SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Szukiewicz Rafal) "

Sökning: WFRF:(Szukiewicz Rafal)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Batili, Hazal, et al. (författare)
  • A comparative study on the surface chemistry and electronic transport properties of Bi2Te3 synthesized through hydrothermal and thermolysis routes
  • 2024
  • Ingår i: Colloids and Surfaces A. - : Elsevier BV. - 0927-7757 .- 1873-4359. ; 682
  • Tidskriftsartikel (refereegranskat)abstract
    • Bismuth telluride-Bi2Te3 is the most promising material for harvesting thermal energy near room temperature. There are numerous works on Bi2Te3 reporting significantly different transport properties, with no clear connection to the synthetic routes used and the resultant surface chemistry of the synthesized materials. It is of utmost importance to characterize the constituent particles’ surface and interfaces to get a better understanding of their influence on the transport properties, that will significantly improve the material design starting from the synthesis step. Electrophoretic deposition (EPD) is a promising technique, enabling the formation of thick films using colloidally stabilized suspensions of pre-made nanoparticles, which can enable the study of the effect of surface chemistry, in connection to the synthetic route, on the material's transport properties. In order to explore the differences in surface chemistry and the resultant transport properties in relation to the synthetic scheme used, here we report on Bi2Te3 synthesised through two wet-chemical routes in water (Hydro-) and oil (Thermo-) as the solvents. XRD analysis showed a high phase purity of the synthesized materials. SEM analysis revealed hexagonal platelet morphology of the synthesized materials, which were then used to fabricate EPD films. Characterization of the EPD films reveal significant differences between the Hydro- and Thermo-Bi2Te3 samples, leading to about 8 times better electrical conductivity values in the Thermo-Bi2Te3. XPS analysis revealed a higher metal oxides content in the Hydro-Bi2Te3 sample, contributing to the formation of a resistive layer, thus lowering the electrical conductivity. Arrhenius plots of electrical conductivity vs inverse temperature was used for the estimation of the activation energy for conduction, revealing a higher activation energy need for the Hydro-Bi2Te3 film, in agreement with the resistive barrier oxide content. Both the samples exhibited negative Seebeck coefficient (S) in the order of 160–170 mV/K. The small difference in S of Hydro- and Themo-Bi2Te3 films was explained by the effective medium theory, revealing that the magnitude of S is linearly correlated with the surface oxide content. Based on the findings, TE materials synthesized through thermolysis route is recommended for further studies using soft treatment/processing of pre-made TE materials. EPD platform presented here is shown to clearly expose the differences in the electronic transport in connection to nanoparticle surface chemistry, proving a promising methodology for the evaluation of morphology, size and surface chemistry dependence of electronic transport for a wide range of materials.
  •  
2.
  • Batili, Hazal, et al. (författare)
  • Electrophoretic assembly and electronic transport properties of rapidly synthesized Sb2Te3 nanoparticles
  • 2023
  • Ingår i: Applied Surface Science. - : Elsevier BV. - 0169-4332 .- 1873-5584. ; 637
  • Tidskriftsartikel (refereegranskat)abstract
    • With the recent advances in thermoelectric (TE) technology, there is an increasing demand to develop thick films that would enable large-scale TE devices. Assembly of TE-films from size and morphology-controlled nano particles has been a challenging issue that can be addressed by the use of electrophoretic deposition (EPD) technique. In this work, morphology-controlled Sb2Te3 nanoparticles were synthesized through microwave assisted thermolysis, which were subsequently used for EPD of TE films on specially developed glass substrates. The electronic transport properties were measured in the temp-range of 22-45 degrees C. The as-made EPD films showed a high initial resistance, ascribed to high porosity and the presence of surface oxide/passivating layers. The impact of two types of small organic molecules-as hexanedithiol and dodecanethiol, on the electronic transport was investigated, resulting in a significant improvement in the electrical conductivity of the films. The XPS analysis suggests that the thiols bind to the surface of nanoparticles through formation of sulfides. Seebeck coefficient in the range of + 160 to + 190 & mu;V/K was measured, revealing the p-type transport through the deposited films. Finally, a power factor of about 2.5 & mu;W/K2.m was estimated the first time for p-type EPD films, revealing the potential of the developed nanoparticles and substrate, the small molecule additives and the EPD process presented in this work.
  •  
3.
  • Batili, Hazal, et al. (författare)
  • Electrophoretic Deposition and Characterization of Bi2Te3 Synthesized through Hydrothermal and Thermolysis Routes
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Bismuth telluride-Bi2Te3 is a promising material for harvesting thermal energyfor applications near room temperature, where large-area applications requirenew methods of depositing pre-made particulate materials. Electrophoretic deposition(EPD) technique has the promise of enabling the formation of thickfilms using colloidally stabilized suspensions of pre-made nanoparticles. It isvery important to understand the thermoelectric (TE) materials’ performancein relation to the synthetic process, to enable promising and scalable materialstechnologies. EPD films allow to study the effect of surface chemistry, stronglylinked to the synthetic route, on the material’s physico-chemical and transportproperties. Here we report on the synthesis of Bi2Te3 through wet-chemicalreactions performed in two different media as water (hydrothermal-Hydro) andoil (thermolysis-Thermo). Synthesized materials possess platelet morphology,which were then used to fabricated EPD films on specially developed glass substrates. Characterization of the materials and films reveal significant differencesbetween the surface chemistry of the EPD films of Hydro- and Thermo-Bi2Te3samples, where a higher content of metal oxide phases are observed in the Hydro-Bi2Te3 sample. This has a big impact the electronic transport properties, asrevealed by about nine times higher resistance, confirmed by significantly higheractivation energy, of the Hydro-Bi2Te3 film as compared to the Thermo-Bi2Te3film. Slight difference in the Seebeck coefficient (S) was explained by the effectivemedium theory, revealing that the magnitude of S is linearly correlatedwith the surface oxide content. Based on the findings, TE materials synthesizedthrough thermolysis route is recommended for future studies focusing on EPD of TE materials.
  •  
4.
  • Hamawandi, Bejan, PhD, et al. (författare)
  • Facile Solution Synthesis, Processing and Characterization of n- and p-Type Binary and Ternary Bi-Sb Tellurides
  • 2020
  • Ingår i: Applied Sciences. - : MDPI AG. - 2076-3417. ; 10:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The solution synthesis route as a scalable bottom-up synthetic method possesses significant advantages for synthesizing nanostructured bulk thermoelectric (TE) materials with improved performance. Tuning the composition of the materials directly in the solution, without needing any further processing, is important for adjusting the dominant carrier type. Here, we report a very rapid (2 min) and high yield (>8 g/batch) synthetic method using microwave-assisted heating, for the controlled growth of Bi2-xSbxTe3 (x: 0-2) nanoplatelets. Resultant materials exhibit a high crystallinity and phase purity, as characterized by XRD, and platelet morphology, as revealed by SEM. Surface chemistry of as-made materials showed a mixture of metallic and oxide phases, as evidenced by XPS. Zeta-potential analysis exhibited a systematic change of isoelectric point as a function of the material composition. As-made materials were directly sintered into pellets by using spark plasma sintering process. TE performance of Bi2-xSbxTe3 pellets were studied, where the highest ZT values of 1.04 (at 440 K) for Bi2Te3 and 1.37 (at 523 K) for Sb2Te3 were obtained, as n- and p-type TE materials. The presented microwave-assisted synthesis method is energy effective, a truly scalable and reproducible method, paving the way for large scale production and implementation of towards large-area TE applications.
  •  
5.
  • Hamawandi, Bejan, PhD, et al. (författare)
  • Minute-Made, High-Efficiency Nanostructured Bi2Te3 via High-Throughput Green Solution Chemical Synthesis
  • 2021
  • Ingår i: Nanomaterials. - : MDPI. - 2079-4991. ; 11:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Scalable synthetic strategies for high-quality and reproducible thermoelectric (TE) materials is an essential step for advancing the TE technology. We present here very rapid and effective methods for the synthesis of nanostructured bismuth telluride materials with promising TE performance. The methodology is based on an effective volume heating using microwaves, leading to highly crystalline nanostructured powders, in a reaction duration of two minutes. As the solvents, we demonstrate that water with a high dielectric constant is as good a solvent as ethylene glycol (EG) for the synthetic process, providing a greener reaction media. Crystal structure, crystallinity, morphology, microstructure and surface chemistry of these materials were evaluated using XRD, SEM/TEM, XPS and zeta potential characterization techniques. Nanostructured particles with hexagonal platelet morphology were observed in both systems. Surfaces show various degrees of oxidation, and signatures of the precursors used. Thermoelectric transport properties were evaluated using electrical conductivity, Seebeck coefficient and thermal conductivity measurements to estimate the TE figure-of-merit, ZT. Low thermal conductivity values were obtained, mainly due to the increased density of boundaries via materials nanostructuring. The estimated ZT values of 0.8-0.9 was reached in the 300-375 K temperature range for the hydrothermally synthesized sample, while 0.9-1 was reached in the 425-525 K temperature range for the polyol (EG) sample. Considering the energy and time efficiency of the synthetic processes developed in this work, these are rather promising ZT values paving the way for a wider impact of these strategic materials with a minimum environmental impact.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy