradient. We used linear mixed models to determine significant drivers and their relative importance for nymphal and adult B. burgdorferi prevalence. We suggest a new prevalence index, which is pool-size independent.ResultsDuring summer months, our prevalence index varied between 0 and 0.4 per forest patch, indicating a low to moderate disservice. Habitat properties exerted a fourfold larger influence on B. burgdorferi prevalence than macroclimate and landscape properties combined. Increasingly available ecotone habitat of focal forest patches diluted and edge density at landscape scale amplified B. burgdorferi prevalence. Indicators of habitat attractiveness for tick hosts (food resources and shelter) were the most important predictors within habitat patches. More diverse and abundant macro and microhabitat had a diluting effect, as it presumably diversifies the niches for tick-hosts and decreases the probability of contact between ticks and their hosts and hence the transmission likelihood.ConclusionsDiluting effects of more diverse habitat patches would pose another reason to maintain or restore high biodiversity in forest patches of rural landscapes. We suggest classifying habitat patches by their regulating services as dilution and amplification habitat, which predominantly either decrease or increase B. burgdorferi prevalence at local and landscape scale and hence LB risk. Particular emphasis on promoting LB-diluting properties should be put on the management of those habitats that are frequently used by humans. In the light of these findings, climate change may be of little concern for LB risk at local scales, but this should be evaluated further.
  •  
4.
  • Valdés, Alicia, 1982-, et al. (author)
  • High ecosystem service delivery potential of small woodlands in agricultural landscapes
  • 2020
  • In: Journal of Applied Ecology. - : Wiley. - 0021-8901 .- 1365-2664. ; 57:1, s. 4-16
  • Journal article (peer-reviewed)abstract
    • Global forest loss and fragmentation have strongly increased the frequency of forest patches smaller than a few hectares. Little is known about the biodiversity and ecosystem service supply potential of such small woodlands in comparison to larger forests. As it is widely recognized that high biodiversity levels increase ecosystem functionality and the delivery of multiple ecosystem services, small, isolated woodlands are expected to have a lower potential for ecosystem service delivery than large forests hosting more species. We collected data on the diversity of six taxonomic groups covering invertebrates, plants and fungi, and on the supply potential of five ecosystem services and one disservice within 224 woodlands distributed across temperate Europe. We related their ability to simultaneously provide multiple ecosystem services (multiservice delivery potential) at different performance levels to biodiversity of all studied taxonomic groups (multidiversity), forest patch size and age, as well as habitat availability and connectivity within the landscape, while accounting for macroclimate, soil properties and forest structure. Unexpectedly, despite their lower multidiversity, smaller woodlands had the potential to deliver multiple services at higher performance levels per area than larger woodlands of similar age, probably due to positive edge effects on the supply potential of several ecosystem services. Biodiversity only affected multiservice delivery potential at a low performance level as well as some individual ecosystem services. The importance of other drivers of ecosystem service supply potential by small woodlands in agricultural landscapes also depended on the level of performance and varied with the individual ecosystem service considered. Synthesis and applications. Large, ancient woodlands host high levels of biodiversity and can therefore deliver a number of ecosystem services. In contrast, smaller woodlands in agricultural landscapes, especially ancient woodlands, have a higher potential to deliver multiple ecosystem services on a per area basis. Despite their important contribution to agricultural landscape multifunctionality, small woodlands are not currently considered by public policies. There is thus an urgent need for targeted policy instruments to ensure their adequate management and future conservation in order to either achieve multiservice delivery at high levels or to maximize the delivery of specific ecosystem services.
  •  
5.
  • Valdés, Alicia, et al. (author)
  • The contribution of patch-scale conditions is greater than that of macroclimate in explaining local plant diversity in fragmented forests across Europe
  • 2015
  • In: Global Ecology and Biogeography. - : Wiley. - 1466-822X .- 1466-8238. ; 24:9, s. 1094-1105
  • Journal article (peer-reviewed)abstract
    • AimMacroclimate is a major determinant of large-scale diversity patterns. However, the influence of smaller-scale factors on local diversity across large spatial extents is not well documented. Here, we quantify the relative importance of local (patch-scale), landscape-scale and macroclimatic drivers of herbaceous species diversity in small forest patches in agricultural landscapes across Europe. LocationDeciduous forest patches in eight regions along a macroclimatic gradient from southern France to central Sweden and Estonia. MethodsThe diversity of forest specialists and generalists at three levels (whole forest patch, sampling plots within patches and between scales) was related to patch-scale (forest area, age, abiotic and biotic heterogeneity), landscape-scale (amount of forest, grasslands and hedgerows around the patch, patch isolation) and macroclimatic variables (temperature and precipitation) using generalized linear mixed models and variation partitioning for each group of variables. ResultsThe total amount of explained variation in diversity ranged from 8% for plot-scale diversity of generalists to 54% for patch-scale diversity of forest specialists. Patch-scale variables always explained more than 60% of the explained variation in diversity, mainly due to the positive effect of within-patch heterogeneity on patch-scale and between-scale diversities and to the positive effect of patch age on plot-scale diversity of forest specialists. Landscape-scale variables mainly contributed to the amount of explained variation in plot-scale diversity, being more important for forest specialists (21%) than for generalists (18%). Macroclimatic variables contributed a maximum of 11% to the plot-scale diversity of generalists. Main conclusionsMacroclimate poorly predicts local diversity across Europe, and herbaceous diversity is mainly explained by habitat features, less so by landscape structure. We show the importance of conserving old forest patches as refugia for typical forest species, and of enhancing the landscape context around the patches by reducing the degree of disturbance caused by agriculture.
  •  
6.
  • Vanneste, Thomas, et al. (author)
  • Functional trait variation of forest understorey plant communities across Europe
  • 2019
  • In: Basic and Applied Ecology. - : Elsevier BV. - 1439-1791 .- 1618-0089. ; 34, s. 1-14
  • Journal article (peer-reviewed)abstract
    • Global environmental changes are expected to alter the functional characteristics of understorey herb-layer communities, potentially affecting forest ecosystem functioning. However, little is known about what drives the variability of functional traits in forest understories. Here, we assessed the role of different environmental drivers in shaping the functional trait distribution of understorey herbs in fragmented forests across three spatial scales. We focused on 708 small, deciduous forest patches located in 16 agricultural landscape windows, spanning a 2500-km macroclimatic gradient across the temperate forest biome in Europe. We estimated the relative effect of patch-scale, landscape-scale and macroclimatic variables on the community mean and variation of plant height, specific leaf area and seed mass. Macroclimatic variables (monthly temperature and precipitation extremes) explained the largest proportion of variation in community trait means (on average 77% of the explained variation). In contrast, patch-scale factors dominated in explaining community trait variation (on average 68% of the explained variation). Notably, patch age, size and internal heterogeneity had a positive effect on the community-level variability. Landscape-scale variables explained only a minor part of the variation in both trait distribution properties. The variation explained by shared combinations of the variable groups was generally negligible. These findings highlight the importance of considering multiple spatial scales in predictions of environmental-change effects on the functionality of forest understories. We propose that forest management sustainability could benefit from conserving larger, historically continuous and internally heterogeneous forest patches to maximise ecosystem service diversity in rural landscapes.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-6 of 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view