SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "AMNE:(TEKNIK OCH TEKNOLOGIER Industriell bioteknik Medicinsk bioteknik) "

Sökning: AMNE:(TEKNIK OCH TEKNOLOGIER Industriell bioteknik Medicinsk bioteknik)

  • Resultat 51-100 av 379
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
51.
  •  
52.
  • Metreveli, Giorgi, et al. (författare)
  • A Size-Exclusion Nanocellulose Filter Paper for Virus Removal
  • 2014
  • Ingår i: Advanced Healthcare Materials. - : Wiley. - 2192-2640 .- 2192-2659. ; 10:3, s. 1546-1550
  • Tidskriftsartikel (refereegranskat)abstract
    • This is the first time a 100% natural, unmodified nanofibrous polymer-based membrane is demonstrated capable of removing viruses solely based on the size-exclusion principle, with log10 reduction value (LRV) ≥ 6.3 as limited by the assay lower detection limit and the feed virus titre, thereby matching the performance of industrial synthetic polymer virus removal filters.
  •  
53.
  •  
54.
  • Vastesson, Alexander, et al. (författare)
  • Polymer Nanoliter Well Arrays for Liquid Storage and Rapid On-demand Electrochemical Release
  • 2018
  • Ingår i: Sensors and actuators. B, Chemical. - : Elsevier. - 0925-4005 .- 1873-3077. ; 267, s. 111-118
  • Tidskriftsartikel (refereegranskat)abstract
    • Polymer microfluidic systems are of increasing importance in several applications in biomedicine and biosensing. The integrated encapsulation, storage, and controlled release of small amounts of liquid in such systems remains an unresolved technical challenge. Here, we report two methods for the room-temperature and adhesive-free sealing of 1–330 nanoliter volumes of liquid in off-stoichiometry thiol-ene polymer well arrays by spontaneous bonding to 200 nm thin gold films. Sealed well arrays were stored for more than one month in a liquid environment with <10% liquid loss, and for more than one week in air with minimal loss. We demonstrated that controlling the electrical potential and polarity over encapsulated wells allowed for selecting one of two well opening mechanisms: slow anodic electrochemical etching, or rapid electrolytic gas pressure-induced bursting of the gold film. The results may find potential applications in diagnostic testing, in vivo drug delivery, or in spatio-temporal release of chemical compounds in biological assays.
  •  
55.
  • Schneider, Kara, et al. (författare)
  • Using reporters of different misfolded proteins reveals differential strategies in processing protein aggregates
  • 2022
  • Ingår i: Journal of Biological Chemistry. - : Elsevier BV. - 0021-9258 .- 1083-351X. ; 298:11
  • Tidskriftsartikel (refereegranskat)abstract
    • The accumulation of misfolded proteins is a hallmark of aging and many neurodegenerative diseases, making it important to understand how the cellular machinery recognizes and processes such proteins. A key question in this respect is whether misfolded proteins are handled in a similar way regardless of their genetic origin. To approach this question, we compared how three different misfolded proteins, guk1-7, gus1-3, and pro3-1, are handled by the cell. We show that all three are nontoxic, even though highly overexpressed, highlighting their usefulness in analyzing the cellular response to misfolding in the absence of severe stress. We found significant differences between the aggregation and disaggregation behavior of the misfolded proteins. Specifically, gus1-3 formed some aggregates that did not efficiently recruit the protein disaggregase Hsp104 and did not colocalize with the other misfolded reporter proteins. Strikingly, while all three misfolded proteins generally coaggregated and colocalized to specific sites in the cell, disaggregation was notably different; the rate of aggregate clearance of pro3-1 was faster than that of the other misfolded proteins, and its clearance rate was not hindered when pro3-1 colocalized with a slowly resolved misfolded protein. Finally, we observed using super-resolution light microscopy as well as immunogold labeling EM in which both showed an even distribution of the different misfolded proteins within an inclusion, suggesting that misfolding characteristics and remodeling, rather than spatial compartmentalization, allows for differential clearance of these misfolding reporters residing in the same inclusion. Taken together, our results highlight how properties of misfolded proteins can significantly affect processing.
  •  
56.
  • Mukherjee, Vaskar, 1986, et al. (författare)
  • A CRISPR Interference Screen of Essential Genes Reveals that Proteasome Regulation Dictates Acetic Acid Tolerance in Saccharomyces cerevisiae
  • 2021
  • Ingår i: mSystems. - 2379-5077. ; 6:4
  • Tidskriftsartikel (refereegranskat)abstract
    • CRISPR interference (CRISPRi) is a powerful tool to study cellular physiology under different growth conditions, and this technology provides a means for screening changed expression of essential genes. In this study, a Saccharomyces cerevisiae CRISPRi library was screened for growth in medium supplemented with acetic acid. Acetic acid is a growth inhibitor challenging the use of yeast for the industrial conversion of lignocellulosic biomasses. Tolerance to acetic acid that is released during biomass hydrolysis is crucial for cell factories to be used in biorefineries. The CRISPRi library screened consists of .9,000 strains, where .98% of all essential and respiratory growth-essential genes were targeted with multiple guide RNAs (gRNAs). The screen was performed using the high-throughput, high-resolution Scan-o-matic platform, where each strain is analyzed separately. Our study identified that CRISPRi targeting of genes involved in vesicle formation or organelle transport processes led to severe growth inhibition during acetic acid stress, emphasizing the importance of these intracellular membrane structures in maintaining cell vitality. In contrast, strains in which genes encoding subunits of the 19S regulatory particle of the 26S proteasome were downregulated had increased tolerance to acetic acid, which we hypothesize is due to ATP salvage through an increased abundance of the 20S core particle that performs ATP-independent protein degradation. This is the first study where high-resolution CRISPRi library screening paves the way to understanding and bioengineering the robustness of yeast against acetic acid stress.
  •  
57.
  • Alenezi, Ali, et al. (författare)
  • Osseointegration effects of local release of strontium ranelate from implant surfaces in rats
  • 2019
  • Ingår i: Journal of Materials Science: Materials in Medicine. - : Springer Science and Business Media LLC. - 0957-4530 .- 1573-4838. ; 30:10, s. 116-
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND : Numerous studies have reported the beneficial effects of strontium on bone growth, particularly by stimulating osteoblast proliferation and differentiation. Thus, strontium release around implants has been suggested as one possible strategy to enhance implant osseointegration. AIM : This study aimed to evaluate whether the local release of strontium ranelate (Sr-ranelate) from implants coated with mesoporous titania could improve bone formation around implants in an animal model. MATERIALS AND METHODS : Mesoporous titania (MT) thin coatings were formed utilizing the evaporation induced self-assembly (EISA) method using Pluronic (P123) with or without the addition of poly propylene glycol (PPG) to create materials with two different pore sizes. The MT was deposited on disks and mini-screws, both made of cp Ti grade IV. Scanning electron microscopy (SEM) was performed to characterize the MT using a Leo Ultra55 FEG instrument (Zeiss, Oberkochen, Germany). The MT was loaded with Sr-ranelate using soaking and the drug uptake and release kinetics to and from the surfaces were evaluated using quartz crystal microbalance with dissipation monitoring (QCM-D) utilizing a Q-sense E4 instrument. For the in vivo experiment, 24 adult rats were analyzed at two time points of implant healing (2 and 6 weeks). Titanium implants shaped as mini screws were coated with MT films and divided into two groups; supplied with Sr-ranelate (test group) and without Sr-ranelate (control group). Four implants (both test and control) were inserted in the tibia of each rat. The in vivo study was evaluated using histomorphometric analyses of the implant/bone interphase using optical microscopy. RESULTS : SEM images showed the successful formation of evenly distributed MT films covering the entire surface with pore sizes of 6 and 7.2 nm, respectively. The QCM-D analysis revealed an absorption of 3300 ng/cm2 of Sr-ranelate on the 7.2 nm MT, which was about 3 times more than the observed amount on the 6 nm MT (1200 ng/cm2). Both groups showed sustained release of Sr-ranelate from MT coated disks. The histomorphometric analysis revealed no significant differences in bone implant contact (BIC) and bone area (BA) between the implants with Sr-ranelate and implants in the control groups after 2 and 6 weeks of healing (BIC with a p-value of 0.43 after 2 weeks and 0.172 after 6 weeks; BA with a p-value of 0.503 after 2 weeks, and 0.088 after 6 weeks). The mean BIC and BA values within the same group showed significant increase among all groups between 2 and 6 weeks. CONCLUSION : This study could not confirm any positive effects of Sr-ranelate on implant osseointegration.
  •  
58.
  • Chudinova, Ekaterina, et al. (författare)
  • Additive manufactured Ti6Al4V scaffolds with the RF-magnetron sputter deposited hydroxyapatite coating
  • 2016
  • Ingår i: Journal of Physics: Conference Series. - : Institute of Physics Publishing (IOPP). - 1742-6588 .- 1742-6596.
  • Konferensbidrag (refereegranskat)abstract
    • Present paper reports on the results of surface modification of the additively manufactured porous Ti6Al4V scaffolds. Radio frequency (RF) magnetron sputtering was used to modify the surface of the alloy via deposition of the biocompatible hydroxyapatite (HA) coating. The surface morphology, chemical and phase composition of the HA-coated alloy were studied. It was revealed that RF magnetron sputtering allows preparing a homogeneous HA coating onto the entire surface of scaffolds.
  •  
59.
  • Biswas, Tuser, 1988-, et al. (författare)
  • Digital inkjet printing of antimicrobial lysozyme on pretreated polyester fabric
  • 2022
  • Konferensbidrag (refereegranskat)abstract
    • Lysozyme was inkjet printed on two different polyester fabrics considering several challenges of printing enzymes on synthetic fabric surfaces. Wettability of both the fabrics were improved by alkaline pre-treatment resulting reduction in water contact angle to 60±2 from 95°±3 and to 80°±2 from 115°±2 for thinner and coarser fabric respectively. Activity of lysozyme in the prepared ink was 9240±34 units/ml and reduced to 5946±23 units/ml as of collected after jetting process (before printing on fabric). The formulated ink was effectively inkjet printed on alkali treated polyester fabric for antimicrobial applications. Retention of higher activity of the printed fabric requires further studies on enzyme-fibre binding mechanisms and understanding protein orientation on fabric surface after printing
  •  
60.
  • Ferreira, Raphael, 1990, et al. (författare)
  • Tackling Cancer with Yeast-Based Technologies
  • 2019
  • Ingår i: Trends in Biotechnology. - : Elsevier BV. - 0167-7799 .- 1879-3096. ; 37:6, s. 592-603
  • Forskningsöversikt (refereegranskat)abstract
    • The ability to precisely engineer yeast, coupled with its genetic and metabolic similarity to tumor cells, has enabled researchers to use this organism in cancer research. Here we review advances that leveraged yeast as a model organism for studying cancer biology, including the investigation of tumorigenic mechanisms, development of advanced technologies for drug discovery, production of anticancer drugs on an industrial scale, and delivering the next generation of immunotherapies.
  •  
61.
  • Garousi, Javad, et al. (författare)
  • Radionuclide therapy using ABD-fused ADAPT scaffold protein : Proof of Principle
  • 2021
  • Ingår i: Biomaterials. - : Elsevier. - 0142-9612 .- 1878-5905. ; 266
  • Tidskriftsartikel (refereegranskat)abstract
    • Molecular recognition in targeted therapeutics is typically based on immunoglobulins. Development of engineered scaffold proteins (ESPs) has provided additional opportunities for the development of targeted therapies. ESPs offer inexpensive production in prokaryotic hosts, high stability and convenient approaches to modify their biodistribution. In this study, we demonstrated successful modification of the biodistribution of an ESP known as ADAPT (Albumin-binding domain Derived Affinity ProTein). ADAPTs are selected from a library based on the scaffold of ABD (Albumin Binding Domain) of protein G. A particular ADAPT, the ADAPT6, binds to human epidermal growth factor receptor type 2 (HER2) with high affinity. Preclinical and early clinical studies have demonstrated that radiolabeled ADAPT6 can image HER2-expression in tumors with high contrast. However, its rapid glomerular filtration and high renal reabsorption have prevented its use in radionuclide therapy. To modify the biodistribution, ADAPT6 was genetically fused to an ABD. The non-covalent binding to the host's albumin resulted in a 14-fold reduction of renal uptake and appreciable increase of tumor uptake for the best variant, 177Lu-DOTA-ADAPT6-ABD035. Experimental therapy in mice bearing HER2-expressing xenografts demonstrated more than two-fold increase of median survival even after a single injection of 18 MBq 177Lu-DOTA-ADAPT6-ABD035. Thus, a fusion with ABD and optimization of the molecular design provides ADAPT derivatives with attractive targeting properties for radionuclide therapy.
  •  
62.
  • Turanli, Beste, et al. (författare)
  • Multi-Omic Data Interpretation to Repurpose Subtype Specific Drug Candidates for Breast Cancer
  • 2019
  • Ingår i: Frontiers in Genetics. - : Frontiers Media SA. - 1664-8021. ; 10:MAY
  • Tidskriftsartikel (refereegranskat)abstract
    • Triple-negative breast cancer (TNBC), which is largely synonymous with the basal-like molecular subtype, is the 5th leading cause of cancer deaths for women in the United States. The overall prognosis for TNBC patients remains poor given that few treatment options exist; including targeted therapies (not FDA approved), and multi-agent chemotherapy as standard-of-care treatment. TNBC like other complex diseases is governed by the perturbations of the complex interaction networks thereby elucidating the underlying molecular mechanisms of this disease in the context of network principles, which have the potential to identify targets for drug development. Here, we present an integrated "omics" approach based on the use of transcriptome and interactome data to identify dynamic/active protein-protein interaction networks (PPINs) in TNBC patients. We have identified three highly connected modules, EED, DHX9, and AURKA, which are extremely activated in TNBC tumors compared to both normal tissues and other breast cancer subtypes. Based on the functional analyses, we propose that these modules are potential drivers of proliferation and, as such, should be considered candidate molecular targets for drug development or drug repositioning in TNBC. Consistent with this argument, we repurposed steroids, anti-inflammatory agents, anti-infective agents, cardiovascular agents for patients with basal-like breast cancer. Finally, we have performed essential metabolite analysis on personalized genome-scale metabolic models and found that metabolites such as sphingosine-1-phosphate and cholesterol-sulfate have utmost importance in TNBC tumor growth.
  •  
63.
  • Iredahl, Fredrik, 1988- (författare)
  • Assessment of microvascular and metabolic responses in the skin
  • 2016
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The general aim of this project was to develop experimental in vivo models that allow for minimally invasive investigations of responses in the skin to microvascular and metabolic provocations. The cutaneous microvasculature has emerged as a valuable model and been proposed to mirror the microcirculation in other organs. Dysfunction in the cutaneous microcirculation has thus been linked to systemic diseases such as hypertension and diabetes mellitus. Models for investigating skin responses could facilitate the understanding of pathophysiological mechanisms as well as effects of drugs.In the first study, three optical measurement techniques (laser Doppler flowmetry (LDF), laser speckle contrast imaging (LSCI) and tissue viability imaging (TiVi)) were compared against each other and showed differences in their ability to detect microvascular responses to provocations in the skin. TiVi was found more sensitive for measurement of noradrenaline-induced vasoconstriction, while LSCI was more sensitive for measurement of vascular occlusion. In the second study, microvascular responses in the skin to iontophoresis of vasoactive drugs were found to depend on the drug delivery protocol. Perfusion half-life was defined and used to describe the decay in the microvascular response to a drug after iontophoresis. In the third study, the role of nitric oxide (NO) was assessed during iontophoresis of insulin. The results showed a NO-dependent vasodilation in the skin by insulin. In the fourth study the vasoactive and metabolic effects of insulin were studied after both local and endogenous administration. Local delivery of insulin increased skin blood flow, paralleled by increased skin concentrations of interstitial pyruvate and lactate, although no change in glucose concentration was observed. An oral glucose load resulted in an increased insulin concentration in the skin paralleled by an increase in blood flow, as measured using the microdialysis urea clearance technique, although no changes in perfusion was measured by LSCI.The thesis concludes that when studying skin microvascular responses, the choice of measurement technique and the drug delivery protocol has an impact on the measurement results, and should therefore be carefully considered. The thesis also concludes that insulin has metabolic and vasodilatory effects in the skin both when administered locally and as an endogenous response to an oral glucose load. The vasodilatory effect of insulin in the skin is mediated by nitric oxide.
  •  
64.
  • Zou, Gen, et al. (författare)
  • Harnessing synthetic biology for mushroom farming
  • 2023
  • Ingår i: Trends in Biotechnology. - : Elsevier BV. - 0167-7799 .- 1879-3096. ; 41:4, s. 480-483
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Recent advances in synthetic biology have transformed mushroom farming from a focus on traditional cultivation to comprehensive applications based on cutting-edge biotechnologies. Synthetic biology has promising applications in this field, including precision breeding, mining biosynthetic gene clusters, developing mushroom chassis cells, and constructing cell factories for high value-added products.
  •  
65.
  • Jönsson, Håkan, 1979-, et al. (författare)
  • Tröpfchen-Mikrofluidik für die Einzelzellanalyse
  • 2012
  • Ingår i: Angewandte Chemie. - : Wiley Online Library. - 0044-8249 .- 1521-3757. ; 124:49, s. 12342-12359
  • Tidskriftsartikel (refereegranskat)abstract
    • Die tröpfchenbasierte Mikrofluidik dient der Isolierung und Manipulation von einzelnen Zellen und Reagentien innerhalb von monodispersen, pikolitergroßen Flüssigkapseln bei einem Umsatz von tausenden Tröpfchen pro Sekunde. Diese Qualitäten machen die Tröpfchen‐Mikrofluidik geeignet für viele Anforderungen der Einzelzellanalyse. Durch die Monodispersität lässt sich die Konzentration in den Tröpfchen quantitativ einstellen. Die Tröpfchen bieten der Zelle und ihrer unmittelbaren Umgebung ein isoliertes Kompartiment, und bei einem Durchsatz von tausenden Tröpfchen pro Sekunde ist es möglich, zehntausende bis millionen verkapselte Zellen zu prozessieren. Heterogene Zellpopulationen lassen sich somit exakt beschreiben oder seltene Zellarten identifizieren. Das kleine Volumen der Tröpfchen macht auch sehr große Screenings ökonomisch machbar. Dieser Aufsatz gibt einen Überblick über den aktuellen Stand der Einzelzellanalyse durch die Tröpfchen‐Mikrofluidik und nennt Beispiele, bei denen sie biologische Vorgänge besser verstehen hilft.
  •  
66.
  • Karlsson, Johan, 1984, et al. (författare)
  • Stem cell homing using local delivery of plerixafor and stromal derived growth factor-1alpha for improved bone regeneration around Ti-implants
  • 2016
  • Ingår i: Journal of Biomedical Materials Research - Part A. - : Wiley. - 1552-4965 .- 1549-3296. ; 104:10, s. 2466-2475
  • Tidskriftsartikel (refereegranskat)abstract
    • Triggering of the early healing events, including the recruitment of progenitor cells, has been suggested to promote bone regeneration. In implantology, local drug release technologies could provide an attractive approach to promote tissue regeneration. In this study, we targeted the chemotactic SDF-1a/CXCR4 axis that is responsible e.g. for the homing of stem cells to trauma sites. This was achieved by local delivery of plerixafor, an antagonist to CXCR4, and/or SDF-1a from titanium implants coated with mesoporous titania thin films with a pore size of 7.5 nm. In vitro drug delivery experiments demonstrated that the mesoporous coating provided a high drug loading capacity and controlled release. The subsequent in vivo study in rat tibia showed beneficial effects with respect to bone-implant anchorage and bone-formation along the surface of the implants when plerixafor and SDF-1a were delivered locally. The effect was most prominent by the finding that the combination of the drugs significantly improved the mechanical bone anchorage. These observations suggest that titanium implants with local delivery of drugs for enhanced local recruitment of progenitor cells have the ability to promote osseointegration. This approach may provide a potential strategy for the development of novel implant treatments.
  •  
67.
  •  
68.
  •  
69.
  • Geng, Shiyu, et al. (författare)
  • Well-dispersed cellulose nanocrystals in hydrophobic polymers by in situ polymerization for synthesizing highly reinforced bio-nanocomposites
  • 2018
  • Ingår i: Nanoscale. - : Royal Society of Chemistry. - 2040-3364 .- 2040-3372. ; 10:25, s. 11797-11807
  • Tidskriftsartikel (refereegranskat)abstract
    • In nanocomposites, dispersing hydrophilic nanomaterials in a hydrophobic matrix using simple and environmentally friendly methods remains challenging. Herein, we report a method based on in situ polymerization to synthesize nanocomposites of well-dispersed cellulose nanocrystals (CNCs) and poly(vinyl acetate) (PVAc). We have also shown that by blending this PVAc/CNC nanocomposite with poly(lactic acid) (PLA), a good dispersion of the CNCs can be reached in PLA. The outstanding dispersion of CNCs in both PVAc and PLA/PVAc matrices was shown by different microscopy techniques and was further supported by the mechanical and rheological properties of the composites. The in situ PVAc/CNC nanocomposites exhibit enhanced mechanical properties compared to the materials produced by mechanical mixing, and a theoretical model based on the interphase effect and dispersion that reflects this behavior was developed. Comparison of the rheological and thermal behaviors of the mixed and in situ PVAc/CNC also confirmed the great improvement in the dispersion of nanocellulose in the latter. Furthermore, a synergistic effect was observed with only 0.1 wt% CNCs when the in situ PVAc/CNC was blended with PLA, as demonstrated by significant increases in elastic modulus, yield strength, elongation to break and glass transition temperature compared to the PLA/PVAc only material.
  •  
70.
  • Agarwal, Nisha Rani, 1987, et al. (författare)
  • Investigation of psoriasis skin tissue by label-free multi-modal imaging: a case study on a phototherapy-treated patient
  • 2019
  • Ingår i: Psoriasis: Targets and Therapy. - 2230-326X. ; 9, s. 43-57
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Psoriasis is a systemic inflammatory disease characterized by epidermal proliferation in the skin. Altered lipid metabolism is considered to be a central factor in the psoriatic etiopathogenesis. Thus, it is necessary to visualize chemical specificity of the samples for better medical diagnosis and treatment. Here, we investigate its role in the development of psoriatic lesions, before and after ultraviolet phototherapy, in a case study. Methods: The distribution and morphology of different lipids and fibrous proteins in psoriatic (lesional) tissues were visualized by two complementary label-free imaging techniques: 1) non-linear microscopy (NLM), providing images of lipids/proteins throughout the skin layers at submicrometer resolution; and 2) mass spectrometry imaging (MSI), offering high chemical specificity and hence the detection of different lipid species in the epidermal and dermal regions. A conventional method of histological evaluation was performed on the tissues, with no direct comparison with NLM and MSI. Results: Psoriatic tissues had a higher lipid content, mainly in cholesterol, in both the epidermal and dermal regions, compared to healthy tissues. Moreover, the collagen and elastin fibers in the psoriatic tissues had a tendency to assemble as larger bundles, while healthy tissues showed smaller fibers more homogeneously spread. Although phototherapy significantly reduced the cholesterol content, it also increased the amounts of collagen in both lesional and non-lesional tissues. Conclusion: This study introduces NLM and MSI as two complementary techniques which are chemical specific and can be used to assess and visualize the distribution of lipids, collagen, and elastin in a non-invasive and label-free manner.
  •  
71.
  • Nagarajan, Neerajha, et al. (författare)
  • Enabling personalized implant and controllable biosystem development through 3D printing
  • 2018
  • Ingår i: Biotechnology Advances. - : Elsevier BV. - 0734-9750. ; 36:2, s. 521-533
  • Forskningsöversikt (refereegranskat)abstract
    • The impact of additive manufacturing in our lives has been increasing constantly. One of the frontiers in this change is the medical devices. 3D printing technologies not only enable the personalization of implantable devices with respect to patient-specific anatomy, pathology and biomechanical properties but they also provide new opportunities in related areas such as surgical education, minimally invasive diagnosis, medical research and disease models. In this review, we cover the recent clinical applications of 3D printing with a particular focus on implantable devices. The current technical bottlenecks in 3D printing in view of the needs in clinical applications are explained and recent advances to overcome these challenges are presented. 3D printing with cells (bioprinting); an exciting subfield of 3D printing, is covered in the context of tissue engineering and regenerative medicine and current developments in bioinks are discussed. Also emerging applications of bioprinting beyond health, such as biorobotics and soft robotics, are introduced. As the technical challenges related to printing rate, precision and cost are steadily being solved, it can be envisioned that 3D printers will become common on-site instruments in medical practice with the possibility of custom-made, on-demand implants and, eventually, tissue engineered organs with active parts developed with biorobotics techniques.
  •  
72.
  • Cardemil, Carina (författare)
  • Effects of antiresorptive agents on inflammation and bone regeneration in different osseous sites - experimental and clinical studies
  • 2014
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The biological mechanisms involved in bone regeneration in osteoporotic bone and the effect of antiresorptive drugs in relation to surgically inserted biomaterials are not fully understood. Improved osseointegration of titanium implants but also adverse effects of antiresorptive therapies, such as osteonecrotic jaw have been described in the literature. The aims of this research project were, firstly, to investigate and to understand the biological events determining bone regeneration and implant integration, after administration of antiresorptive agents; secondly, to determine the cellular and molecular patterns of bone regeneration at implants and synthetic bone substitutes under osteoporotic conditions and, thirdly, to determine how different skeletal sites are affected. The present research included a study of jawbone morphology and gene expression in patients treated with systemic bisphosphonates. When compared to controls, higher gene expression levels of IL-1β was observed in bisphosphonate treated patients with osteonecrosis while bisphosphonate treated patients without necrosis showed lower expression levels of caspase 8, an apoptosis marker involved in the immune response. In ovariectomised rats, zoledronic acid resulted in site-specific differences in the rate of osseointegration and also of gene expression involved in bone healing and regeneration. Strontium-doped calcium phosphate inserted in the rat femur induced lower expression of osteoclastic markers compared to hydroxyapatite and higher bone formation in the periphery of the defects. Whereas major structural changes were demonstrated in the long bones of the ovariectomised rat, less structural alterations were shown in the mandible. However, ovariectomy resulted in lower expression of genes coding for bone formation and angiogenesis in the mandible. In conclusion, the present study shows that the mandible is differently affected by experimentally induced estrogen deficiency than the long bones. Bisphosphonates, administered systemically to estrogen deficient animals, impair osseointegration in the mandible, at least partly related to a downregulation of genes important for the osteogenic process. These observations may have implications for understanding the mechanisms involved in the deranged bone healing observed in the jawbone of bisphosphonate treated patients.
  •  
73.
  • Apelgren, Peter, et al. (författare)
  • Skin Grafting on 3D Bioprinted Cartilage Constructs In Vivo
  • 2018
  • Ingår i: Plastic and Reconstructive Surgery - Global Open. - 2169-7574. ; 6:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Three-dimensional (3D) bioprinting of cartilage is a promising new technique. To produce, for example, an auricle with good shape, the printed cartilage needs to be covered with skin that can grow on the surface of the construct. Our primary question was to analyze if an integrated 3D bioprinted cartilage structure is a tissue that can serve as a bed for a full-thickness skin graft. Methods: 3D bioprinted constructs (10x10x1.2mm) were printed using nanofibrillated cellulose/alginate bioink mixed with mesenchymal stem cells and adult chondrocytes and implanted subcutaneously in 21 nude mice. Results: After 45 days, a full-thickness skin allograft was transplanted onto the constructs and the grafted construct again enclosed subcutaneously. Group 1 was sacrificed on day 60, whereas group 2, instead, had their skin-bearing construct uncovered on day 60 and were sacrificed on day 75 and the explants were analyzed morphologically. The skin transplants integrated well with the 3D bioprinted constructs. A tight connection between the fibrous, vascularized capsule surrounding the 3D bioprinted constructs and the skin graft were observed. The skin grafts survived the uncovering and exposure to the environment. Conclusions: A 3D bioprinted cartilage that has been allowed to integrate in vivo is a sufficient base for a full-thickness skin graft. This finding accentuates the clinical potential of 3D bioprinting for reconstructive purposes.
  •  
74.
  • Lindahl, Anders, 1954, et al. (författare)
  • Cartilage and Bone Regeneration
  • 2014
  • Ingår i: Tissue Engineering: Second Edition. - Amsterdam : Elsevier, Inc.. ; , s. 529-582
  • Bokkapitel (refereegranskat)abstract
    • This chapter deals with the tissue engineering aspects of one of the mesenchymal tissues-cartilage. It includes a brief description of the different cartilage types and their embryonal origin. Tissue structures including chondrocyte and extracellular matrix components are described in detail. The disease aspect of hyaline cartilage with emphasis on cartilage injuries and the tissue engineering approach to cartilage regeneration with the autologous chondrocyte implantation technique is described in depth. The future aspects of cartilage regeneration techniques with potential cell types other than autologous chondrocytes as well as new promising scaffold techniques are described. © 2015 Elsevier Inc. All rights reserved.
  •  
75.
  • Apelgren, Peter, et al. (författare)
  • Biomaterial and biocompatibility evaluation of tunicate nanocellulose for tissue engineering.
  • 2022
  • Ingår i: Biomaterials advances. - : Elsevier BV. - 2772-9508. ; 137
  • Tidskriftsartikel (refereegranskat)abstract
    • Extracellular matrix fibril components, such as collagen, are crucial for the structural properties of several tissues and organs. Tunicate-derived cellulose nanofibrils (TNC) combined with living cells could become the next gold standard for cartilage and soft-tissue repair, as TNC fibrils present similar dimensions to collagen, feasible industrial production, and chemically straightforward and cost-efficient extraction procedures. In this study, we characterized the physical properties of TNC derived from aquaculture production in Norwegian fjords and evaluated its biocompatibility regarding induction of an inflammatory response and foreign-body reactions in a Wistar rat model. Additionally, histologic and immunohistochemical analyses were performed for comparison with expanded polytetrafluoroethylene (ePTFE) as a control. The average length of the TNC as determined by atomic force microscopy was tunable from 3μm to 2.4μm via selection of a various number of passages through a microfluidizer, and rheologic analysis showed that the TNC hydrogels were highly shear-thinning and with a viscosity dependent on fibril length and concentration. As a bioink, TNC exhibited excellent rheological and printability properties, with constructs capable of being printed with high resolution and fidelity. We found that post-print cross-linking with alginate stabilized the construct shape and texture, which increased its ease of handling during surgery. Moreover, after 30days in vivo, the constructs showed a highly-preserved shape and fidelity of the grid holes, with these characteristics preserved after 90days and with no signs of necrosis, infection, acute inflammation, invasion of neutrophil granulocytes, or extensive fibrosis. Furthermore, we observed a moderate foreign-body reaction involving macrophages, lymphocytes, and giant cells in both the TNC constructs and PTFE controls, although TNC was considered a non-irritant biomaterial according to ISO 10993-6 as compared with ePTFE. These findings represent a milestone for future clinical application of TNC scaffolds for tissue repair. One sentence summary: In this study, the mechanical properties of tunicate nanocellulose are superior to nanocellulose extracted from other sources, and the biocompatibility is comparable to that of ePTFE.
  •  
76.
  • Bao, Jichen, 1988 (författare)
  • Engineering the Secretory Pathway for Recombinant Protein Secretion in Saccharomyces cerevisiae
  • 2018
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • In the past few decades there has been an increasing demand of biopharmaceutical proteins in the market. Several types of cell factories are applied to produce different pharmaceutical proteins. However, manufacturers prefer to use a few favorable biological platforms to undertake the production tasks with low cost, high productivity and proper post-translational modifications. The yeast Saccharomyces cerevisiae is one of these preferred cell factories as it has many advantages. There are several reports on improvement of recombinant protein production by S. cerevisiae through rational engineering of different stages of the protein secretion pathway. In the first story of this thesis, we engineered protein anterograde trafficking by over-expression of SEC16 to increase the secretory capacity of yeast. We performed bioreactor fermentation to further characterize the engineered strains, and we analysis the reactive oxygen species accumulation, endoplasmic reticulum exit sites, the amount of endoplasmic reticulum membranes of the strains, etc. In the second story, we engineered the retrograde trafficking by over-expression of GLO3 and GCS1 to further increase the secretory capacity of yeast based on the strain constructed in the first story. Physiological changes in the engineered strains were analyzed. We also performed additional experiments to investigate the changes in the amount of endoplasmic reticulum membranes and reactive oxygen species accumulation. In the third story, we performed a systems level analysis of the high α-amylase production strains, which were screened from UV mutation in the previous study. We identified common regulation patterns and hereby we could specify some general rules for efficient protein secretion. Last, we reported an efficient yeast secretion assay platform for biomedical and biotechnological applications. This platform is responsive to secretory disturbances from both chemicals and proteins and is potentially applicable to drug screening and the selection of cell engineering targets for protein production.
  •  
77.
  • Blissing, Annica (författare)
  • Thiopurine S-methyltransferase - characterization of variants and ligand binding
  • 2017
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Thiopurine S-methyltransferase (TPMT) belongs to the Class I S-adenosylmethionine-dependent methyltransferase (SAM-MT) super family of structurally related proteins. Common to the members of this large protein family is the catalysis of methylation reactions using S-adenosylmethionine (SAM) as a methyl group donor, although SAM-MTs act on a wide range of different substrates and carry out numerous biologically important functions. While the natural function of TPMT is unknown, this enzyme is involved in the metabolism of thiopurines, a class of pharmaceutical substances administered in treatment of immune-related disorders. Specifically, methylation by TPMT inactivates thiopurines and their metabolic intermediates, which reduces the efficacy of clinical treatment and increases the risk of adverse side effects. To further complicate matters, TPMT is a polymorphic enzyme with over 40 naturally occurring variants known to date, most of which exhibit lowered methylation activity towards thiopurines. Consequently, there are individual variations in TPMTmediated thiopurine inactivation, and the administered dose has to be adjusted prior to clinical treatment to avoid harmful side effects.Although the clinical relevance of TPMT is well established, few studies have investigated the molecular causes of the reduced methylation activity of variant proteins. In this thesis, the results of biophysical characterization of two variant proteins, TPMT*6 (Y180F) and TPMT*8 (R215H), are presented. While the properties of TPMT*8 were indistinguishable from those of the wild-type protein, TPMT*6 was found to be somewhat destabilized. Interestingly, the TPMT*6 amino acid substitution did not affect the functionality or folding pattern of the variant protein. Therefore, the decreased in vivo functionality reported for TPMT*6 is probably caused by increased proteolytic degradation in response to the reduced stability of this protein variant, rather than loss of function.Also presented herein are novel methodological approaches for studies of TPMT and its variants. Firstly, the advantages of using 8-anilinonaphthalene-1-sulfonic acid (ANS) to probe TPMT tertiary structure and active site integrity are presented. ANS binds exclusively to the native state of TPMT with high affinity (KD ~ 0.2 μm) and a 1:1 ratio. The stability of TPMT was dramatically increased by binding of ANS, which was shown to co-localize with the structurally similar adenine moiety of the cofactor SAM. Secondly, an enzyme activity assay based on isothermal titration calorimetry (ITC) is presented. Using this approach, the kinetics of 6-MP and 6-TG methylation by TPMT has been characterized.
  •  
78.
  • Kolber, Natalie S., et al. (författare)
  • Orthogonal translation enables heterologous ribosome engineering in E. coli
  • 2021
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723 .- 2041-1723. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The ribosome represents a promising avenue for synthetic biology, but its complexity and essentiality have hindered significant engineering efforts. Heterologous ribosomes, comprising rRNAs and r-proteins derived from different microorganisms, may offer opportunities for novel translational functions. Such heterologous ribosomes have previously been evaluated in E. coli via complementation of a genomic ribosome deficiency, but this method fails to guide the engineering of refractory ribosomes. Here, we implement orthogonal ribosome binding site (RBS):antiRBS pairs, in which engineered ribosomes are directed to researcher-defined transcripts, to inform requirements for heterologous ribosome functionality. We discover that optimized rRNA processing and supplementation with cognate r-proteins enhances heterologous ribosome function for rRNAs derived from organisms with ≥76.1% 16S rRNA identity to E. coli. Additionally, some heterologous ribosomes undergo reduced subunit exchange with E. coli-derived subunits. Cumulatively, this work provides a general framework for heterologous ribosome engineering in living cells.
  •  
79.
  • Mapelli, Valeria, 1978, et al. (författare)
  • Biotechnology for production of bioactive seleno compounds and study of their influence on mouse metabolome
  • 2011
  • Ingår i: Natural Products Chemistry, Biology and Medicine IV Aug 28 - Sept 2, Acquafredda di Maratea, Italy.
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Organic seleno compounds are recognized as effective anti-oxidant agents and their bioactive role in prevention of certain forms of cancer has been suggested via in vitro studies and clinical trials. Among these compounds, Seleno-methyselenocysteine (SeMCys) and γ-glutamyl-SeMCys (γ-glu-SeMCys) are the most bioactive and the latter is the preferred storage form of selenium in Se-accumulator plants thanks to their Se-methyltransferase. Therefore, Se-accumulator edible plants such as Brassicaceae and Allioideae are the main source of SeMCys and γ-glu-SeMCys in the human diet. However, seasonal and environmental factors highly affect the content and the bioavailability of these bioactive compounds. A strategy to by-pass this problem and prevent selenium shortage in human diet is the production of Se-enriched yeast (Se-yeast) to be used as food supplement. In this work we show a biotechnological approach for production Se-yeast featured by higher content of SeMCys and γ-glu-SeMCys. Coupling of metabolic engineering and bioprocess optimization resulted in a Se-yeast with 24-fold increase of SeMCys levels, compared to commercial Se-yeast. The actual effect of the produced yeast has been evaluated in an animal study. In particular, as specific Se-compounds are known to activate phase II enzymes via the electrophile-responsive element (EpRE), this response was studied in transgenic mice expressing the luciferase gene under EpRE control. We observed no effect on regulation of EpRE, either overall or hepatic, by the different Se-supplements. Paradoxically, a decrease was observed in intestinal EpRE transactivation upon supplementation of the Se-yeast produced. The overall effect of the diet supplemented with Se-yeast on mouse metabolism is currently being evaluated by metabolome analysis of liver samples from the transgenic mice.
  •  
80.
  •  
81.
  • Souza-Moreira, Tatiana M., et al. (författare)
  • Screening of 2A peptides for polycistronic gene expression in yeast
  • 2018
  • Ingår i: FEMS Yeast Research. - : Oxford University Press (OUP). - 1567-1356 .- 1567-1364. ; 18:5
  • Tidskriftsartikel (refereegranskat)abstract
    • A complexity of pathway expression in yeast compared to prokaryotes is the need for separate promoters and terminators for each gene expressed. Single transcript expression and separated protein production is possible via the use of 2A viral peptides, but detailed characterization to assess their suitability and applications is needed. The present work aimed to characterize multiple 2A peptide sequences to determine suitability for metabolic engineering applications in Saccharomyces cerevisiae. We screened 22 peptides placed between fluorescent protein sequences. Cleaving efficiency was calculated by western blot intensity of bands corresponding to the cleaved and uncleaved forms of the reporter. Three out of the 22 sequences showed high cleavage efficiency: 2A peptide from Equine rhinitis B virus (91%), Porcine teschovirus-1 (85%) and Operophtera brumata cypovirus-18 (83%). Furthermore, expression of the released protein was comparable to its monocistronic expression. As a proof-of-concept, the triterpene friedelin was successfully produced in the same yeast strain by expressing its synthase with the truncated form of HMG1 linked by the 2A peptide of ERBV-1, with production titers comparable to monocistronic expression (via separate promoters). These results suggest that these peptides could be suitable for expression and translation of multiple proteins in metabolic engineering applications in S. cerevisiae.
  •  
82.
  • Tiukova, Ievgeniia, 1987, et al. (författare)
  • Identification and characterisation of two high-affinity glucose transporters from the spoilage yeast Brettanomyces bruxellensis
  • 2019
  • Ingår i: FEMS microbiology letters. - : Oxford University Press (OUP). - 0378-1097 .- 1574-6968. ; 366:17
  • Tidskriftsartikel (refereegranskat)abstract
    • The yeast Brettanomyces bruxellensis (syn. Dekkera bruxellensis) is an emerging and undesirable contaminant in industrial low-sugar ethanol fermentations that employ the yeast Saccharomyces cerevisiae. High-affinity glucose import in B. bruxellensis has been proposed to be the mechanism by which this yeast can outcompete S. cerevisiae. The present study describes the characterization of two B. bruxellensis genes (BHT1 and BHT3) believed to encode putative high-affinity glucose transporters. In vitro-generated transcripts of both genes as well as the S. cerevisiae HXT7 high-affinity glucose transporter were injected into Xenopus laevis oocytes and subsequent glucose uptake rates were assayed using 14C-labelled glucose. At 0.1 mM glucose, Bht1p was shown to transport glucose five times faster than Hxt7p. pH affected the rate of glucose transport by Bht1p and Bht3p, indicating an active glucose transport mechanism that involves proton symport. These results suggest a possible role for BHT1 and BHT3 in the competitive ability of B. bruxellensis.
  •  
83.
  • Hoffmann, Karolina, 1980 (författare)
  • Gliadin-Blocking Peptides In vitro assessment of their potential to alleviate celiac disease development
  • 2010
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This thesis work aimed to investigate the potential of synthetic peptides as agents to block wheat prolamins (gliadins) that trigger the development of symptoms in celiac disease. The first step of this investigation included selection and synthesis of peptides with high affinity to gliadins and assessment of the potential of these so-called blocking peptides to limit gliadin reactivity in vitro. Wheat proteins targeted by blocking peptides were characterized, and peptides ability to reduce gliadin recognition was evaluated in in vitro assays. It was tested whether blocking peptides could reduce gliadin processing by tissue transglutaminase, and its recognition by anti-gliadin antibodies. The digestive stability of complexes formed by gliadin and blocking peptides was also studied. Finally, their potential to reduce a negative non-immunological effect of gliadin on intestinal mucosal cells was assessed in vitro in a Caco-2 cell line model. A large pool of 12-mer peptides with a high affinity to gliadins was selected with the phage display technology, and two peptides denoted P61, and P64, were chosen for experiments. Blocking peptides expressed an affinity to a broad spectrum of gliadin proteins and to α-amylase/trypsin inhibitors, wheat allergenic proteins that are involved in eliciting an immune response in baker’s asthma. Both blocking peptides significantly reduced the tissue transglutaminase processing of intact gliadin and partially reduced its recognition by anti-gliadin antibodies. The blocking peptides also partially reduced the negative non-immunological effect that gliadin had on a Caco-2 cell line. However, complexes of blocking peptides with gliadin were only partially stable after the pancreatic phase of in vitro digestion, with P64 complex with gliadin being more stable than that of P61. The two chosen blocking peptides, P61 and P64, have proven the potential to bind to gliadin and to partially prevent its toxicity and recognition in in vitro assays. In order to be used in celiac disease therapy, however, more efficient gliadin blocking peptide complexes need to be explored. The large pool of 12-mer peptides obtained during selection with the phage display will further be screened in a search for the most effective peptides.
  •  
84.
  • Bonzom, Cyrielle, 1987, et al. (författare)
  • Glycosylation influences activity, stability and immobilization of the feruloyl esterase 1a from Myceliophthora thermophila
  • 2019
  • Ingår i: AMB Express. - : Springer Science and Business Media LLC. - 2191-0855. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Heterologous protein production is widely used in industrial biotechnology. However, using non-native production hosts can lead to enzymes with altered post-translational modifications, such as glycosylation. We have investigated how production in a non-native host affects the physicochemical properties and enzymatic activity of a feruloyl esterase from Myceliophthora thermophila, MtFae1a. The enzyme was produced in two microorganisms that introduce glycosylation (M. thermophila and Pichia pastoris) and in Escherichia coli (non-glycosylated). Mass spectrometric analysis confirmed the presence of glycosylation and revealed differences in the lengths of glycan chains between the enzymes produced in M. thermophila and P. pastoris. The melting temperature and the optimal temperature for activity of the non-glycosylated enzyme were considerably lower than those of the glycosylated enzymes. The three MtFae1a versions also exhibited differences in specific activity and specificity. The catalytic efficiency of the glycosylated enzymes were more than 10 times higher than that of the non-glycosylated one. In biotechnology, immobilization is often used to allow reusing enzyme and was investigated on mesoporous silica particles. We found the binding kinetics and immobilization yield differed between the enzyme versions. The largest differences were observed when comparing enzymes with and without glycosylation, but significant variations were also observed between the two differently glycosylated enzymes. We conclude that the biotechnological value of an enzyme can be optimized for a specific application by carefully selecting the production host.
  •  
85.
  • Rugbjerg, Peter, 1988, et al. (författare)
  • The future of self-selecting and stable fermentations
  • 2020
  • Ingår i: Journal of Industrial Microbiology and Biotechnology. - : Oxford University Press (OUP). - 1367-5435 .- 1476-5535. ; 47:11, s. 993-1004
  • Forskningsöversikt (refereegranskat)abstract
    • Unfavorable cell heterogeneity is a frequent risk during bioprocess scale-up and characterized by rising frequencies of low-producing cells. Low-producing cells emerge by both non-genetic and genetic variation and will enrich due to their higher specific growth rate during the extended number of cell divisions of large-scale bioproduction. Here, we discuss recent strategies for synthetic stabilization of fermentation populations and argue for their application to make cell factory designs that better suit industrial needs. Genotype-directed strategies leverage DNA-sequencing data to inform strain design. Self-selecting phenotype-directed strategies couple high production with cell proliferation, either by redirected metabolic pathways or synthetic product biosensing to enrich for high-performing cell variants. Evaluating production stability early in new cell factory projects will guide heterogeneity-reducing design choices. As good initial metrics, we propose production half-life from standardized serial-passage stability screens and production load, quantified as production-associated percent-wise growth rate reduction. Incorporating more stable genetic designs will greatly increase scalability of future cell factories through sustaining a high-production phenotype and enabling stable long-term production.
  •  
86.
  • Lundälv, Jörgen, 1966 (författare)
  • Bioterrorism och media
  • 2004
  • Bok (övrigt vetenskapligt/konstnärligt)abstract
    • Attacker med biologiska och kemiska preparat är ett nytt hot mot institutioner i världen bl.a massmedia. I USA har ett antal medieföretag attackerats med brev som visat sig innehålla mjältbrand. I Sverige utsätts medier för hot och risker med jämna mellanrum. Denna guide om säkerhet och beredskap ger ny kunskap om vad bioterrorism innebär och vilka hotbilder som finns mot medieföretag i Sverige. Den vänder sig också till informationsstrateger vid myndigheter och företag liksom till hälso- och sjukvårdspersonal med intresse för epidemiologiska frågor. Guiden inleds med företal av Gorm Albrechtsen, f.d. chefredaktör vid Herning Folkeblad i Danmark som utsatts för misstänkta pulverbrev samt av Åke Sellström, avdelningschef vid Totalförsvarets forskningsinstitut (FOI) och expert på biologiska och kemiska vapen.
  •  
87.
  • Härd, Torleif, et al. (författare)
  • Inhibition of Amyloid Formation
  • 2012
  • Ingår i: Journal of Molecular Biology. - : Elsevier BV. - 0022-2836 .- 1089-8638. ; 421, s. 441-465
  • Tidskriftsartikel (refereegranskat)abstract
    • Amyloid is aggregated protein in the form of insoluble fibrils. Amyloid deposition in human tissue-amyloidosis-is associated with a number of diseases including all common dementias and type II diabetes. Considerable progress has been made to understand the mechanisms leading to amyloid formation. It is, however, not yet clear by which mechanisms amyloid and protein aggregates formed on the path to amyloid are cytotoxic. Strategies to prevent protein aggregation and amyloid formation are nevertheless, in many cases, promising and even successful. This review covers research on intervention of amyloidosis and highlights several examples of how inhibition of protein aggregation and amyloid formation has been achieved in practice. For instance, rational design can provide drugs that stabilize a native folded state of a protein, protein engineering can provide new binding proteins that sequester monomeric peptides from aggregation, small molecules and peptides can be designed to block aggregation or direct it into non-cytotoxic paths, and monoclonal antibodies have been developed for therapies towards neurodegenerative diseases based on inhibition of amyloid formation and clearance. (c) 2012 Elsevier Ltd. All rights reserved.
  •  
88.
  • Forsvall, Andreas, et al. (författare)
  • Evaluation of the Forsvall biopsy needle in an ex vivo model of transrectal prostate biopsy - a novel needle design with the objective to reduce the risk of post-biopsy infection
  • 2021
  • Ingår i: Scandinavian Journal of Urology. - : Medical Journals Sweden AB. - 2168-1805 .- 2168-1813. ; 55:3, s. 227-234
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Transrectal prostate biopsy (TRbx) transfers colonic bacteria into prostatic tissue, potentially causing infectious complications, including sepsis. Our objective was to determine whether biopsy needle shape, surface properties and sampling mechanism affect the number of bacteria transferred through the colon wall, and evaluate a novel needle with improved properties. Methods The standard Tru-Cut biopsy needle used today was evaluated for mechanisms of bacterial transfer in a pilot study. A novel Tru-Cut needle (Forsvall needle prototype) was developed. TRbx was simulated using human colons ex-vivo. Four subtypes of the prototype needle were compared with a standard Tru-Cut needle (BARD 18 G). Prototype and standard needles were used to puncture 4 different colon specimens in 10 randomized sites per colon. Needles were submerged into culture media to capture translocated bacteria. The media was cultured on blood agar and then the total amount of transferred bacteria was calculated for each needle. The primary outcome measure was the percent reduction of bacteria translocated by the prototype needles relative to the standard needle. Secondary outcome measures were the effects of tip design and coating on the percent reduction of translocated bacteria. Results Prototype needles reduced the number of translocated bacteria by, on average, 96.0% (95% confidence interval 93.0-97.7%; p < 0.001) relative to the standard needle. This percent reduction was not significantly affected by prototype needle tip style or surface coating. Conclusions The Forsvall needle significantly reduces colonic bacterial translocation, suggesting that it could reduce infectious complications in prostate biopsy. A clinical trial has been initiated.
  •  
89.
  • Lindahl, Carl, et al. (författare)
  • Biomimetic calcium phosphate coating of additively manufactured porous CoCr implants
  • 2015
  • Ingår i: Applied Surface Science. - : Elsevier BV. - 0169-4332 .- 1873-5584. ; 353, s. 40-47
  • Tidskriftsartikel (refereegranskat)abstract
    • The aim of this work was to study the feasibility to use a biomimetic method to prepare biomimetic hydroxyapatite (HA) coatings on CoCr substrates with short soaking times and to characterize the properties of such coatings. A second objective was to investigate if the coatings could be applied to porous CoCr implants manufactured by electron beam melting (EBM). The coating was prepared by immersing the pretreated CoCr substrates and EBM implants into the phosphate-buffered solution with Ca2+ in sealed plastic bottles, kept at 60 degrees C for 3 days. The formed coating was partially crystalline, slightly calcium deficient and composed of plate-like crystallites forming roundish flowers in the size range of 300-500 nm. Cross-section imaging showed a thickness of 300-500 nm. In addition, dissolution tests in Tris-HCl up to 28 days showed that a substantial amount of the coating had dissolved, however, undergoing only minor morphological changes. A uniform coating was formed within the porous network of the additive manufactured implants having similar thickness and morphology as for the flat samples. In conclusion, the present coating procedure allows coatings to be formed on CoCr and could be used for complex shaped, porous implants made by additive manufacturing.
  •  
90.
  • Guo, Weijin, et al. (författare)
  • Synthetic Paper Separates Plasma from Whole Blood with Low Protein Loss
  • 2020
  • Ingår i: Analytical Chemistry. - Washington D.C. : American Chemical Society (ACS). - 0003-2700 .- 1520-6882. ; 92:9, s. 6194-6199
  • Tidskriftsartikel (refereegranskat)abstract
    • The separation of plasma from whole blood is the first step in many diagnostic tests. Point-of-care tests often rely on integrated plasma filters, but protein retention in such filters limits their performance. Here, we investigate plasma separation on interlocked micropillar scaffolds ("synthetic paper") by the local agglutination of blood cells coupled with the capillary separation of the plasma. We separated clinically relevant volumes of plasma with high efficiency in a separation time on par with that of state of the art techniques. We investigated different covalent and non-covalent surface treatments (PEGMA, HEMA, BSA, O2 plasma) on our blood filter and their effect on protein recovery, and identified O2 plasma treatment and 7.9 μg/cm2 agglutination antibody as most suitable treatments. Using these treatments, we recovered at least 82% of the blood plasma proteins, more than with state-of-the-art filters. The simplicity of our device and the performance of our approach could enable better point-of-care tests.
  •  
91.
  • Chudinova, Ekaterina, et al. (författare)
  • In Vitro Assessment of Hydroxyapatite Coating on the Surface of Additive Manufactured Ti6Al4V Scaffolds
  • 2017
  • Ingår i: Materials Science Forum. - Switzerland : Trans Tech Publications Inc.. - 0255-5476 .- 1662-9752. ; 879, s. 2444-2449
  • Tidskriftsartikel (refereegranskat)abstract
    • Custom orthopedic and dental implants may be fabricated by additive manufacturing (AM), for example using electron beam melting technology. This study is focused on the modification of the surface of Ti6Al4V alloy coin-like scaffolds fabricated via AM technology (EBM®) by radio frequency (RF) magnetron sputter deposition of hydroxyapatite (HA) coating. The scaffolds with HA coating were characterized by Scanning Electron microscopy, X-ray diffraction. HA coating showed a nanocrystalline structure with the crystallites of an average size of 32±9 nm. The ability of the surface to support adhesion and the proliferation of human mesenchymal stem cells was studied using biological short-term tests in vitro. In according to in vitro assessment, thin HA coating stimulated the attachment and proliferation of cells. Human mesenchymal stem cells cultured on the HA-coated scaffold also formed mineralized nodules.
  •  
92.
  • van Zyl, Martin, et al. (författare)
  • Injectable conductive hydrogel restores conduction through ablated myocardium
  • 2020
  • Ingår i: Journal of Cardiovascular Electrophysiology. - : Wiley. - 1045-3873 .- 1540-8167. ; 31:12, s. 3293-3301
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction Therapies for substrate-related arrhythmias include ablation or drugs targeted at altering conductive properties or disruption of slow zones in heterogeneous myocardium. Conductive compounds such as carbon nanotubes may provide a novel personalizable therapy for arrhythmia treatment by allowing tissue homogenization. Methods A nanocellulose carbon nanotube-conductive hydrogel was developed to have conduction properties similar to normal myocardium. Ex vivo perfused canine hearts were studied. Electroanatomic activation mapping of the epicardial surface was performed at baseline, after radiofrequency ablation, and after uniform needle injections of the conductive hydrogel through the injured tissue. Gross histology was used to assess distribution of conductive hydrogel in the tissue. Results The conductive hydrogel viscosity was optimized to decrease with increasing shear rate to allow expression through a syringe. The direct current conductivity under aqueous conduction was 4.3 x 10(-1) S/cm. In four canine hearts, when compared with the homogeneous baseline conduction, isochronal maps demonstrated sequential myocardial activation with a shift in direction of activation to surround the edges of the ablated region. After injection of the conductive hydrogel, isochrones demonstrated conduction through the ablated tissue with activation restored through the ablated tissue. Gross specimen examination demonstrated retention of the hydrogel within the tissue. Conclusions This proof-of-concept study demonstrates that conductive hydrogel can be injected into acutely disrupted myocardium to restore conduction. Future experiments should focus on evaluating long-term retention and biocompatibility of the hydrogel through in vivo experimentation.
  •  
93.
  • Luo, Hao, 1992, et al. (författare)
  • Genome-scale insights into the metabolic versatility of Limosilactobacillus reuteri
  • 2021
  • Ingår i: BMC Biotechnology. - : Springer Science and Business Media LLC. - 1472-6750. ; 21:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Limosilactobacillus reuteri (earlier known as Lactobacillus reuteri) is a well-studied lactic acid bacterium, with some specific strains used as probiotics, that exists in different hosts such as human, pig, goat, mouse and rat, with multiple body sites such as the gastrointestinal tract, breast milk and mouth. Numerous studies have confirmed the beneficial effects of orally administered specific L. reuteri strains, such as preventing bone loss and promoting regulatory immune system development. L. reuteri ATCC PTA 6475 is a widely used strain that has been applied in the market as a probiotic due to its positive effects on the human host. Its health benefits may be due, in part, to the production of beneficial metabolites. Considering the strain-specific effects and genetic diversity of L. reuteri strains, we were interested to study the metabolic versatility of these strains. Results In this study, we aimed to systematically investigate the metabolic features and diversities of L. reuteri strains by using genome-scale metabolic models (GEMs). The GEM of L. reuteri ATCC PTA 6475 was reconstructed with a template-based method and curated manually. The final GEM iHL622 of L. reuteri ATCC PTA 6475 contains 894 reactions and 726 metabolites linked to 622 metabolic genes, which can be used to simulate growth and amino acids utilization. Furthermore, we built GEMs for the other 35 L. reuteri strains from three types of hosts. The comparison of the L. reuteri GEMs identified potential metabolic products linked to the adaptation to the host. Conclusions The GEM of L. reuteri ATCC PTA 6475 can be used to simulate metabolic capabilities and growth. The core and pan model of 35 L. reuteri strains shows metabolic capacity differences both between and within the host groups. The GEMs provide a reliable basis to investigate the metabolism of L. reuteri in detail and their potential benefits on the host.
  •  
94.
  • Andersson, Johanna, 1984, et al. (författare)
  • Stick–slip motion and controlled filling speed by the geometric design of soft micro-channels
  • 2018
  • Ingår i: Journal of Colloid and Interface Science. - : Elsevier BV. - 1095-7103 .- 0021-9797. ; 524, s. 139-147
  • Tidskriftsartikel (refereegranskat)abstract
    • Hypothesis Liquid can move by capillary action through interconnected porous materials, as in fabric or paper towels. Today mass transport is controlled by chemical modification. It is, however, possible to direct mass transport by geometrical modifications. It is here proposed that it is possible to tailor capillary flow speed in a model system of micro-channels by the angle, size and position of attached side channels. Experiments A flexible, rapid, and cost-effective method is used to produce micro-channels in gels. It involves 3D-printed moulds in which gels are cast. Open channels of micrometre size with several side channels on either one or two sides are produced with tilting angles of 10 – 170°. On a horizontal plane the meniscus of water driven by surface tension is tracked in the main channel. Findings The presence of side channels on one side slowed down the speed of the meniscus in the main channel least. Channels having side channels on both sides with tilting angles of up to 30° indicated tremendously slower flow, and the liquid exhibited a stick-slip motion. Broader side channels decreased the speed more than thinner ones, as suggested by the hypothesis. Inertial forces are suggested to be important in branched channel systems studied here.
  •  
95.
  • Nielsen, Jens B, 1962 (författare)
  • METABOLISM: A stress-coping strategy for yeast cells
  • 2019
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 572:7768, s. 184-185
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Stressed yeast cells take up the amino acid lysine and reprogram their metabolism to free up supplies of a stress-relieving molecule. Lysine uptake therefore increases the tolerance of yeast cells to stress. See LETTER P.249
  •  
96.
  • Oroujeni, Maryam, PhD, 1982-, et al. (författare)
  • Preclinical Evaluation of [Ga-68]Ga-DFO-ZEGFR:2377 : A Promising Affibody-Based Probe for Noninvasive PET Imaging of EGFR Expression in Tumors
  • 2018
  • Ingår i: Cells. - : MDPI. - 2073-4409. ; 7:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Radionuclide imaging of epidermal growth factor receptor (EGFR) expression in tumors may stratify patients for EGFR-targeting therapies and predict response or resistance to certain treatments. Affibody molecules, which are nonimmunoglobulin scaffold proteins, have a high potential as probes for molecular imaging. In this study, maleimido derivative of desferrioxamine B (DFO) chelator was site-specifically coupled to the C-terminal cysteine of the anti-EGFR affibody molecule ZEGFR:2377, and the DFO-ZEGFR:2377 conjugate was labeled with the generator-produced positron-emitting radionuclide Ga-68. Stability, specificity of binding to EGFR-expressing cells, and processing of [Ga-68]Ga-DFO-ZEGFR:2377 by cancer cells after binding were evaluated in vitro. In vivo studies were performed in nude mice bearing human EGFR-expressing A431 epidermoid cancer xenografts. The biodistribution of [Ga-68]Ga-DFO-ZEGFR:2377 was directly compared with the biodistribution of [Zr-89]Zr-DFO-ZEGFR:2377. DFO-ZEGFR:2377 was efficiently (isolated yield of 73 +/- 3%) and stably labeled with Ga-68. Binding of [Ga-68]Ga-DFO-ZEGFR:2377 to EGFR-expressing cells in vitro was receptor-specific and proportional to the EGFR expression level. In vivo saturation experiment demonstrated EGFR-specific accumulation of [Ga-68]Ga-DFO-ZEGFR:2377 in A431 xenografts. Compared to [Zr-89]Zr-DFO-ZEGFR:2377, [Ga-68]Ga-DFO-ZEGFR:2377 demonstrated significantly (p < 0.05) higher uptake in tumors and lower uptake in spleen and bones. This resulted in significantly higher tumor-to-organ ratios for [Ga-68]Ga-DFO-ZEGFR:2377. In conclusion, [Ga-68]Ga-DFO-ZEGFR:2377 is a promising probe for imaging of EGFR expression.
  •  
97.
  • Skrekas, Christos, 1990, et al. (författare)
  • Fluorescence-Activated Cell Sorting as a Tool for Recombinant Strain Screening
  • 2022
  • Ingår i: Methods in Molecular Biology. - New York, NY : Springer US. - 1940-6029 .- 1064-3745. ; , s. 39-57
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)abstract
    • Metabolic engineering of microbial cells is the discipline of optimizing microbial metabolism to enable and improve the production of target molecules ranging from biofuels and chemical building blocks to high-value pharmaceuticals. The advances in genetic engineering have eased the construction of highly engineered microbial strains and the generation of genetic libraries. Intracellular metabolite-responsive biosensors facilitate high-throughput screening of these libraries by connecting the levels of a metabolite of interest to a fluorescence output. Fluorescent-activated cell sorting (FACS) enables the isolation of highly fluorescent single cells and thus genotypes that produce higher levels of the metabolite of interest. Here, we describe a high-throughput screening method for recombinant yeast strain screening based on intracellular biosensors and FACS.
  •  
98.
  • Svärd, Anna, 1985-, et al. (författare)
  • Elastin levels are higher in healing tendons than in intact tendons and influence tissue compliance
  • 2020
  • Ingår i: The FASEB Journal. - : John Wiley & Sons. - 0892-6638 .- 1530-6860. ; 34:10, s. 13409-13418
  • Tidskriftsartikel (refereegranskat)abstract
    • Elastic fibers containing elastin play an important role in tendon functionality, but the knowledge on presence and function of elastin during tendon healing is limited. The aim of this study was to investigate elastin content and distribution in intact and healing Achilles tendons and to understand how elastin influence the viscoelastic properties of tendons. The right Achilles tendon was completely transected in 81 Sprague-Dawley rats. Elastin content was quantified in intact and healing tendons (7, 14, and 28 days post-surgery) and elastin distribution was visualized by immunohistochemistry at 14 days post-surgery. Degradation of elastin by elastase incubation was used to study the role of elastin on viscoelastic properties. Mechanical testing was either performed as a cyclic test (20x 10 N) or as a creep test. We found significantly higher levels of elastin in healing tendons at all time-points compared to intact tendons (4% in healing tendons 28 days post-surgery vs 2% in intact tendons). The elastin was more widely distributed throughout the extracellular matrix in the healing tendons in contrast to the intact tendon where the distribution was not so pronounced. Elastase incubation reduced the elastin levels by approximately 30% and led to a 40%-50% reduction in creep. This reduction was seen in both intact and healing tendons. Our results show that healing tendons contain more elastin and is more compliable than intact tendons. The role of elastin in tendon healing and tissue compliance indicates a protective role of elastic fibers to prevent re-injuries during early tendon healing. Plain Language Summary Tendons transfer high loads from muscles to bones during locomotion. They are primarily made by the protein collagen, a protein that provide strength to the tissues. Besides collagen, tendons also contain other building blocks such as, for example, elastic fibers. Elastic fibers contain elastin and elastin is important for the extensibility of the tendon. When a tendon is injured and ruptured the tissue heals through scar formation. This scar tissue is different from a normal intact tendon and it is important to understand how the tendons heal. Little is known about the presence and function of elastin during healing of tendon injuries. We have shown, in animal experiments, that healing tendons have higher amounts of elastin compared to intact tendons. The elastin is also spread throughout the tissue. When we reduced the levels of this protein, we discovered altered mechanical properties of the tendon. The healing tendon can normally extend quite a lot, but after elastin removal this extensibility was less obvious. The ability of the healing tissue to extend is probably important to protect the tendon from re-injuries during the first months after rupture. We therefore propose that the tendons heal with a large amount of elastin to prevent re-ruptures during early locomotion.
  •  
99.
  •  
100.
  • Zirk, Katrin, et al. (författare)
  • Vectorization of splice-correcting oligonucleotides with cell-penetrating peptides
  • 2013
  • Ingår i: Chimica oggi. - 0392-839X .- 1973-8250. ; 31:2, s. 12-15
  • Tidskriftsartikel (refereegranskat)abstract
    • Personalized medicine approaches based on different gene therapy settings have gained much attention lately. In order to enforce successful gene therapy, genetic material needs to be delivered into cells. Nucleic acids and their analogues are unable to do so and thus require assistance to reach their site of action residing in the cytoplasm or nucleus. Here we give a short review on recent advancements in cell-penetrating peptide mediated delivery of splice-correcting oligonucleotides. We report on different cell-penetrating peptides applied for vectorization of splice-correcting oligonucleotides using both covalent conjugation and non-covalent nanoparticle formation approach. While covalent conjugation has gained extensive interest, there have also been great advances in non-covalent complex formation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 51-100 av 379
Typ av publikation
tidskriftsartikel (254)
konferensbidrag (42)
doktorsavhandling (23)
annan publikation (18)
bokkapitel (16)
forskningsöversikt (15)
visa fler...
licentiatavhandling (5)
bok (4)
konstnärligt arbete (2)
rapport (1)
recension (1)
visa färre...
Typ av innehåll
refereegranskat (292)
övrigt vetenskapligt/konstnärligt (87)
Författare/redaktör
Bjursten, Lars Magnu ... (23)
Munthe, Christian, 1 ... (15)
Gatenholm, Paul, 195 ... (13)
Nielsen, Jens B, 196 ... (12)
Ask, Per (10)
Tenje, Maria (9)
visa fler...
Tolmachev, Vladimir (8)
Olsson, Lisbeth, 196 ... (8)
Palmquist, Anders, 1 ... (7)
Andersson, Martin, 1 ... (7)
Uhlén, Mathias (6)
Nilsson, Peter (6)
Börjesson, Per Ola (6)
Holmer, Nils-Gunnar (6)
Tengvall, Pentti (5)
Kölby, Lars, 1963 (5)
Altai, Mohamed (4)
Eriksson Karlström, ... (4)
Orlova, Anna (4)
Omar, Omar (4)
Lundeberg, Joakim (4)
Bülow, Leif (4)
Thomsen, Peter, 1953 (4)
Enejder, Annika, 196 ... (4)
Rova, Ulrika (4)
Persson, Cecilia (4)
Atefyekta, Saba, 198 ... (4)
Eliasson, Pernilla T ... (4)
Strid Orrhult, Linne ... (3)
Sandberg, Frida (3)
Engqvist, Håkan (3)
Oroujeni, Maryam, Ph ... (3)
Orlova, Anna, 1960- (3)
Westerlund, Kristina (3)
Lundberg, Emma (3)
Nierstrasz, Vincent, ... (3)
Strømme, Maria, 1970 ... (3)
Svahn Andersson, Hel ... (3)
Ståhl, Stefan (3)
Lindahl, Anders, 195 ... (3)
Isaksson, Hanna (3)
Ahlstedt, S (3)
Oksman, Kristiina (3)
Hilborn, Jöns (3)
Ajaxon, Ingrid (3)
Öhman, Caroline (3)
Gräslund, Torbjörn (3)
Månberg, Anna, 1985- (3)
Lindström, Kjell (3)
Persson, Hans W (3)
visa färre...
Lärosäte
Chalmers tekniska högskola (104)
Kungliga Tekniska Högskolan (86)
Göteborgs universitet (80)
Lunds universitet (74)
Uppsala universitet (51)
Linköpings universitet (31)
visa fler...
Sveriges Lantbruksuniversitet (26)
Karolinska Institutet (21)
Luleå tekniska universitet (15)
Umeå universitet (12)
RISE (11)
Stockholms universitet (10)
Linnéuniversitetet (10)
Örebro universitet (6)
Högskolan i Borås (6)
Malmö universitet (5)
Högskolan i Skövde (4)
Mittuniversitetet (3)
Karlstads universitet (3)
Högskolan Kristianstad (2)
Mälardalens universitet (2)
Blekinge Tekniska Högskola (1)
visa färre...
Språk
Engelska (371)
Svenska (5)
Tyska (1)
Odefinierat språk (1)
Rumänska (1)
Forskningsämne (UKÄ/SCB)
Teknik (375)
Medicin och hälsovetenskap (208)
Naturvetenskap (111)
Humaniora (13)
Lantbruksvetenskap (12)
Samhällsvetenskap (12)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy