SwePub
Sök i SwePub databas

  Utökad sökning

AND är defaultoperator och kan utelämnas

Träfflista för sökning "AMNE:(ENGINEERING AND TECHNOLOGY Industrial Biotechnology Bioenergy) "

Sökning: AMNE:(ENGINEERING AND TECHNOLOGY Industrial Biotechnology Bioenergy)

  • Resultat 1-50 av 1137
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Munthe, Christian, 1962 (författare)
  • Precaution and Ethics: Handling risks, uncertainties and knowledge gaps in the regulation of new biotechnologies
  • 2017
  • Bok (övrigt vetenskapligt/konstnärligt)abstract
    • This volume outlines and analyses ethical issues actualized by applying a precautionary approach to the regulation of new biotechnologies. It presents a novel way of categorizing and comparing biotechnologies from a precautionary standpoint. Based on this, it addresses underlying philosophical problems regarding the ethical assessment of decision-making under uncertainty and ignorance, and discusses how risks and possible benefits of such technologies should be balanced from an ethical standpoint. It argues on conceptual and ethical grounds for a technology neutral regulation as well as for a regulation that not only checks new technologies but also requires old, inferior ones to be phased out. It demonstrates how difficult ethical issues regarding the extent and ambition of precautionary policies need to be handled by such a regulation, and presents an overarching framework for doing so.
  •  
2.
  • Mayers, Joshua, 1988, et al. (författare)
  • Integrating Microalgal Production with Industrial Outputs - Reducing Process Inputs and Quantifying the Benefits
  • 2016
  • Ingår i: Industrial Biotechnology. - : Mary Ann Liebert Inc. - 1550-9087 .- 1931-8421. ; 12:4, s. 219-234
  • Tidskriftsartikel (refereegranskat)abstract
    • The cultivation and processing of microalgal biomass is resource- and energy-intensive, negatively affecting the sustainability and profitability of producing bulk commodities, limiting this platform to the manufacture of relatively small quantities of high-value compounds. A biorefinery approach where all fractions of the biomass are valorized might improve the case for producing lower-value products. However, these systems are still likely to operate very close to thresholds of profitability and energy balance, with wide-ranging environmental and societal impacts. It thus remains critically important to reduce the use of costly and impactful inputs and energy-intensive processes involved in these scenarios. Integration with industrial infrastructure can provide a number of residual streams that can be readily used during microalgal cultivation and downstream processing. This review critically considers some of the main inputs required for microalgal biorefineries - such as nutrients, water, carbon dioxide, and heat - and appraises the benefits and possibilities for industrial integration on a more quantitative basis. Recent literature and demonstration studies will also be considered to best illustrate these benefits to both producers and industrial operators. Additionally, this review will highlight some inconsistencies in the data used in assessments of microalgal production scenarios, allowing more accurate evaluation of potential future biorefineries.
  •  
3.
  • Andersson, Viktor, 1983 (författare)
  • Excess heat utilisation in oil refineries - CCS and algae-based biofuels
  • 2016
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The main objective of this thesis is to investigate two different concepts for CO2 mitigation, from a system perspective, in relation to the oil refining industry: CO2 capture and storage; and algae-based biofuels. For all these processes, process integration with an oil refinery is assumed. The oil refinery sector is a major emitter of CO2 and is responsible for 9% of the industrial emissions of CO2 worldwide. Oil refineries have large amounts of unused excess heat, which can be used to satisfy the heat demands of a CO2 capture plant, a land-based algal cultivation facility, or an algae-based biofuel process. The use of this excess heat significantly reduces the cost for CO2 capture, while an economic evaluation for algae-based biofuels has not been made.Since the amount of heat available from the oil refinery´s processes increase with decreasing temperature in the stripper reboiler, it was investigated how much heat was available at different temperatures. It was also investigated how the decreased temperature would affect the heat demand of CO2 capture processes that use MEA or ammonia as the absorbent. The findings show that it is possible to capture more CO2 using excess heat when the temperature in the stripper reboiler is decreased. For the MEA process, the lower limit of the temperature interval investigated showed the maximum CO2 capture rate, while the ammonia process benefitted from a lower temperature than the standard temperature but showed maximal CO2 capture rate above the lower limit. These results are valid only when using excess heat to satisfy the entire heat demand. At the case study refinery, the available excess heat could satisfy between 28% and 50% of the heat demand of the MEA process when treating the flue gases from all chimneys, depending on the temperature in the stripper reboiler. This utilisation of excess heat represents a way to reduce significantly the costs for CCS in an oil refinery. Land-based cultivation of algae proved to be unsuitable for the utilisation of excess heat. Since the cultivation pond is exposed to wind, rain, and cold, the heat demand fluctuates strongly over the year, making the pond an unstable recipient of the excess heat.Three types of biofuel processes based on microalgae and macroalgae were investigated with respect to integration with the oil refinery. For the algae-based biofuel processes, heat integration and material integration combined to increase the efficiency of the system. When two different build margin technologies (with different CO2 emission factors) are employed for electricity production, macroalgae-based biofuel production appears to be the more robust process from the perspective of CO2 due to the lower electricity demands of the algal cultivation and harvesting phases.
  •  
4.
  • Anasontzis, George E, 1980 (författare)
  • Biomass modifying enzymes: From discovery to application
  • 2012
  • Ingår i: Oral presentation at the Chalmers Life Science AoA conference.
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • It has now been realized that the road towards the bio-based economy is a one-way street, leaving gradually the oil-based technology and driving slowly towards a more sustainable society. The current non-biodegradable hydrocarbon fuels and plastics will be replaced by new products which will derive from natural and renewable resources. The synthesis of such biofuels and biochemicals is still challenged by the difficulties to cost efficiently degrade lignocellulosic material to fermentable sugars or to isolate the intact polymers. Biomass degrading and modifying enzymes play an integral role both in the separation of the polymers from the wood network, as well as in their subsequent modification, prior to further product development.Our group interests focus on all levels of applied enzyme research of biomass acting enzymes: Discovery, assay development, production and application. Relevant examples will be provided: What is our strategy for discovering novel microorganisms and enzymes from the tropical forests and grasslands of Vietnam? How do we design novel real-world assays for enzyme activity determination? Which are the bottlenecks in the enzymatic cellulose hydrolysis? How enzymes can be used to produce high added value compounds from biomass?
  •  
5.
  • Systems Perspectives on Biorefineries 2012
  • 2012
  • Samlingsverk (redaktörskap) (refereegranskat)abstract
    • Replacing fossil fuels with biomass for the production of energy carriers, materials and specialty chemicalsis a challenge that now confronts humanity. In which applications shall we use limited resourcesof biomass? How can biomass be refined into the products we want? What is an optimal design of abiorefinery? How is the most advantageous portfolio of policy instruments designed to realise the biorefineriesof the future?There is not one final answer to these questions. However, different systems studies can provide us withcomplementary pieces of the puzzle. These can be valuable by themselves, or be brought together into alarger and more complex picture. Systems perspectives on Biorefineries 2012 contains nine chapters thataddress different topics related to the immensely important issue of how the world’s biomass resourcescan, or should, be converted into the goods we need and desire. The book is far from complete, but it is acontribution and a start...
  •  
6.
  • Steinhagen, Sophie, et al. (författare)
  • Harvest time can affect the optimal yield and quality of sea lettuce (Ulva fenestrata) in a sustainable sea-based cultivation : Seasonal Cultivation of Ulva fenestrata
  • 2022
  • Ingår i: Frontiers in Marine Science. - : Frontiers Media SA. - 2296-7745. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Seaweed biomass is a renewable resource with multiple applications. Sea-based cultivation of seaweeds can provide high biomass yields, low construction, operation, and maintenance costs and could offer an environmentally and economically sustainable alternative to land-based cultivations. The biochemical profile of sea-grown biomass depends on seasonal variation in environmental factors, and the optimization of harvest time is important for the quality of the produced biomass. To identify optimal harvest times of Swedish sea-based cultivated sea lettuce (Ulva fenestrata), this study monitored biomass yield, morphology, chemical composition, fertility, and biofouling at five different harvesting times in April - June 2020. The highest biomass yields (approx. 1.2 kg fw [m rope]-1) were observed in late spring (May). The number and size of holes in the thalli and the amount of fertile and fouled tissue increased with prolonged growth season, which together led to a significant decline in both biomass yield and quality during summer (June). Early spring (April) conditions were optimal for obtaining high fatty acid, protein, biochar, phenolic, and pigment contents in the biomass, whereas carbohydrate and ash content, as well as essential and non-essential elements, increased later in the growth season. Our study results show that the optimal harvest time of sea-based cultivated U. fenestrata depends on the downstream application of the biomass and must be carefully selected to balance yield, quality, and desired biochemical contents to maximize the output of future sea-based algal cultivations in the European Northern Hemisphere.
  •  
7.
  • Ask, Magnus, 1983 (författare)
  • Towards More Robust Saccharomyces cerevisiae Strains for Lignocellulosic Bioethanol Production: Lessons from process concepts and physiological investigations
  • 2013
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Dwindling oil reserves and the negative impacts of fossil fuels on the environment call for more sustainable energy sources. First-generation bioethanol produced from sugar cane and corn has met some of these needs, but it competes with the food supply for raw materials. Lignocellulosic biomass is an abundant non-edible raw material that can be converted to ethanol using the yeast Saccharomyces cerevisiae. However, due to the inherent recalcitrance to degradation of lignocellulosic raw materials, harsh pretreatment methods must be used to liberate fermentable sugars, resulting in the release of compounds such as acetic acid, furan aldehydes and phenolics, that inhibit yeast metabolism. This thesis research aimed to identify bottlenecks in terms of inhibitory compounds related to ethanol production from two lignocellulosic raw materials, Arundo donax and spruce, and furthermore to harness the physiological responses to these inhibitors to engineer more robust yeast strains. A comparative study of separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) revealed that acetic acid limits xylose utilization in pretreated Arundo donax, whereas the furan aldehydes furfural and 5-hydroxymethyl-2-furaldehyde (HMF) were hypothesized to be key inhibitors in pretreated spruce. The impacts of furfural and HMF on the redox and energy metabolism of S. cerevisiae were studied in detail in chemostat and batch cultivations. After adding the inhibitors to the feed medium of chemostat cultivations, the intracellular levels of NADH, NADPH, and ATP were found to decrease by 40, 75, and 19%, respectively, suggesting that furan aldehydes drain the cells of reducing power. A strong effect on redox metabolism was also observed after pulsing furfural and HMF in the xylose consumption phase in batch cultures. The drainage of reducing power was also observed in a genome-wide study of transcription that found that genes related to NADPH-requiring processes, such as nitrogen and sulphur assimilation, were significantly induced. The redox metabolism was engineered by overproducing the protective metabolite and antioxidant glutathione. Strains with an increased intracellular level of reduced glutathione were found to sustain ethanol production for longer duration in SSF of pretreated spruce, yielding 70% more ethanol than did the wild type strain.
  •  
8.
  • Ylitervo, Päivi (författare)
  • Concepts for improving ethanol productivity from lignocellulosic materials : encapsulated yeast and membrane bioreactors
  • 2014
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Lignocellulosic biomass is a potential feedstock for production of sugars, which can be fermented into ethanol. The work presented in this thesis proposes some solutions to overcome problems with suboptimal process performance due to elevated cultivation temperatures and inhibitors present during ethanol production from lignocellulosic materials. In particular, continuous processes operated at high dilution rates with high sugar utilisation are attractive for ethanol fermentation, as this can result in higher ethanol productivity. Both encapsulation and membrane bioreactors were studied and developed to achieve rapid fermentation at high yeast cell density. My studies showed that encapsulated yeast is more thermotolerant than suspended yeast. The encapsulated yeast could successfully ferment all glucose during five consecutive batches, 12 h each at 42 °C. In contrast, freely suspended yeast was inactivated already in the second or third batch. One problem with encapsulation is, however, the mechanical robustness of the capsule membrane. If the capsules are exposed to e.g. high shear forces, the capsule membrane may break. Therefore, a method was developed to produce more robust capsules by treating alginate-chitosan-alginate (ACA) capsules with 3-aminopropyltriethoxysilane (APTES) to get polysiloxane-ACA capsules. Of the ACA-capsules treated with 1.5% APTES, only 0–2% of the capsules broke, while 25% of the untreated capsules ruptured within 6 h in a shear test. In this thesis membrane bioreactors (MBR), using either a cross-flow or a submerged membrane, could successfully be applied to retain the yeast inside the reactor. The cross-flow membrane was operated at a dilution rate of 0.5 h-1 whereas the submerged membrane was tested at several dilution rates, from 0.2 up to 0.8 h-1. Cultivations at high cell densities demonstrated an efficient in situ detoxification of very high furfural levels of up to 17 g L-1 in the feed medium when using a MBR. The maximum yeast density achieved in the MBR was more than 200 g L-1. Additionally, ethanol fermentation of nondetoxified spruce hydrolysate was possible at a high feeding rate of 0.8 h-1 by applying a submerged membrane bioreactor, resulting in ethanol productivities of up to 8 g L-1 h-1. In conclusion, this study suggests methods for rapid continuous ethanol production even at stressful elevated cultivation temperatures or inhibitory conditions by using encapsulation or membrane bioreactors and high cell density cultivations.
  •  
9.
  • Amiandamhen, Stephen, 1983-, et al. (författare)
  • Bioenergy production and utilization in different sectors in Sweden: A state of the art review
  • 2020
  • Ingår i: BioResources. - : University of North Carolina Press. - 1930-2126. ; 15:4, s. 9834-9857
  • Forskningsöversikt (refereegranskat)abstract
    • In the continual desire to reduce the environmental footprints of human activities, research efforts to provide cleaner energy is increasingly becoming vital. The effect of climate change on present and future existence, sustainable processes, and utilizations of renewable resources have been active topics within international discourse. In order to reduce the greenhouse gases emissions from traditional materials and processes, there has been a shift to more environmental friendly alternatives. The conversion of biomass to bioenergy, including biofuels has been considered to contribute to the future of climate change mitigation, although there are concerns about carbon balance from forest utilization. Bioenergy accounts for more than one-third of all energy used in Sweden and biomass has provided about 60% of the fuel for district heating. Apart from heat and electricity supply, the transport sector, with about 30% of global energy use, has a significant role in a sustainable bioenergy system. This review presents the state of the art in the Swedish bioenergy sector based on literature and Swedish Energy Agency’s current statistics. The review also discusses the overall bioenergy production and utilization in different sectors in Sweden. The current potential, challenges, and environmental considerations of bioenergy production are also discussed.
  •  
10.
  • Wang, Shule, 1994-, et al. (författare)
  • Effect of H2 as Pyrolytic Agent on the Product Distribution during Catalytic Fast Pyrolysis of Biomass Using Zeolites
  • 2018
  • Ingår i: Energy & Fuels. - : American Chemical Society (ACS). - 0887-0624 .- 1520-5029. ; 32:8, s. 8530-8536
  • Tidskriftsartikel (refereegranskat)abstract
    • Bio-oil generated from catalytic fast pyrolysis or hydrotreating processes represents one of the most promising alternatives to liquid fossil fuels. The use of H2 as carrier gas in the pyrolysis of biomass requires further research to study the catalytic fast pyrolysis reactions in the case of using reactive atmosphere. In this work, pyrolysis experiments with lignocellulosic biomass have been performed in a fixed bed reactor in H2 and N2 atmospheres with/without HZSM-5 additions to investigate the influence of the pyrolytic agents during fast pyrolysis of biomass and upgrading of pyrolytic vapors over a zeolitic catalyst. It was found that in a H2 atmosphere, H2 was consumed in both noncatalytic and catalytic pyrolysis processes, respectively. Higher yields of nonaqueous liquids and permanent gases are obtained in a H2 atmosphere compared to a N2 atmosphere. A catalytic pyrolysis process using HZSM-5 in a H2 atmosphere increased the production of polymer aromatic hydrocarbons and suppressed the production of monomer aromatic hydrocarbons compared to similar tests performed in a N2 atmosphere. The results show an overall increased activity of HZSM-5 in the reactive H2 atmosphere compared to a N2 atmosphere.
  •  
11.
  • Franzén, Carl Johan, 1966, et al. (författare)
  • Multifeed simultaneous saccharification and fermentation enables high gravity submerged fermentation of lignocellulose.
  • 2015
  • Ingår i: Recent Advances in Fermentation Technology (RAFT 11), Clearwater Beach, Florida, USA, November 8-11, 2015. Oral presentation..
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Today, second generation bioethanol production is becoming established in production plants across the world. In addition to its intrinsic value, the process can be viewed as a model process for biotechnological conversion of recalcitrant lignocellulosic raw materials to a range of chemicals and other products. So called High Gravity operation, i.e. fermentation at high solids loadings, represents continued development of the process towards higher product concentrations and productivities, and improved energy and water economy. We have employed a systematic, model-driven approach to the design of feeding schemes of solid substrate, active yeast adapted to the actual substrate, and enzymes to fed-batch simultaneous saccharification and co-fermentation (Multifeed SSCF) of steam-pretreated lignocellulosic materials in stirred tank reactors. With this approach, mixing problems were avoided even at water insoluble solids contents of 22%, leading to ethanol concentrations of 56 g/L within 72 hours of SSCF on wheat straw. Similar fermentation performance was verified in 10 m3 demonstration scale using wheat straw, and in lab scale on birch and spruce, using several yeast strains. The yeast was propagated in the liquid fraction obtained by press filtration of the pretreated slurry. Yet, even with such preadaptation and repeated addition of fresh cells, the viability in the SSCF dropped due to interactions between lignocellulose-derived inhibitors, the produced ethanol and the temperature. Decreasing the temperature from 35 to 30°C when the ethanol concentration reached 40-50 g/L resulted in rapid initial hydrolysis, maintained fermentation capacity, lower residual glucose and xylose and ethanol concentrations above 60 g/L.
  •  
12.
  • Nickel, David, 1990, et al. (författare)
  • Uncertainty analysis as a tool to consistently evaluate lignocellulosic bioethanol processes at different system scales
  • 2018
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Lignocellulosic processes are highly prone to batch-to batch variability, e.g. of raw materials and enzyme activities. This variability can be propagated throughout system scales during process development and optimization, influencing the outputs of bioreaction models, techno-economic analyses and life cycle assessments. As these outputs are the main decision variables for designing and developing lignocellulose-based processes, tools are required to evaluate the influences of process variation at different system scales. Uncertainty analysis quantifies the effects of model input variations on model outputs. It is an effective tool to consistently propagate process variation throughout scales and analyse its influence on model outputs. As an example, we use a model describing multi-feed simultaneous saccharification and co-fermentation (SSCF) of wheat straw. During the process enzymes hydrolyse the lignocellulosic material to release glucose which can be converted by microorganisms into ethanol. To investigate the impact of batch-to-batch variability in enzyme cocktails, we collected literature data on the enzymatic activity of Cellic CTec2. Retrieved data were propagated in models at bioreactor, techno-economic analysis and life cycle assessment scale. We show how uncertainty analysis can be used to guide process development by comparing different modes of operation. The method can identify economically feasible process ranges with low environmental impact while increasing the robustness of bioprocesses with high variation in raw material inputs. Furthermore, uncertainty analysis could help to identify relevant parameters to choose as response variables in experimental designs.
  •  
13.
  • Wang, Ruifei, 1985, et al. (författare)
  • Model-based optimization and scale-up of multi-feed simultaneous saccharification and co-fermentation of steam pre-treated lignocellulose enables high gravity ethanol production.
  • 2016
  • Ingår i: Biotechnology for Biofuels. - : Springer Science and Business Media LLC. - 1754-6834 .- 1754-6834. ; 9:1, s. 88-
  • Tidskriftsartikel (refereegranskat)abstract
    • High content of water-insoluble solids (WIS) is required for simultaneous saccharification and co-fermentation (SSCF) operations to reach the high ethanol concentrations that meet the techno-economic requirements of industrial-scale production. The fundamental challenges of such processes are related to the high viscosity and inhibitor contents of the medium. Poor mass transfer and inhibition of the yeast lead to decreased ethanol yield, titre and productivity. In the present work, high-solid SSCF of pre-treated wheat straw was carried out by multi-feed SSCF which is a fed-batch process with additions of substrate, enzymes and cells, integrated with yeast propagation and adaptation on the pre-treatment liquor. The combined feeding strategies were systematically compared and optimized using experiments and simulations.
  •  
14.
  • Ylitervo, Päivi, et al. (författare)
  • Continuous Ethanol Production with a Membrane Bioreactor at High Acetic Acid Concentrations
  • 2014
  • Ingår i: Membranes. - : MDPI. - 2077-0375. ; 4:3, s. 372-387
  • Tidskriftsartikel (refereegranskat)abstract
    • The release of inhibitory concentrations of acetic acid from lignocellulosic raw materials during hydrolysis is one of the main concerns for 2nd generation ethanol production. The undissociated form of acetic acid can enter the cell by diffusion through the plasma membrane and trigger several toxic effects, such as uncoupling and lowered intracellular pH. The effect of acetic acid on the ethanol production was investigated in continuous cultivations by adding medium containing 2.5 to 20.0 g•L−1 acetic acid at pH 5.0, at a dilution rate of 0.5 h−1. The cultivations were performed at both high (~25 g•L−1) and very high (100–200 g•L−1) yeast concentration by retaining the yeast cells inside the reactor by a cross-flow membrane in a membrane bioreactor. The yeast was able to steadily produce ethanol from 25 g•L−1 sucrose, at volumetric rates of 5–6 g•L−1•h−1 at acetic acid concentrations up to 15.0 g•L−1. However, the yeast continued to produce ethanol also at a concentration of 20 g•L−1 acetic acid but at a declining rate. The study thereby demonstrates the great potential of the membrane bioreactor for improving the robustness of the ethanol production based on lignocellulosic raw materials.
  •  
15.
  • Nickel, David, 1990, et al. (författare)
  • Multi-scale uncertainty analysis – A tool to systematically consider variability in lignocellulosic bioethanol processes
  • 2018
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Bioethanol production processes from lignocellulosic raw materials are highly prone to batch-to-batch variations. For example, raw material compositions and enzymatic activities required to release fermentable sugars from lignocellulose vary significantly between batches. To develop lignocellulosic biofuel processes and evaluate their performance regarding economics and sustainability consistently, tools are required to cope with this variability.   In this presentation we will propose a multi-scale uncertainty analysis strategy to propagate input variability throughout system scales. In a first step, we use meta-data obtained from literature to define uncertainties in the process inputs. Utilizing these meta-data, uncertainty analysis is performed on a macro-kinetic model by sampling from the defined uncertain input space. The results of this uncertainty analysis are transferred to process simulations to analyze the impact of input uncertainties on the process mass- and energy balances, and on the economics of building this type of bioprocess. The generated data from process simulations (mass flows, energy integration, and economic data) are in the next step extracted and used as input to an environmental impact assessment of the process. This is done whilst keeping the simulation and systems modeling parameters constant, thus the input variability is propagated throughout the different system scales. The data generated in this integrated approach will then be compared with the variations and uncertainties observed with relevance to the estimated parameters in the process simulation and environmental impact assessment. Based on this consistent strategy, we can analyze the impact of input variability from different system perspectives, identify important bottlenecks for development, and suggest robust and sustainable process designs for different conditions and under given uncertainties.   In a case study we demonstrate how integrated kinetic modeling (in Matlab), process simulation (in SuperPro Designer), and environmental impact assessment together with statistical analysis can be used for assessing how variability in enzymatic activities in bioethanol production can be propagated throughout system scales. A macro-kinetic model is used to describe the enzymatic breakdown of lignocellulose-derived polysaccharides into fermentable sugars (saccharification) and the simultaneous fermentation to bioethanol. We discuss the integration of the simulation results of the macro-kinetic model into the flowsheeting software for mass and energy balance generation, and then further on to assess environmental impacts of the process. We will evaluate different process designs regarding their robustness towards input variability. Finally, we also show how propagated uncertainties at different system scales can be integrated to design experiments at laboratory scale so that these focus on the most important parameters for developing robust kinetic models, and include the parameters that are most important for sustainable design of processes and value chains.
  •  
16.
  • Skvaril, Jan, 1982-, et al. (författare)
  • Applications of near-infrared spectroscopy (NIRS) in biomass energy conversion processes : A review
  • 2017
  • Ingår i: Applied spectroscopy reviews (Softcover ed.). - : Informa UK Limited. - 0570-4928 .- 1520-569X. ; 52:8, s. 675-728
  • Forskningsöversikt (refereegranskat)abstract
    • Biomass used in energy conversion processes is typically characterized by high variability, making its utilization challenging. Therefore, there is a need for a fast and non-destructive method to determine feedstock/product properties and directly monitor process reactors. The near-infrared spectroscopy (NIRS) technique together with advanced data analysis methods offers a possible solution. This review focuses on the introduction of the NIRS method and its recent applications to physical, thermochemical, biochemical and physiochemical biomass conversion processes represented mainly by pelleting, combustion, gasification, pyrolysis, as well as biogas, bioethanol, and biodiesel production. NIRS has been proven to be a reliable and inexpensive method with a great potential for use in process optimization, advanced control, or product quality assurance.
  •  
17.
  • Cowie, A. L., et al. (författare)
  • Applying a science-based systems perspective to dispel misconceptions about climate effects of forest bioenergy
  • 2021
  • Ingår i: Global Change Biology Bioenergy. - : John Wiley and Sons Inc. - 1757-1693 .- 1757-1707. ; 13:8, s. 1210-1231
  • Tidskriftsartikel (refereegranskat)abstract
    • The scientific literature contains contrasting findings about the climate effects of forest bioenergy, partly due to the wide diversity of bioenergy systems and associated contexts, but also due to differences in assessment methods. The climate effects of bioenergy must be accurately assessed to inform policy-making, but the complexity of bioenergy systems and associated land, industry and energy systems raises challenges for assessment. We examine misconceptions about climate effects of forest bioenergy and discuss important considerations in assessing these effects and devising measures to incentivize sustainable bioenergy as a component of climate policy. The temporal and spatial system boundary and the reference (counterfactual) scenarios are key methodology choices that strongly influence results. Focussing on carbon balances of individual forest stands and comparing emissions at the point of combustion neglect system-level interactions that influence the climate effects of forest bioenergy. We highlight the need for a systems approach, in assessing options and developing policy for forest bioenergy that: (1) considers the whole life cycle of bioenergy systems, including effects of the associated forest management and harvesting on landscape carbon balances; (2) identifies how forest bioenergy can best be deployed to support energy system transformation required to achieve climate goals; and (3) incentivizes those forest bioenergy systems that augment the mitigation value of the forest sector as a whole. Emphasis on short-term emissions reduction targets can lead to decisions that make medium- to long-term climate goals more difficult to achieve. The most important climate change mitigation measure is the transformation of energy, industry and transport systems so that fossil carbon remains underground. Narrow perspectives obscure the significant role that bioenergy can play by displacing fossil fuels now, and supporting energy system transition. Greater transparency and consistency is needed in greenhouse gas reporting and accounting related to bioenergy. 
  •  
18.
  • Brandin, Jan, 1958- (författare)
  • Usage of Biofuels in Sweden
  • 2013
  • Ingår i: CSR-2 Catalyst for renewable sources. - Novosibrisk, Russia : Boreskov Institute of Catalysis. - 9785990255777 ; , s. 5-7
  • Konferensbidrag (refereegranskat)abstract
    • In Sweden, biofuels have come into substantial use, in an extent that are claimed to be bigger than use of fossil oil. One driving force for this have been the CO2-tax that was introduced in 1991 (1). According to SVEBIO:s calculations (2) based on the Swedish Energy Agency´s prognosis, the total energy consumption in Sweden 2012 was 404 TWh. If the figure is broken down on the different energy sources (figure 1) one can see that the consumption roughly distribute in three different, equally sized, blocks, Biofuels, fossil fuels and water & nuclear power. The major use of the fossil fuels is for transport and the water & nuclear power is used as electric power. The main use of the biofuels is for heating in the industrial sector and as district heating. In 2009 the consumption from those two segments was 85 TWh, and 10 TWh of bio power was co-produced giving an average biomass to electricity efficiency of 12%. This indicates a substantial conversion potential from hot water production to combined heat and power (CHP) production. in Sweden 2013 broken down on the different energy sources. In 2006 the pulp, paper and sawmill industry accounted for 95% of the bio energy consumption in the industrial sector, and the major biofuel consumed was black liquor (5). However, the pulp and paper industries also produced the black liquor in their own processes. The major energy source (58%) for district heating during 2006 was woody biomass (chips, pellets etc.) followed by waste (24%), peat (6%) and others (12%) (5). The use of peat has probably decreased since 2006 since peat is no longer regarded as a renewable energy source. While the use of biofuel for heating purpose is well developed and the bio-power is expected to grow, the use in the transport sector is small, 9 TWh or 7% in 2011. The main consumption there is due to the mandatory addition (5%) of ethanol to gasoline and FAME to diesel (6). The Swedish authorities have announced plans to increase the renewable content to 7.5 % in 2015 on the way to fulfill the EU’s goal of 10 % renewable transportation fuels in 2020. However the new proposed fuel directive in EU says that a maximum of 5% renewable fuel may be produced from food sources like sugars and vegetable oils. Another bothersome fact is that, in principle, all rape seed oil produced in Sweden is consumed (95-97%) in the food sector, and consequently all FAME used (in principle) in Sweden is imported as FAME, rape seed oil or seed (6). In Sweden a new source of biodiesel have emerged, tall oil diesel. Tall oil is extracted from black liquor and refined into a diesel fraction (not FAME) and can be mixed into fossil diesel, i.e. Preem Evolution diesel. The SUNPINE plant in Piteå have a capacity of 100 000 metric tons of tall oil diesel per annum, while the total potential in all of Sweden is claimed to be 200 000 tons (7). 100 000 tons of tall oil corresponds to 1% of the total diesel consumption in Sweden. in Sweden for 2010 and a prognosis for 2014. (6). Accordingly, the profoundest task is to decrease the fossil fuel dependency in the transport sector, and clearly, the first generation biofuels can´t do this on its own. Biogas is a fuel gas with high methane content that can be used in a similar way to natural gas; for instance for cooking, heating and as transportation fuel. Today biogas is produced by fermentation of waste (municipal waste, sludge, manure), but can be produced by gasification of biomass, for instance from forest residues such as branches and rots (GROT in Swedish). To get high efficiency in the production, the lower hydrocarbons, mainly methane, in the producer gas, should not be converted into synthesis gas. Instead a synthesis gas with high methane content is sought. This limits the drainage of chemically bonded energy, due to the exothermic reaction in the synthesis step (so called methanisation). In 2011 0.7 TWh of biogas was produced in Sweden by fermentation of waste (6) and there were no production by gasification, at least not of economic importance. The potential seems to be large, though. In 2008 the total potential for biogas production, in Sweden, from waste by fermentation and gasification was estimated to 70 TWh (10 TWh fermentation and 60 TWh gasification) (8). This figure includes only different types of waste and no dedicated agricultural crops or dedicated forest harvest. Activities in the biogas sector, by gasification, in Sweden are the Göteborgs energi´s Gobigas project in Gothenburg and Eon´s Bio2G-project, now pending, in south of Sweden. If the producer gas is cleaned and upgraded into synthesis gas also other fuels could be produced. In Sweden methanol and DME productions are planned for in the Värmlands metanol-project and at Chemrecs DME production plant in Piteå.
  •  
19.
  • Brandin, Jan, 1958-, et al. (författare)
  • Poisoning of SCR Catalysts used in Municipal Waste Incineration Applications
  • 2017
  • Ingår i: Topics in catalysis. - : Springer. - 1022-5528 .- 1572-9028. ; 60:17-18, s. 1306-1316
  • Tidskriftsartikel (refereegranskat)abstract
    • A commercial vanadia, tungsta on titania SCRcatalyst was poisoned in a side stream in a waste incinerationplant. The effect of especially alkali metal poisoning was observed resulting in a decreased activity at long times of exposure. The deactivation after 2311 h was 36% whilet he decrease in surface area was only 7.6%. Thus the major cause for deactivation was a chemical blocking of acidic sites by alkali metals. The activation–deactivation model showed excellent agreement with experimental data. The model suggests that the original adsorption sites, from the preparation of the catalyst, are rapidly deactivated but are replaced by a new population of adsorption sites due to activation of the catalyst surface by sulphur compounds (SO2, SO3) in the flue gas.
  •  
20.
  • Nickel, David, 1990 (författare)
  • Process development for platform chemical production from agricultural and forestry residues
  • 2021
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • As part of a bio-based economy, biorefineries are envisaged to sustainably produce platform chemicals via biochemical conversion of agricultural and forestry residues. However, supply risks, the recalcitrance of lignocellulosic biomass, and inhibitor formation during pre­treatment impair the economic feasibility of such biorefineries. In this thesis, process design and assessment were developed with the aim of addressing these hurdles and improving the cost-effectiveness of lignocellulose-derived platform chemicals. To expand the feedstock base and reduce operational costs, logging residues served as underutilised and inexpensive raw material. The major impediment in converting logging residues was their high recalcitrance and low cellulose content, which resulted in low attainable ethanol titres during simultaneous saccharification and co-fermentation (SSCF). Pretreatment optimisation reduced inhibitor formation and recalcitrance, and led to enzymatic hydrolysis yields at par with those obtained for stem wood, despite the less favourable chemical composition. Upgrading logging residues with carbohydrate-rich oat hulls increased ethanol titres to >50 g/L using batch SSCF at 20% WIS loadings, demonstrating the potential to further decrease downstream processing costs. To alleviate the toxicity of inhibitors generated during pretreatment, preadaptation was applied to Saccharomyces cerevisiae . Exposure to the inhibitors in the pretreated liquid fraction improved ethanol production during subsequent fermentation. Transferring the concept of preadaptation to lactic acid production by Bacillus coagulans cut the process times by half and more than doubled the average specific lactic acid productivity, showcasing how preadaptation could decrease operational costs. To assess the performance and robustness of process designs against process input variations, a multi-scale variability analysis framework was developed. The framework included models for bioprocess, flowsheet, techno-economic, and life cycle assessment. In a case study, multi-feed processes, in which solids and cells are fed to the process using model-based predictions, were more robust against variable cellulolytic activities than batch SSCFs in a wheat straw-based ethanol biorefinery. The developed framework can be used to identify robust biorefinery process designs, which simultaneously meet technological, economic, and environmental goals.
  •  
21.
  • Spetea, Cornelia, 1968 (författare)
  • Energy-efficient cultivation of marine microalgae for biomass production : Final rapport: Energimyndigheten P45907-1
  • 2020
  • Rapport (övrigt vetenskapligt/konstnärligt)abstract
    • This project has demonstrated the principle of rotational cultivation of marine microalgae and that species adapted to cold climates can provide higher productivity during cold periods. By using marine species, and thus seawater instead of freshwater in cultivation, the environmental impact is reduced. Society faces major challenges to produce sufficient amounts of biomass for energy and material, and microalgae have a great potential to complement sources from forestry and agriculture. At Nordic latitudes year-round microalgae cultivation is debatable due to seasonal variations in productivity. Shall the same species be used throughout the year or shall seasonal-adapted species be used? The aims of the project were to identify suitable algal strains for a potential annual rotation model, where different strains are rotated during three cultivation seasons, and to further develop and optimize an energy-efficient cultivation process for the marine environment. To achieve these aims, a laboratory study was performed where two marine microalgal strains out of 167 were selected for intended cultivation at the west coast of Sweden. One strain belongs to the species Nannochloropsis granulata and the other to Skeletonema marinoi. The strains were cultivated in three simulated growth seasons: summer, winter and spring, and thereafter compared. We show that Nannochloropsis produced more biomass with more incorporated energy in lipids during summer and spring (25 MJ kg-1 compared to about 45 MJ kg-1 for diesel), whereas Skeletonema produced more biomass rich in carbohydrates and proteins during winter. Skeletonema was in general more efficient in taking up phosphate. Based on our results, biomass production as energy feedstock would be energy efficient only during the summer on the Swedish west coast. Nevertheless, species could be rotated for different purposes during the year. Biomass production could be combined with nutrient recycling of wastewater, for example, from fish industry. Our project faces a challenge in boosting the biomass produced in winter, but this could be solved, for example, by optimization of the cultivation medium and temperature increase with heat wastewater or other heat waste. The summer species Nannochloropsis proved to withstand winter by activating different lipid metabolic pathways than the cold-adapted species Skeletonema uses. Enhanced synthesis of proteins, such as enzymes, in Skeletonema during winter may compensate for their reduced activities, promoting growth and biomass production even at low temperatures. More species need to be studied to find those with higher productivity under winter conditions. In practice, the work-related consequences of a rotational cultivation should be weighed against its benefits, relative to a shorter cultivation season in each application. Potential applications mainly include cleaning of air and seawater, production of energy, biomass and biomaterials for the industry.
  •  
22.
  • Ekener, Elisabeth, 1963-, et al. (författare)
  • Developing Life Cycle Sustainability Assessment methodology by applying values-based sustainability weighting - Tested on biomass based and fossil transportation fuels
  • 2018
  • Ingår i: Journal of Cleaner Production. - : Elsevier BV. - 0959-6526 .- 1879-1786. ; 181, s. 337-351
  • Tidskriftsartikel (refereegranskat)abstract
    • The production and use of transportation fuels can lead to sustainability impacts. Assessing them simultaneously in a holistic way is a challenge. This paper examines methodology for assessing the sustainability performance of products in a more integrated way, including a broad range of social impacts. Life Cycle Sustainability Assessment (LCSA) methodology is applied for this assessment. LSCA often constitutes of the integration of results from social LCA (S-LCA), environmental life cycle assessment (E-LCA) and life cycle costing (LCC). In this study, an S-LCA from an earlier project is extended with a positive social aspect, as well as refined and detailed. E-LCA and LCC results are built from LCA database and literature. Multi Criteria Decision Analysis (MCDA) methodology is applied to integrate the results from the three different assessments into an LCSA. The weighting of key sustainability dimensions in the MCDA is performed in different ways, where the sustainability dimensions are prioritized differently priority based on the assumed values of different stakeholder profiles (Egalitarian, Hierarchist, and Individualist). The developed methodology is tested on selected biomass based and fossil transportation fuels - ethanol produced from Brazilian sugarcane and US corn/maize, and petrol produced from Russian and Nigerian crude oils, where it delineates differences in sustainability performance between products assessed. The outcome in terms of relative ranking of the transportation fuel chains based on sustain ability performance differs when applying different decision-maker profiles. This result highlights and supports views that there is no one single answer regarding which of the alternatives that is most sustainable. Rather, it depends strongly upon the worldview and values held by the decision maker. A key conclusion is that sustainability assessments should pay more attention to potential differences in underlying values held by key stakeholders in relevant societal contexts. The LCSA methodology still faces challenges regarding results integration but MCDA in combination with stakeholder profiles appears to be a useful approach to build on further.
  •  
23.
  • Andersson, Eva Ingeborg Elisabeth, 1956, et al. (författare)
  • Pulp-mill integrated biorefineries: a framework for assessing net CO2 emission consequences
  • 2004
  • Ingår i: Proceedings, AIChE 2004 Fall Annual Meeting. Nov 7-12, 2004, Austin, Texas, USA. ; , s. p 203-208, s. 203-208
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • There is currently much interest in producing biofuel-based transportation fuels. However, since biofuel is a limited renewable resource, it is important to assess whether such fuels are both produced and used as efficiently as possible. Efficient production can be achieved in the future by integrated biorefinery operations at pulp mill sites, co-producing pulp and biofuel-based energy products. This paper compares production of transportation fuel with other biorefinery options for future pulp mills. The comparison is based on net CO2 emissions, i.e. accounting for off-site consequences associated with changes in the net flows of electricity, biofuel and biofuel-based transportation fuel entering or leaving the mill. The most important conclusion is that system variables (e.g. assumptions regarding the reference fuel and engine efficiency for future transportation systems) are of decisive importance for the net CO2 emissions associated with pulp mill biorefinery operations. This paper illustrates such aspects and underlines the importance of a system perspective in process engineering research.
  •  
24.
  • Svensson, Helena, et al. (författare)
  • Modeling of soot formation during partial oxidation of producer gas
  • 2013
  • Ingår i: Fuel. - : Elsevier. - 0016-2361 .- 1873-7153. ; 106, s. 271-278
  • Tidskriftsartikel (refereegranskat)abstract
    • Soot formation in a reverse-flow partial-oxidation reactor for reforming of gasifier producer gas has been studied. The process was modeled using a detailed reaction mechanism to describe the kinetics of soot formation. The numerical model was validated against experimental data from the literature and showed good agreement with reported data. Nine cases with different gas compositions were simulated in order to study the effects of water, hydrogen and methane content of the gas. The CO and CO2 contents, as well as the tar content of the gas, were also varied to study their effects on soot formation. The results showed that the steam and hydrogen content of the inlet gas had less impact on the soot formation than expected, while the methane content greatly influenced the soot formation. Increasing the CO2 content of the gas reduced the amount of soot formed and gave a higher energy efficiency and methane conversion. In the case of no tar in the incoming gas the soot formation was significantly reduced. It can be concluded that removing the tar in an energy efficient way, prior to the partial oxidation reactor, will greatly reduce the amount of soot formed. Further investigation of tar reduction is needed and experimental research into this process is ongoing.
  •  
25.
  •  
26.
  • McKee, Lauren S., et al. (författare)
  • A GH115 alpha-glucuronidase from Schizophyllum commune contributes to the synergistic enzymatic deconstruction of softwood glucuronoarabinoxylan
  • 2016
  • Ingår i: Biotechnology for Biofuels. - : BioMed Central. - 1754-6834. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Lignocellulosic biomass from softwood represents a valuable resource for the production of biofuels and bio-based materials as alternatives to traditional pulp and paper products. Hemicelluloses constitute an extremely heterogeneous fraction of the plant cell wall, as their molecular structures involve multiple monosaccharide components, glycosidic linkages, and decoration patterns. The complete enzymatic hydrolysis of wood hemicelluloses into monosaccharides is therefore a complex biochemical process that requires the activities of multiple degradative enzymes with complementary activities tailored to the structural features of a particular substrate. Glucuronoarabinoxylan (GAX) is a major hemicellulose component in softwood, and its structural complexity requires more enzyme specificities to achieve complete hydrolysis compared to glucuronoxylans from hardwood and arabinoxylans from grasses. Results: We report the characterisation of a recombinant alpha-glucuronidase (Agu115) from Schizophyllum commune capable of removing (4-O-methyl)-glucuronic acid ((Me) GlcA) residues from polymeric and oligomeric xylan. The enzyme is required for the complete deconstruction of spruce glucuronoarabinoxylan (GAX) and acts synergistically with other xylan-degrading enzymes, specifically a xylanase (Xyn10C), an alpha-l-arabinofuranosidase (AbfA), and a beta-xylosidase (XynB). Each enzyme in this mixture showed varying degrees of potentiation by the other activities, likely due to increased physical access to their respective target monosaccharides. The exo-acting Agu115 and AbfA were unable to remove all of their respective target side chain decorations from GAX, but their specific activity was significantly boosted by the addition of the endo-Xyn10C xylanase. We demonstrate that the proposed enzymatic cocktail (Agu115 with AbfA, Xyn10C and XynB) achieved almost complete conversion of GAX to arabinofuranose (Araf), xylopyranose (Xylp), and MeGlcA monosaccharides. Addition of Agu115 to the enzymatic cocktail contributes specifically to 25 % of the conversion. However, traces of residual oligosaccharides resistant to this combination of enzymes were still present after deconstruction, due to steric hindrances to enzyme access to the substrate. Conclusions: Our GH115 alpha-glucuronidase is capable of finely tailoring the molecular structure of softwood GAX, and contributes to the almost complete saccharification of GAX in synergy with other exo- and endo-xylan-acting enzymes. This has great relevance for the cost-efficient production of biofuels from softwood lignocellulose.
  •  
27.
  • Olofsson, Martin, 1975-, et al. (författare)
  • Combined Effects of Nitrogen Concentration and Seasonal Changes on the Production of Lipids in Nannochloropsis oculata 
  • 2014
  • Ingår i: Marine Drugs. - Basel, Switzerland : MDPI AG. - 1660-3397. ; 12:4, s. 1891-1910
  • Tidskriftsartikel (refereegranskat)abstract
    • Instead of sole nutrient starvation to boost algal lipid production, we addressed nutrient limitation at two different seasons (autumn and spring) during outdoor cultivation in flat panel photobioreactors. Lipid accumulation, biomass and lipid productivity and changes in fatty acid composition of Nannochloropsis oculata were investigated under nitrogen (N) limitation (nitrate:phosphate N:P 5, N:P 2.5 molar ratio). N. oculata was able to maintain a high biomass productivity under N-limitation compared to N-sufficiency (N:P 20) at both seasons, which in spring resulted in nearly double lipid productivity under N-limited conditions (0.21 g L−1 day−1) compared to N-sufficiency (0.11 g L−1 day−1). Saturated and monounsaturated fatty acids increased from 76% to nearly 90% of total fatty acids in N-limited cultures. Higher biomass and lipid productivity in spring could, partly, be explained by higher irradiance, partly by greater harvesting rate (~30%). Our results indicate the potential for the production of algal high value products (i.e., polyunsaturated fatty acids) during both N-sufficiency and N-limitation. To meet the sustainability challenges of algal biomass production, we propose a dual-system process: Closed photobioreactors producing biomass for high value products and inoculum for larger raceway ponds recycling waste/exhaust streams to produce bulk chemicals for fuel, feed and industrial material.
  •  
28.
  •  
29.
  • Gogolev, Ivan, 1984, et al. (författare)
  • Chemical-looping combustion in a 100 kW unit using a mixture of synthetic and natural oxygen carriers - Operational results and fate of biomass fuel alkali
  • 2019
  • Ingår i: International Journal of Greenhouse Gas Control. - : Elsevier BV. - 1750-5836. ; 88, s. 371-382
  • Tidskriftsartikel (refereegranskat)abstract
    • Biomass fuel use in chemical looping combustion enables negative CO2 emissions through BECCS (Bio-Energy Carbon Capture and Storage). Effective biomass utilization in CLC requires an economical and effective oxygen carrier to achieve high fuel conversion, effective CO2 capture, and management of the harmful effects of biomass alkali release (bed agglomeration, oxygen carrier deactivation, fouling and corrosion). These issues were addressed in 100 kW CLC pilot experiments. Building on previous work, a mixture of a synthetic calcium manganite perovskite and natural ilmenite was used as the oxygen carrier. Four biomass fuels of varied alkali content were tested: black pellets of steam-exploded stem wood (BP), BP impregnated with K2CO3, a mixture of 50% BP with 50% straw pellets, and wood char. Experiments showed high fuel conversion and very high CO2 capture, with overall performance exceeding that of ilmenite and manganese ore. More than 95% gas conversion was achieved with black pellets at around 950 degrees C. The fate of biomass alkali, previously virtually unknown in CLC research, was explored by implementing online surface-ionization-based measurement of alkali released in the flue gases of the fuel reactor (FR) and air reactor (AR). Release levels were found to correlate with the fuel alkali content. The flue gas measurements and bed material elemental analyses suggest that most of the fuel alkali are accumulated in the oxygen carrier. Unexpectedly, it was found that flue gas alkali release occurs in both the FR and AR, with AR exhibiting an equal or higher rate of release vs. the FR.
  •  
30.
  • Naqvi, Muhammad, et al. (författare)
  • Polygeneration system integrated with small non-wood pulp mills for substitute natural gas production
  • 2018
  • Ingår i: Applied Energy. - : Elsevier. - 0306-2619 .- 1872-9118. ; 224, s. 636-646
  • Tidskriftsartikel (refereegranskat)abstract
    • This study aims to examine the potential substitute natural gas (SNG) production by integrating black liquor gasification (BLG) island with a small wheat straw-based non-wood pulp mills (NPM), which do not employ the black liquor recovery cycle. For such integration, it is important to first build knowledge on expected improvements in an overall integrated non-wood pulp mill energy system using the key performance indicators. O2-blown circulating fluidized bed (CFB) gasification with direct causticization is integrated with a reference small NPM to evaluate the overall performance. A detailed economic analysis is performed together with a sensitivity analysis based on variations in the rate of return due to varying biomass price, total capital investment, and natural gas prices. The quantitive results showed considerable SNG production but significantly reduced electricity production. There is a substantial CO2 abatement potential combining CO2 capture and CO2 mitigation from SNG use replacing compressed natural gas (CNG) or gasoline. The economic performance through sensitivity analysis reflects significant dependency on both substitute natural gas production and natural gas market price. Furthermore, the solutions to address the challenges and barriers for the successful commercial implementation of BLG based polygeneration system at small NPMs are discussed. The system performance and discussion on the real application of integrated system presented in this article form a vital literature source for future use by large number of small non-wood pulp industries.
  •  
31.
  • Fjellgaard Mikalsen, Ragni (författare)
  • Fighting flameless fires : Initiating and extinguishing self-sustainedsmoldering fires in wood pellets
  • 2018
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Smoldering fires represent domestic, environmental and industrial hazards. This flameless form of combustion is more easily initiated than flaming, and is also more persistent and difficult to extinguish. The growing demand for non-fossil fuels has increased the use of solid biofuels such as biomass. This represents a safety challenge, as biomass self-ignition can cause smoldering fires, flaming fires or explosions.Smoldering and extinguishment in granular biomass was studied experimentally. The set-up consisted of a cylindrical fuel container of steel with thermally insulated side walls. The container was closed at the bottom, open at the top and heated from below by a hot surface. Two types of wood pellets were used as fuel, with 0.75-1.5 kg samples.Logistic regression was used to determine the transition region between non-smoldering and self-sustained smoldering experiments, and to determine the influence of parameters. Duration of external heating was most important for initiation of smoldering. Sample height was also significant, while the type of wood pellet was near-significant and fuel container height was not.The susceptibility of smoldering to changes in air supply was studied. With a small gap at the bottom of the fuel bed, the increased air flow in the same direction as the initial smoldering front (forward air flow) caused a significantly more intense combustion compared to the normal set-up with opposed air flow.Heat extraction from the combustion was studied using a water-cooled copper pipe. Challenges with direct fuel-water contact (fuel swelling, water channeling and runoff) were thus avoided. Smoldering was extinguished in 7 of 15 cases where heat extraction was in the same range as the heat production from combustion. This is the first experimental proof-of-concept of cooling as an extinguishment method for smoldering fires.Marginal differences in heating and cooling separated smoldering from extinguished cases; the fuel bed was at a heating-cooling balance point. Lower cooling levels did not lead to extinguishment, but cooling caused more predictable smoldering, possibly delaying the most intense combustion. Also observed at the balance point were pulsating temperatures; a form of long-lived (hours), macroscopic synchronization not previously observed in smoldering fires.For practical applications, cooling could be feasible for prevention of temperature escalation from self-heating in industrial storage units. This study provides a first step towards improved fuel storage safety for biomass. 
  •  
32.
  • Andersson, Viktor, 1983, et al. (författare)
  • Alkali interactions with a calcium manganite oxygen carrier used in chemical looping combustion
  • 2022
  • Ingår i: Fuel Processing Technology. - : Elsevier BV. - 0378-3820 .- 1873-7188. ; 227
  • Tidskriftsartikel (refereegranskat)abstract
    • Chemical-Looping Combustion (CLC) of biofuels is a promising technology for cost-efficient CO2 separation and can lead to negative CO2 emissions when combined with carbon capture and storage. A potential challenge in developing CLC technology is the effects of alkali metal-containing compounds released during fuel conversion. This study investigates the interactions between alkali and an oxygen carrier (OC), CaMn0.775Ti0.125Mg0.1O3-δ, to better understand the fate of alkali in CLC. A laboratory-scale fluidized bed reactor is operated at 800–900 °C in oxidizing, reducing and inert atmospheres to mimic CLC conditions. Alkali is fed to the reactor as aerosol KCl particles, and alkali in the exhaust is measured online with a surface ionization detector. The alkali concentration changes with gas environment, temperature, and alkali loading, and the concentration profile has excellent reproducibility over repeated redox cycles. Alkali-OC interactions are dominated by alkali uptake under most conditions, except for a release during OC reduction. Uptake is significant during stable reducing conditions, and is limited under oxidizing conditions. The total uptake during a redox cycle is favored by a high alkali loading, while the influence of temperature is weak. The implications for the understanding of alkali behavior in CLC and further development are discussed.
  •  
33.
  • Cao, Wenhan, et al. (författare)
  • Release of potassium in association with structural evolution during biomass combustion
  • 2021
  • Ingår i: Fuel. - : Elsevier. - 0016-2361 .- 1873-7153. ; 287, s. 1-9
  • Tidskriftsartikel (refereegranskat)abstract
    • A mechanistic understanding of potassium release is essential to mitigate the potassium-induced ash problems during biomass combustion. This work studies the effects of operational condition on the potassium release and transition during the combustion of wheat straw, and elucidate the release potential of potassium associated with the structural change of biomass particles. The combustion tests were carried out in a laboratory-scale reactor, working in a wide range of temperatures and heating rates. It was found that the combustion of biomass sample at a temperature up to 1000 °C results in a release of over 60% of its initial potassium content. Raising the heating rate from 8 °C/min to 25 °C/min could lead to an additional release of up to 20% of the initial amount of potassium. A three-stage potassium release mechanism has been concluded from this work: the initial-step release stage (below 400 °C), the holding stage (400–700 °C) and the second-step release stage (above 700 °C). Comprehensive morphology analysis with elemental (i.e. K, S, O, Si) distribution was carried out; the results further confirmed that potassium is likely to exist inside the stem-like tunnel of biomass particles, mainly in forms of inorganic salts. During the heating-up process, the breakdown and collapse of biomass particle structure could expose the internally located potassium and thus accelerate the release of potassium and the transform of its existing forms. Lastly, a detailed temperature-dependent release mechanism of potassium was proposed, which could be used as the guidance to mitigate the release of detrimental potassium compounds by optimising the combustion process.
  •  
34.
  • Parsland, Charlotte (författare)
  • Study of the activity of catalysts for the production of high quality biomass gasification gas : with emphasis on Ni-substituted Ba-hexaaluminates
  • 2016
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The fossil hydrocarbons are not inexhaustible, and their use is not without impact in our need of energy, fuels and hydrocarbons as building blocks for organic materials. The quest for renewable, environmentally more friendly technologies are in need and woody biomass is a promising candidate, well provided in the boreal parts of the world. To convert the constituents of wood into valuable gaseous products, suitable for the end use required, we need a reliable gasification technology. But to become an industrial application on full scale there are still a few issues to take into account since the presence of contaminants in the process gas will pose several issues, both technical and operational, for instance by corrosion, fouling and catalyst deactivation. Furthermore the downstream applications may have very stringent needs for syngas cleanliness depending on its use. Therefore, the levels of contaminants must be decreased by gas cleanup to fulfil the requirements of the downstream applications.One of the most prominent problems in biomass gasification is the formation of tars – an organic byproduct in the degradation of larger hydrocarbons. So, tar degrading catalysts are needed in order to avoid tar related operational problems such as fouling but also reduced conversion efficiency. Deactivation of catalysts is generally inevitable, but the process may be slowed or even prevented. Catalysts are often very sensitive to poisonous compounds in the process gas, but also to the harsh conditions in the gasifier, risking problems as coke formation and attrition. Alongside with having to be resistant to any physical and chemical damage, the catalyst also needs to have high selectivity and conversion rate, which would result in a more or less tar-free gas. Commercial tar reforming catalysts of today often contain nickel as the active element, but also often display a moderate to rapid deactivation due to the causes mentioned.
  •  
35.
  • Zhou, Yongjin, 1984, et al. (författare)
  • Production of fatty acid-derived oleochemicals and biofuels by synthetic yeast cell factories
  • 2016
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723 .- 2041-1723. ; 7, s. 11709-11709
  • Tidskriftsartikel (refereegranskat)abstract
    • Sustainable production of oleochemicals requires establishment of cell factory platform strains. The yeast Saccharomyces cerevisiae is an attractive cell factory as new strains can be rapidly implemented into existing infrastructures such as bioethanol production plants. Here we show high-level production of free fatty acids (FFAs) in a yeast cell factory, and the production of alkanes and fatty alcohols from its descendants. The engineered strain produces up to 10.4 g/L of FFAs, which is the highest reported titre to date. Furthermore, through screening of specific pathway enzymes, endogenous alcohol dehydrogenases and aldehyde reductases, we reconstruct efficient pathways for conversion of fatty acids to alkanes (0.8 mg /L) and fatty alcohols (1.5 g/L), to our knowledge the highest titres reported in S. cerevisiae. This should facilitate the construction of yeast cell factories for production of fatty acids derived products and even aldehyde-derived chemicals of high value.
  •  
36.
  • Cintas Sanchez, Olivia, 1982, et al. (författare)
  • Geospatial supply-demand modeling of lignocellulosic biomass for electricity and biofuels in the European Union
  • 2021
  • Ingår i: Biomass and Bioenergy. - : Elsevier BV. - 1873-2909 .- 0961-9534. ; 144
  • Tidskriftsartikel (refereegranskat)abstract
    • Bioenergy can contribute to achieving European Union (EU) climate targets while mitigating impacts from current agricultural land use. A GIS-based modeling framework (1000 m resolution) is employed to match biomass supply (forest and agricultural residues, complemented by lignocellulosic energy crops where needed) with biomass demand for either electricity or bio-oil production on sites currently used for coal power in the EU-28, Norway, and Switzerland. The framework matches supply and demand based on minimizing the field-to-gate costs and is used to provide geographically explicit information on (i) plant-gate supply cost; (ii) CO2 savings; and (iii) potential mitigation opportunities for soil erosion, flooding, and eutrophication resulting from the introduction of energy crops on cropland. Converting all suitable coal power plants to biomass and assuming that biomass is sourced within a transport distance of 300 km, would produce an estimated 150 TW h biomass-derived electricity, using 1365 PJ biomass, including biomass from energy crops grown on 6 Mha. Using all existing coal power sites for bio-oil production in 100-MW pyrolysis units could produce 820 PJ of bio-oil, using 1260 PJ biomass, including biomass from energy crops grown on 1.8 Mha. Using biomass to generate electricity would correspond to an emissions reduction of 135 MtCO2, while using biomass to produce bio-oil to substitute for crude oil would correspond to a reduction of 59 MtCO2. In addition, energy crops can have a positive effect on soil organic carbon in most of the analyzed countries. The mitigation opportunities investigated range from marginal to high depending on location.
  •  
37.
  • Englund, Oskar, et al. (författare)
  • Multifunctional perennial production systems for bioenergy: performance and progress
  • 2020
  • Ingår i: Wiley Interdisciplinary Reviews. - : Wiley. - 2041-8396 .- 2041-840X.
  • Tidskriftsartikel (refereegranskat)abstract
    • As the global population increases and becomes more affluent, biomass demands for food and biomaterials will increase. Demand growth is further accelerated by the implementation of climate policies and strategies to replace fossil resources with biomass. There are, however, concerns about the size of the prospective biomass demand and the environmental and social consequences of the corresponding resource mobilization, especially concerning impacts from the associated land-use change. Strategically integrating perennials into landscapes dominated by intensive agriculture can, for example, improve biodiversity, reduce soil erosion and nutrient emissions to water, increase soil carbon, enhance pollination, and avoid or mitigate flooding events. Such ?multifunctional perennial production systems? can thus contribute to improving overall land-use sustainability, while maintaining or increasing overall biomass productivity in the landscape. Seven different cases in different world regions are here reviewed to exemplify and evaluate (a) multifunctional production systems that have been established to meet emerging bioenergy demands, and (b) efforts to identify locations where the establishment of perennial crops will be particularly beneficial. An important barrier towards wider implementation of multifunctional systems is the lack of markets, or policies, compensating producers for enhanced ecosystem services and other environmental benefits. This deficiency is particularly important since prices for fossil-based fuels are low relative to bioenergy production costs. Without such compensation, multifunctional perennial production systems will be unlikely to contribute to the development of a sustainable bioeconomy.
  •  
38.
  • Legrand, Catherine, et al. (författare)
  • Growing algae in Scandinavia : utopia or opportunity?
  • 2011
  • Ingår i: Algae: The sustainable biomass for the future.. - Berlin, Germany : s.Pro sustainable projects GmbH. ; , s. 16-17
  • Konferensbidrag (populärvet., debatt m.m.)
  •  
39.
  •  
40.
  • Perruca Foncillas, Raquel (författare)
  • Evaluation of biosensors and flow cytometry as monitoring tools in lignocellulosic bioethanol production
  • 2023
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The significant environmental impact of the current fossil fuel-based industry is a major concern for society. Consequently, various initiatives are being undertaken to establish a more sustainable industrial model. One example is via the transition from conventional fossil fuel refineries to biorefineries, where renewable raw materials are utilised. Amongst these raw materials, the use of lignocellulosic biomass from agricultural residues or wood has been favoured, as it does not compete with food or land resources. In particular, extensive research has been conducted to produce biofuels such as bioethanol from lignocellulosic biomass, referred to as second-generation (2G) bioethanol.In this thesis work, the goal was to develop and apply new tools to address challenges encountered in 2G bioethanol production. Specifically, the work focused on monitoring the impact of inhibitory compounds and mixed sugars on the fermentation performance of the yeast Saccharomyces cerevisiae.Inhibitory compounds are released during the pretreatment of the lignocellulosic biomass, a crucial step necessary to break down its complex structure and to enhance sugar accessibility This thesis work specifically focused on the redox imbalance induced in cells exposed to furaldehydes such as furfural or HMF. To study this effect, a biosensor for redox imbalance, TRX2p-yEGFP, was introduced into the cells and its fluorescence signal was monitored in real-time using flow cytometry. One potential strategy for enhancing the cells' tolerance to these inhibitors is to prepare them by introducing lignocellulosic hydrolysate in the feed during cell propagation. During this pre-exposure phase, a transient induction of the TRX2p-yEGFP biosensor signal for redox imbalance was observed, which gradually diminished. This indicated that, by the time of cell collection, the cells had adapted to the inhibitor concentration within the culture. To examine whether an increased induction level of the biosensor at the time of cell collection influenced the fermentation performance, an automated control system was devised. This system utilised data from the flow cytometry analysis to control the level of inhibitors in the cultivation feed. Consequently, when the biosensor signal began to decline, higher amounts of inhibitors were added, as long as the addition did not lead to an increase in the number of damaged cells.A second biosensor was used in this thesis work to investigate the sugar signalling response of S. cerevisiae to the presence of xylose. Xylose is the second most abundant sugar in lignocellulosic biomass; however, naturally, S. cerevisiae cannot metabolise it. Genetically modified S. cerevisiae strains have been generated by introducing heterologous pathways such as the XR/XDH or XI pathways to enable xylose consumption. Nevertheless, xylose consumption rates remain lower compared to glucose. Sugar signalling emerged as a potential bottleneck in the efficient utilisation of xylose. In the present work, the response of the SUC2p-yEGFP biosensor for sugar signalling was found to vary significantly depending on the pathway employed. A higher induction for the strains carrying the XI pathway was associated with poorer growth on xylose. Lastly, the effect of introducing a xylose epimerase capable of catalysing the conversion between the two anomers, α-D-xylopyranose and β-D-xylopyranose, as a strategy to improve xylose consumption was studied. The effect was enzyme-specific and proved to be particularly beneficial in strains utilising the xylose isomerase from Lachnoclostridium phytofermentans.In conclusion, the results presented in this thesis demonstrate how biosensors can facilitate the understanding and monitoring of intracellular processes that occur within the cell under stress conditions and be a key tool for improving production processes.
  •  
41.
  • Brandin, Jan, 1958-, et al. (författare)
  • Small Scale Gasifiction : Gas Engine CHP for Biofuels
  • 2011
  • Rapport (övrigt vetenskapligt/konstnärligt)abstract
    • In a joint project, Linnaeus University in Växjö (LNU) and the Faculty of Engineering at Lund University (LTH) were commissioned by the Swedish Energy Agency to make an inventory of the techniques and systems for small scale gasifier-gas engine combined heat and power (CHP) production and to evaluate the technology. Small scale is defined here as plants up to 10 MWth, and the fuel used in the gasifier is some kind of biofuel, usually woody biofuel in the form of chips, pellets, or sawdust. The study is presented in this report. The report has been compiled by searching the literature, participating in seminars, visiting plants, interviewing contact people, and following up contacts by e-mail and phone. The first, descriptive part of the report, examines the state-of-the-art technology for gasification, gas cleaning, and gas engines. The second part presents case studies of the selected plants: Meva Innovation’s VIPP-VORTEX CHP plant DTU’s VIKING CHP plant Güssing bio-power station Harboøre CHP plant Skive CHP plant The case studies examine the features of the plants and the included unit operations, the kinds of fuels used and the net electricity and overall efficiencies obtained. The investment and operating costs are presented when available as are figures on plant availability. In addition we survey the international situation, mainly covering developing countries. Generally, the technology is sufficiently mature for commercialization, though some unit operations, for example catalytic tar reforming, still needs further development. Further development and optimization will probably streamline the performance of the various plants so that their biofuel-to-electricity efficiency reaches 30-40 % and overall performance efficiency in the range of 90 %. The Harboøre, Skive, and Güssing plant types are considered appropriate for municipal CHP systems, while the Viking and VIPP-VORTEX plants are smaller and considered appropriate for replacing hot water plants in district heating network. The Danish Technical University (DTU) Biomass Gasification Group and Meva International have identified a potentially large market in the developing countries of Asia. Areas for suggested further research and development include: Gas      cleaning/upgrading Utilization      of produced heat System      integration/optimization Small scale      oxygen production Gas engine      developments
  •  
42.
  • Stanicic, Ivana, 1994, et al. (författare)
  • Combined manganese oxides as oxygen carriers for biomass combustion — Ash interactions
  • 2019
  • Ingår i: Chemical Engineering Research and Design. - : Elsevier BV. - 0263-8762 .- 1744-3563. ; 149, s. 104-120
  • Tidskriftsartikel (refereegranskat)abstract
    • © 2019 Institution of Chemical Engineers Carbon capture and storage (CCS) has been acknowledged as an important strategy for mitigation of climate change. Although highly applicable for fossil fuels, CCS with biomass could have the added advantage of resulting in negative emissions of carbon dioxide. One promising carbon capture technology is chemical-looping combustion (CLC). In CLC the reactors are filled with metal oxide bed material called oxygen carriers. Before CLC can be implemented for biomass combustion at a large scale, biomass ash components interaction with oxygen carriers needs to be further understood. Four combined manganese oxides Mn3O4-SiO2, Mn3O4-SiO2-TiO2, Mn3O4-Fe2O3 and Mn3O4-Fe2O3-Al2O3 were exposed to common biomass ash components K, Ca and P. The ash components can exist in many forms, but here the compounds CaCO3, K2CO3 and CaHPO4 were used. Exposures were performed at 900 °C for six hours in oxidising, reducing and inert conditions. Crystalline phases were analysed by XRD and morphology examined with SEM-EDX. Results show that oxygen carrier particles containing silicon were more likely to form agglomerates, especially in combination with potassium, whereas the particles including iron were more stable. MnFeAl was the oxygen carrier that showed least agglomerating behaviour while simultaneously showing a propensity to absorb some ash components. Some inconsistencies between thermodynamic predictions and experimental results is observed. This may be explained by lack of relevant data in the used databases, were only a few of the oxygen carrier-ash systems and subsystems have been optimised. Further optimisation related to manganese rich systems should be performed to obtain reliable results.
  •  
43.
  • Janssen, Mathias, 1973, et al. (författare)
  • Life cycle impacts of ethanol production from spruce wood chips under high gravity conditions
  • 2016
  • Ingår i: Biotechnology for Biofuels. - : Springer Science and Business Media LLC. - 1754-6834 .- 1754-6834. ; 9:1, s. 53-
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundDevelopment of more sustainable biofuel production processes is ongoing, and technology to run these processes at a high dry matter content, also called high-gravity conditions, is one option. This paper presents the results of a life cycle assessment (LCA) of such a technology currently in development for the production of bio-ethanol from spruce wood chips.ResultsThe cradle-to-gate LCA used lab results from a set of 30 experiments (or process configurations) in which the main process variable was the detoxification strategy applied to the pretreated feedstock material. The results of the assessment show that a process configuration, in which washing of the pretreated slurry is the detoxification strategy, leads to the lowest environmental impact of the process. Enzyme production and use are the main contributors to the environmental impact in all process configurations, and strategies to significantly reduce this contribution are enzyme recycling and on-site enzyme production. Furthermore, a strong linear correlation between the ethanol yield of a configuration and its environmental impact is demonstrated, and the selected environmental impacts show a very strong cross-correlation (r^2 > 0.9 in all cases) which may be used to reduce the number of impact categories considered from four to one (in this case, global warming potential). Lastly, a comparison with results of an LCA of ethanol production under high-gravity conditions using wheat straw shows that the environmental performance does not significantly differ when using spruce wood chips. For this comparison, it is shown that eutrophication potential also needs to be considered due to the fertilizer use in wheat cultivation.ConclusionsThe LCA points out the environmental hotspots in the ethanol production process, and thus provides input to the further development of the high-gravity technology. Reducing the number of impact categories based only on cross-correlations should be done with caution. Knowledge of the analyzed system provides further input to the choice of impact categories.
  •  
44.
  • Zetterholm, Jonas, 1989-, et al. (författare)
  • Large-scale introduction of forest-based biorefineries : Actor perspectives and the impacts of a dynamic biomass market
  • 2020
  • Ingår i: Biomass and Bioenergy. - : Elsevier. - 0961-9534 .- 1873-2909. ; 142
  • Tidskriftsartikel (refereegranskat)abstract
    • Large-scale implementation of forest-based biofuel production will have an impact on biomass prices, something which in turn will affect biofuel production costs. The profitability of emerging biofuel production technologies is usually assessed using techno-economic or market approaches. While techno-economic approaches have a detailed description of technologies within plant-level or supply chain system boundaries, they build on exogenously given static biomass prices. Conversely, market approaches have a consistent description of the economic system including market interactions for prices within local or national boundaries, but they generally lack technological depth. This paper combines these two approaches using an iterative framework for a case study optimising the production cost of liquefied biomethane (LBG) using different configurations of sawmill-integrated biomass gasification.Cost estimates are developed using system boundaries surrounding a LBG production plant, and the Swedish national borders, reflecting the plant-owner and policymaker perspectives, respectively. The results show that different plant configurations are favoured depending on the choice between minimising the biofuel production cost for the plant-owner or for the policymaker. Market dynamics simulated by the iterative procedure show that a direct policy support of 36–56 EUR/MWh would be needed to sustain large-scale LBG production, which is 12–31% higher than the necessary policy support estimated based on static biomass prices.
  •  
45.
  • Bettiga, Maurizio, 1978, et al. (författare)
  • Robust S. cerevisiae strain for next generation bio-processes: concepts and case-studies
  • 2013
  • Ingår i: Cell Factories and Biosustainability (Hilleroed, Denmark, May 5-8 2013).
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • The realization of an oil independent economy relies on the development of competitive processes for the production of fuels and chemicals from renewable resources. The extensive research on second-generation ethanol has paved the way to a new concept of bio-based industry, where lignocellulosic material is the primary source of sugars, to be converted to a number of fuels and chemicals. Harsh conditions during the bioconversion of lignocellulose-derived sugars to the desired products drastically hamper cell viability and therefore productivity. Microbial inhibition limits bioprocesses to an extent such that it can be said that understanding and harnessing microbial robustness is a prerequisite for the feasibility of new bioprocess and the production of renewable fuels and chemicals.Current research carried out by our group focuses on the yeast Saccharomyces cerevisiae and aims at investigating the molecular bases of microbial robustness. Our efforts include the identification of the molecular targets of different classes of fermentation inhibitors aiming at understanding the complex responses of the cells to these compounds. The final goal is to engineer more robust strains. The concept of robustness will be discussed and examples of key features for S. cerevisiae robustness as well as examples of successful engineering to increase robustness will be presented.
  •  
46.
  • Bettiga, Maurizio, 1978, et al. (författare)
  • Robust S. cerevisiae strain for next generation bio-processes: concepts and case-studies
  • 2013
  • Ingår i: 35th Symposium on Biotechnology for Fuels and Chemicals (Portland, OR. April 29-May 2, 2013).
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • The realization of an oil independent economy relies on the development of competitive processes for the production of fuels and chemicals from renewable resources. The extensive research on second-generation ethanol has paved the way to a new concept of bio-based industry, where lignocellulosic material is the primary source of sugars, to be converted to a number of fuels and chemicals. Sugars are released from cellulose and hemicellulose by pretreatment and hydrolysis steps. Harsh conditions result in the formation of a number of compounds, originating from sugars and lignin breakdown and acting as microorganism inhibitors. Weak organic acids, furaldehydes and phenolic compounds are sources of stress for the fermenting microorganism, as they influence cellular metabolism in a number of ways, including direct damage on cellular functions or by perturbations of the cellular energy and redox metabolism. In addition, the product of interest can act as a potent inhibitor. Regardless of the product, robust microorganisms are a prerequisite for the feasibility of lignocellulose-based bioprocesses.Current research carried out by our group focuses on the yeast Saccharomyces cerevisiae and aims at investigating the molecular bases of microbial robustness. Our efforts include the identification of the molecular targets of different classes of fermentation inhibitors aiming at understanding the complex responses of the cells to these compounds. The final goal is to engineer more robust strains. The concept of robustness will be discussed and examples of key features for S. cerevisiae robustness as well as examples of successful engineering to increase robustness will be presented.
  •  
47.
  • Pushp, Mohit, et al. (författare)
  • Influence of Bed Material, Additives, and Operational Conditions on Alkali Metal and Tar Concentrations in Fluidized Bed Gasification of Biomass
  • 2018
  • Ingår i: Energy & Fuels. - : American Chemical Society (ACS). - 0887-0624 .- 1520-5029. ; 32:6, s. 6797-6806
  • Tidskriftsartikel (refereegranskat)abstract
    • Gasification of biomass results in release of tar and alkali metal compounds that constitute a significant challenge to the optimization of the gasification process. Here we describe on-line measurements of alkali, condensable tar, and particle concentrations in product gas from a 2-4 MWth dual fluidized bed gasifier, with the aims to characterize typical concentrations and contribute to the understanding of alkali-tar interactions. The influence of bed material, additives, and operational parameters on the concentrations is investigated. Alkali concentrations are measured with a surface ionization detector, and particle and tar concentrations are determined using aerosol measurement techniques. The gasification of wood chips using quartz or olivine as bed material results in an alkali concentration of 30-250 mg m-3, and the observed alkali levels are consistent with a significant release of the fuel alkali content. Addition of ilmenite to a quartz bed and additions of K2SO4 and K2CO3 to an olivine bed influence both alkali and heavy tar concentrations. The additions result in changes in alkali concentration that relaxes to a new steady state in tens of minutes. The concentration of condensable tar is lower for the olivine bed than for the quartz bed, and tends to decrease when potassium or sulfur is added. The concentration of condensable tar compounds is anticorrelated with the alkali concentration when a quartz bed is used, while no clear trend is observed with an olivine bed. An increase in steam flow rate results in a substantial decrease in heavy tar concentration from a quartz sand bed, while the alkali concentration increases slightly with increasing flow rate. This is in contrast to the alkali concentrations observed when using an activated olivine bed, where concentrations are higher and tend to decrease with increasing steam flow rate. The study confirms that several primary methods are available to optimize the alkali and tar behavior in the gasifier, and suggests that on-line monitoring is needed to systematically change the operational conditions and to study the underlying processes.
  •  
48.
  • van Dijk, Marlous, 1990, et al. (författare)
  • Strain-dependent variance in short-term adaptation effects of two xylose-fermenting strains of Saccharomyces cerevisiae
  • 2019
  • Ingår i: Bioresource technology. - : Elsevier BV. - 0960-8524 .- 1873-2976. ; 292, s. 121922-
  • Tidskriftsartikel (refereegranskat)abstract
    • The limited tolerance of Saccharomyces cerevisiae to the inhibitors present in lignocellulosic hydrolysates is a major challenge in second-generation bioethanol production. Short-term adaptation of the yeast to lignocellulosic hydrolysates during cell propagation has been shown to improve its tolerance, and thus its performance in lignocellulose fermentation. The aim of this study was to investigate the short-term adaptation effects in yeast strains with different genetic backgrounds. Fed-batch propagation cultures were supplemented with 40% wheat straw hydrolysate during the feed phase to adapt two different pentose-fermenting strains, CR01 and KE6-12. The harvested cells were used to inoculate fermentation media containing 80% or 90% wheat straw hydrolysate. The specific ethanol productivity during fermentation was up to 3.6 times higher for CR01 and 1.6 times higher for KE6-12 following adaptation. The influence of physiological parameters such as viability, storage carbohydrate content, and metabolite yields following short-term adaptation demonstrated that short-term adaptation was strain dependent.
  •  
49.
  • Westman, Johan (författare)
  • Ethanol production from lignocellulose using high local cell density yeast cultures. Investigations of flocculating and encapsulated Saccharomyces cerevisiae
  • 2014
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Efforts are made to change from 1st to 2nd generation bioethanol production, using lignocellulosics as raw materials rather than using raw materials that alternatively can be used as food sources. An issue with lignocellulosics is that a harsh pretreatment step is required in the process of converting them into fermentable sugars. In this step, inhibitory compounds such as furan aldehydes and carboxylic acids are formed, leading to suboptimal fermentation rates. Another issue is that lignocellulosics may contain a large portion of pentoses, which cannot be fermented simultaneously with glucose by Saccharomyces cerevisiae. In this thesis, high local cell density has been investigated as a means of overcoming these two issues. Encapsulation of yeast in semi-permeable alginate-chitosan capsules increased the tolerance towards furan aldehydes, but not towards carboxylic acids. The selective tolerance can be explained by differences in the concentration of compounds radially through the cell pellet inside the capsule. For inhibitors, gradients will only be formed if the compounds are readily convertible, like the furan aldehydes. Conversion of inhibitors by cells close to the membrane leads to decreased concentrations radially through the cell pellet. Thus, cells closer to the core experience subinhibitory levels of inhibitors and can ferment sugars. Carbohydrate gradients also give rise to nutrient limitations, which in turn trigger a stress response in the yeast, as was observed on mRNA and protein level. The stress response is believed to increase the robustness of the yeast and lead to improved tolerance towards additional stress. Glucose and xylose co-consumption by a recombinant strain, CEN.PK XXX, was also improved by encapsulation. Differences in affinity of the sugar transporters normally result in that glucose is taken up preferentially to xylose. However, when encapsulated, cells in different parts of the capsule experienced high and low glucose concentrations simultaneously. Xylose and glucose could thus be taken up concurrently. This improved the co-utilisation of the sugars by the system and led to 50% higher xylose consumption and 15% higher final ethanol titres. A protective effect by the capsule membrane itself could not be shown. Hence, the interest in flocculation was triggered, as a more convenient way to keep the cells together. To investigate whether flocculation increases the tolerance, like encapsulation, recombinant flocculating yeast strains were constructed and compared with the non-flocculating parental strain. Experiments showed that strong flocculation did not increase the tolerance towards carboxylic acids. However, the tolerance towards a spruce hydrolysate and especially against furfural was indeed increased. The results of this thesis show that high local cell density yeast cultures have the potential to aid against two of the major problems for 2nd generation bioethanol production: inhibitors and simultaneous hexose and pentose utilisation.
  •  
50.
  • Bagherpour, Mohammad Bagher, et al. (författare)
  • Effects of irrigation and water content of packings on alpha-pinene vapours biofilteration performance
  • 2005
  • Ingår i: Biochemical engineering journal. - : Elsevier. - 1369-703X .- 1873-295X. ; 24:3, s. 185-193
  • Tidskriftsartikel (refereegranskat)abstract
    • The main objective of this investigation is to determine the effect of different physical parameters on the performance of biofilters, treating hydrophobic compounds. In this respect, the effects of irrigation and water content of packings on the removal efficiency of bed in different pollutant loading rates, and gas phase flow rates, is studied. Alpha-pinene, which is produced from variety of industrial wood products, pulp and paper industries, and fragrance production units, has been selected as a model compound. Since the effectiveness of biofiltration depends strongly upon water solubility of compounds, in the case of alpha-pinene (2.5 ppm, at 25 ◦C), the process of waste gas treatment is faced with difficulties. In this paper, it is shown that performance of biofilters, treating hydrophobic contaminants, declines due to irrigation. This reduction is detected by an increase in the outlet concentration from 11% up to 22.5%. Its magnitude depends on the gas velocity inside the biofilter and outlet concentration of the bed. The result indicated that pore blocking along the bed has less effect on the performance reduction than diffusion coefficient. Also the inhibitory effects of velocity on biodegradation are considerably higher than the effects of concentration. In addition, this compost-based biofilter shows noteworthy higher elimination capacities in comparison with previous studied biofiltration systems. In this study, a maximum elimination capacity of 227 gm−3 of packing h−1 is achieved by 95% of removal efficiency. The maximum concentration in the inlet gas was 650 mgm−3.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 1137
Typ av publikation
tidskriftsartikel (698)
konferensbidrag (193)
rapport (59)
forskningsöversikt (58)
doktorsavhandling (50)
bokkapitel (41)
visa fler...
licentiatavhandling (18)
annan publikation (11)
patent (4)
samlingsverk (redaktörskap) (3)
bok (2)
visa färre...
Typ av innehåll
refereegranskat (862)
övrigt vetenskapligt/konstnärligt (257)
populärvet., debatt m.m. (18)
Författare/redaktör
Olsson, Lisbeth, 196 ... (75)
Mattisson, Tobias, 1 ... (43)
Leion, Henrik, 1976 (35)
Schnürer, Anna (34)
Taherzadeh, Mohammad ... (30)
Lyngfelt, Anders, 19 ... (28)
visa fler...
Seemann, Martin, 197 ... (28)
Thunman, Henrik, 197 ... (25)
Larsson, Sylvia (23)
Rydén, Magnus, 1975 (22)
Backman, Rainer (21)
Knutsson, Pavleta, 1 ... (20)
Bettiga, Maurizio, 1 ... (18)
Passoth, Volkmar (18)
Albers, Eva, 1966 (17)
Franzén, Carl Johan, ... (17)
Broström, Markus (16)
Strand, Michael (16)
Lestander, Torbjörn (16)
Johnsson, Filip, 196 ... (15)
Wallberg, Ola (15)
Boman, Christoffer (15)
Taherzadeh Esfahani, ... (14)
Christakopoulos, Pau ... (14)
Skoglund, Nils (14)
Berndes, Göran, 1966 (14)
Mei, Daofeng, 1986 (13)
Rova, Ulrika (13)
Sandgren, Mats (13)
Lind, Fredrik, 1978 (13)
Arshadi, Mehrdad (13)
Harvey, Simon, 1965 (12)
Rudolfsson, Magnus (12)
Galbe, Mats (12)
Soleimanisalim, Amir ... (12)
Brandin, Jan, 1958- (12)
Niklasson, Claes, 19 ... (11)
Lin, Leteng, 1980- (11)
Gentili, Francesco (11)
Hildor, Fredrik, 199 ... (11)
Mapelli, Valeria, 19 ... (11)
Janssen, Mathias, 19 ... (10)
Sárvári Horváth, Ilo ... (10)
Jönsson, Leif J (10)
Anasontzis, George E ... (10)
Hansson, Julia, 1978 (10)
Soleimani Salim, Ami ... (10)
Bergström, Dan (10)
Matsakas, Leonidas (10)
Öhman, Marcus (10)
visa färre...
Lärosäte
Chalmers tekniska högskola (477)
Sveriges Lantbruksuniversitet (252)
Umeå universitet (109)
Lunds universitet (101)
Kungliga Tekniska Högskolan (91)
Linnéuniversitetet (75)
visa fler...
RISE (75)
Luleå tekniska universitet (69)
Högskolan i Borås (47)
Linköpings universitet (36)
Göteborgs universitet (34)
Mälardalens universitet (32)
Högskolan i Gävle (16)
Mittuniversitetet (15)
Karlstads universitet (13)
Uppsala universitet (10)
IVL Svenska Miljöinstitutet (10)
Stockholms universitet (6)
Högskolan i Halmstad (4)
Högskolan Dalarna (4)
Örebro universitet (3)
Malmö universitet (1)
Södertörns högskola (1)
Karolinska Institutet (1)
visa färre...
Språk
Engelska (1103)
Svenska (34)
Forskningsämne (UKÄ/SCB)
Teknik (1137)
Naturvetenskap (273)
Lantbruksvetenskap (183)
Samhällsvetenskap (19)
Medicin och hälsovetenskap (3)
Humaniora (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy