SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "AMNE:(NATURAL SCIENCES) AMNE:(Biological Sciences) AMNE:(Cell Biology) srt2:(2020-2024)"

Search: AMNE:(NATURAL SCIENCES) AMNE:(Biological Sciences) AMNE:(Cell Biology) > (2020-2024)

  • Result 1-50 of 1184
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Green, Leon, et al. (author)
  • Ancestral Sperm Ecotypes Reveal Multiple Invasions of a Non-Native Fish in Northern Europe
  • 2021
  • In: Cells. - : MDPI AG. - 2073-4409. ; 10:7
  • Journal article (peer-reviewed)abstract
    • For externally fertilising organisms in the aquatic environment, the abiotic fertilisation medium can be a strong selecting force. Among bony fishes, sperm are adapted to function in a narrow salinity range. A notable exception is the family Gobiidae, where several species reproduce across a wide salinity range. The family also contains several wide-spread invasive species. To better understand how these fishes tolerate such varying conditions, we measured sperm performance in relation to salinity from a freshwater and a brackish population within their ancestral Ponto-Caspian region of the round goby, Neogobius melanostomus. These two ancestral populations were then compared to nine additional invaded sites across northern Europe, both in terms of their sperm traits and by using genomic SNP markers. Our results show clear patterns of ancestral adaptations to freshwater and brackish salinities in their sperm performance. Population genomic analyses show that the ancestral ecotypes have generally established themselves in environments that fit their sperm adaptations. Sites close to ports with intense shipping show that both outbreeding and admixture can affect the sperm performance of a population in a given salinity. Rapid adaptation to local conditions is also supported at some sites. Historical and contemporary evolution in the traits of the round goby sperm cells is tightly linked to the population and seascape genomics as well as biogeographic processes in these invasive fishes. Since the risk of a population establishing in an area is related to the genotype by environment match, port connectivity and the ancestry of the round goby population can likely be useful for predicting the species spread.
  •  
2.
  • Subhash, Santhilal, 1987, et al. (author)
  • Sperm Originated Chromatin Imprints and LincRNAs in Organismal Development and Cancer
  • 2020
  • In: iScience. - : Elsevier BV. - 2589-0042. ; 23:6
  • Journal article (peer-reviewed)abstract
    • Importance of sperm-derived transcripts and chromatin imprints in organismal development is poorly investigated. Here using an integrative approach, we show that human sperm transcripts are equally important as oocyte. Sperm-specific and sperm-oocyte common transcripts carry distinct chromatin structures at their promoters correlating with corresponding transcript levels in sperm. Interestingly, sperm-specific H3K4me3 patterns at the lincRNA promoters are not maintained in the germ layers and somatic tissues. However, bivalent chromatin at the sperm-specific protein-coding gene promoters is maintained throughout the development. Sperm-specific transcripts reach their peak expression during zygotic genome activation, whereas sperm-oocyte common transcripts are present during early preimplantation development but decline at the onset of zygotic genome activation. Additionally, there is an inverse correlation between sperm-specific and sperm-oocyte lincRNAs throughout the development. Sperm-lincRNAs also show aberrant activation in tumors. Overall, our observations indicate that sperm transcripts carrying chromatin imprints may play an important role in human development and cancer.
  •  
3.
  • Mohammadi, Elyas, et al. (author)
  • Improvement of the performance of anticancer peptides using a drug repositioning pipeline
  • 2022
  • In: Biotechnology Journal. - : Wiley. - 1860-6768 .- 1860-7314. ; 17:1, s. 2100417-
  • Journal article (peer-reviewed)abstract
    • The use of anticancer peptides (ACPs) as an alternative/complementary strategy to conventional chemotherapy treatments has been shown to decrease drug resistance and/or severe side effects. However, the efficacy of the positively-charged ACP is inhibited by elevated levels of negatively-charged cell-surface components which trap the peptides and prevent their contact with the cell membrane. Consequently, this decreases ACP-mediated membrane pore formation and cell lysis. Negatively-charged heparan sulphate (HS) and chondroitin sulphate (CS) have been shown to inhibit the cytotoxic effect of ACPs. In this study, we propose a strategy to promote the broad utilization of ACPs. In this context, we developed a drug repositioning pipeline to analyse transcriptomics data generated for four different cancer cell lines (A549, HEPG2, HT29, and MCF7) treated with hundreds of drugs in the LINCS L1000 project. Based on previous studies identifying genes modulating levels of the glycosaminoglycans (GAGs) HS and CS at the cell surface, our analysis aimed at identifying drugs inhibiting genes correlated with high HS and CS levels. As a result, we identified six chemicals as likely repositionable drugs with the potential to enhance the performance of ACPs. The codes in R and Python programming languages are publicly available in https://github.com/ElyasMo/ACPs_HS_HSPGs_CS. As a conclusion, these six drugs are highlighted as excellent targets for synergistic studies with ACPs aimed at lowering the costs associated with ACP-treatment.
  •  
4.
  • Porosk, Ly, et al. (author)
  • Endpoint and Kinetic Approaches for Assessing Transfection Efficacy in Mammalian Cell Culture
  • 2022. - 3
  • In: Cell Penetrating Peptides. - New York : Humana Press. - 9781071617519 - 9781071617526 ; , s. 529-545
  • Book chapter (peer-reviewed)abstract
    • The efficacy of transfection reagents and nanoparticles is often assessed by measuring levels of expressed reporter protein. Fluorescence and luminescence based assays provide sensitive, quantifiable and repeatable approaches. The genes expressing reporter protein can be integrated into the cells to create stable reporter cell lines or can be expressed from a transfected plasmid. Green fluorescent protein, luciferase, and secreted alkaline phosphatase are well-established reporters with versatile applications. Monitoring changes in live cells during and after transfection offer opportunities to reveal related mechanisms, efficacy, and bottlenecks of transfection. In this chapter, we describe the experimental setup and considerations for in vitro screening of delivery vectors. This can further be extended to measurements in reporter cell lines.
  •  
5.
  • González-King, Hernán, et al. (author)
  • Head-to-head comparison of relevant cell sources of small extracellular vesicles for cardiac repair : Superiority of embryonic stem cells
  • 2024
  • In: Journal of Extracellular Vesicles. - : John Wiley & Sons. - 2001-3078. ; 13:5
  • Journal article (peer-reviewed)abstract
    • Small extracellular vesicles (sEV) derived from various cell sources have been demonstrated to enhance cardiac function in preclinical models of myocardial infarction (MI). The aim of this study was to compare different sources of sEV for cardiac repair and determine the most effective one, which nowadays remains limited. We comprehensively assessed the efficacy of sEV obtained from human primary bone marrow mesenchymal stromal cells (BM-MSC), human immortalized MSC (hTERT-MSC), human embryonic stem cells (ESC), ESC-derived cardiac progenitor cells (CPC), human ESC-derived cardiomyocytes (CM), and human primary ventricular cardiac fibroblasts (VCF), in in vitro models of cardiac repair. ESC-derived sEV (ESC-sEV) exhibited the best pro-angiogenic and anti-fibrotic effects in vitro. Then, we evaluated the functionality of the sEV with the most promising performances in vitro, in a murine model of MI-reperfusion injury (IRI) and analysed their RNA and protein compositions. In vivo, ESC-sEV provided the most favourable outcome after MI by reducing adverse cardiac remodelling through down-regulating fibrosis and increasing angiogenesis. Furthermore, transcriptomic, and proteomic characterizations of sEV derived from hTERT-MSC, ESC, and CPC revealed factors in ESC-sEV that potentially drove the observed functions. In conclusion, ESC-sEV holds great promise as a cell-free treatment for promoting cardiac repair following MI. 
  •  
6.
  • Stenberg, Simon, et al. (author)
  • Control of mitochondrial superoxide production includes programmed mtDNA deletion and restoration
  • 2020
  • Journal article (other academic/artistic)abstract
    • Deletion of mitochondrial DNA in eukaryotes is mainly attributed to rare accidental events associated with mitochondrial replication or repair of double-strand breaks. We report the discovery that yeast cells arrest harmful intramitochondrial superoxide production by shutting down respiration through genetically controlled deletion of mitochondrial oxidative phosphorylation genes. We show that the regulatory circuitry underlying this editing critically involves the antioxidant enzyme superoxide dismutase 2 and two-way mitochondrial-nuclear communication. While mitochondrial DNA homeostasis is rapidly restored after cessation of a short-term superoxide stress, long-term stress causes maladaptive persistence of the deletion process, leading to complete annihilation of the cellular pool of intact mitochondrial genomes and irrevocable loss of respiratory ability. Our results may therefore be of etiological as well as therapeutic importance with regard to age-related mitochondrial impairment and disease.One-Sentence SummaryGenetically controlled editing of mitochondrial DNA is an integral part of the yeast’s defenses against oxidative damage.
  •  
7.
  • Wieloch, Thomas, 1979-, et al. (author)
  • Intramolecular carbon isotope signals reflect metabolite allocation in plants
  • 2022
  • In: Journal of Experimental Botany. - : Oxford University Press. - 0022-0957 .- 1460-2431. ; 73:8, s. 2558-2575
  • Journal article (other academic/artistic)abstract
    • Stable isotopes at natural abundance are key tools to study physiological processes occurring outside the temporal scope of manipulation and monitoring experiments. Whole-molecule carbon isotope ratios (13C/12C) enable assessments of plant carbon uptake yet conceal information about carbon allocation. Here, we identify an intramolecular 13C/12C signal at tree-ring glucose C-5 and C-6 and develop experimentally testable theories on its origin. More specifically, we assess the potential of processes within C3 metabolism for signal introduction based (inter alia) on constraints on signal propagation posed by metabolic networks. We propose that the intramolecular signal reports carbon allocation into major metabolic pathways in actively photosynthesizing leaf cells including the anaplerotic, shikimate, and non-mevalonate pathway. We support our theoretical framework by linking it to previously reported whole-molecule 13C/12C increases in cellulose of ozone-treated Betula pendula and a highly significant relationship between the intramolecular signal and tropospheric ozone concentration. Our theory postulates a pronounced preference for leaf cytosolic triose-phosphate isomerase to catalyse the forward reaction in vivo (dihydroxyacetone phosphate to glyceraldehyde 3-phosphate). In conclusion, intramolecular 13C/12C analysis resolves information about carbon uptake and allocation enabling more comprehensive assessments of carbon metabolism than whole-molecule 13C/12C analysis.
  •  
8.
  • Tomic, Tajana Tesan, et al. (author)
  • MYO5B mutations in pheochromocytoma/paraganglioma promote cancer progression
  • 2020
  • In: PLOS Genetics. - : Public Library of Science. - 1553-7390 .- 1553-7404. ; 16:6
  • Journal article (peer-reviewed)abstract
    • Identification of additional cancer-associated genes and secondary mutations driving the metastatic progression in pheochromocytoma and paraganglioma (PPGL) is important for subtyping, and may provide optimization of therapeutic regimens. We recently reported novel recurrent nonsynonymous mutations in the MYO5B gene in metastatic PPGL. Here, we explored the functional impact of these MYO5B mutations, and analyzed MYO5B expression in primary PPGL tumor cases in relation to mutation status. Immunohistochemistry and mRNA expression analysis in 30 PPGL tumors revealed an increased MYO5B expression in metastatic compared to non-metastatic cases. In addition, subcellular localization of MYO5B protein was altered from cytoplasmic to membranous in some metastatic tumors, and the strongest and most abnormal expression pattern was observed in a paraganglioma harboring a somatic MYO5B:p.G1611S mutation. In addition to five previously discovered MYO5B mutations, the present study of 30 PPGL (8 previous and 22 new samples) also revealed two, and hence recurrent, mutations in the gene paralog MYO5A. The three MYO5B missense mutations with the highest prediction scores (p.L587P, p.G1611S and p.R1641C) were selected and functionally validated using site directed mutagenesis and stable transfection into human neuroblastoma cells (SK-N-AS) and embryonic kidney cells (HEK293). In vitro analysis showed a significant increased proliferation rate in all three MYO5B mutated clones. The two somatically derived mutations, p.L587P and p.G1611S, were also found to increase the migration rate. Expression analysis of MYO5B mutants compared to wild type clones, demonstrated a significant enrichment of genes involved in migration, proliferation, cell adhesion, glucose metabolism, and cellular homeostasis. Our study validates the functional role of novel MYO5B mutations in proliferation and migration, and suggest the MYO5-pathway to be involved in the malignant progression in some PPGL tumors. © 2020 Tomic et al.
  •  
9.
  • Molin, Mikael, 1973, et al. (author)
  • Protein kinase A controls yeast growth in visible light
  • 2020
  • In: BMC Biology. - : Springer Science and Business Media LLC. - 1741-7007. ; 18:1
  • Journal article (peer-reviewed)abstract
    • Background: A wide variety of photosynthetic and non-photosynthetic species sense and respond to light, having developed protective mechanisms to adapt to damaging effects on DNA and proteins. While the biology of UV light-induced damage has been well studied, cellular responses to stress from visible light (400–700 nm) remain poorly understood despite being a regular part of the life cycle of many organisms. Here, we developed a high-throughput method for measuring growth under visible light stress and used it to screen for light sensitivity in the yeast gene deletion collection. Results: We found genes involved in HOG pathway signaling, RNA polymerase II transcription, translation, diphthamide modifications of the translational elongation factor eEF2, and the oxidative stress response to be required for light resistance. Reduced nuclear localization of the transcription factor Msn2 and lower glycogen accumulation indicated higher protein kinase A (cAMP-dependent protein kinase, PKA) activity in many light-sensitive gene deletion strains. We therefore used an ectopic fluorescent PKA reporter and mutants with constitutively altered PKA activity to show that repression of PKA is essential for resistance to visible light. Conclusion: We conclude that yeast photobiology is multifaceted and that protein kinase A plays a key role in the ability of cells to grow upon visible light exposure. We propose that visible light impacts on the biology and evolution of many non-photosynthetic organisms and have practical implications for how organisms are studied in the laboratory, with or without illumination.
  •  
10.
  • Tulha, Joana, et al. (author)
  • Physical, genetic and functional interactions between the eisosome protein Pil1 and the MBOAT O-acyltransferase Gup1
  • 2021
  • In: FEMS Yeast Research. - : Oxford University Press (OUP). - 1567-1356 .- 1567-1364. ; 21:1
  • Journal article (peer-reviewed)abstract
    • The Saccharomyces cerevisiae MBOAT O-acyltransferase Gup1 is involved in many processes, including cell wall and membrane composition and integrity, and acetic acid-induced cell death. Gup1 was previously shown to interact physically with the mitochondrial membrane VDAC (Voltage-Dependent Anion Channel) protein Por1 and the ammonium transceptor Mep2. By co-immunoprecipitation, the eisosome core component Pil1 was identified as a novel physical interaction partner of Gup1. The expression of PIL1 and Pil1 protein levels were found to be unaffected by GUP1 deletion. In gup1 cells, Pil1 was distributed in dots (likely representing eisosomes) in the membrane, identically to wt cells. However, gup1 cells presented 50% less Pil1-GFP dots/eisosomes, suggesting that Gup1 is important for eisosome formation. The two proteins also interact genetically in the maintenance of cell wall integrity, and during arsenite and acetic acid exposure. We show that Δgup1 Δpil1 cells take up more arsenite than wt and are extremely sensitive to arsenite and to acetic acid treatments. The latter causes a severe apoptotic wt-like cell death phenotype, epistatically reverting the gup1 necrotic type of death. Gup1 and Pil1 are thus physically, genetically and functionally connected.
  •  
11.
  • Granja, C. D. S., et al. (author)
  • A quartz crystal resonator for cellular phenotyping
  • 2020
  • In: Biosensors and Bioelectronics: X. - : Elsevier Ltd. - 2590-1370. ; 6
  • Journal article (peer-reviewed)abstract
    • Cell therapy manufacturing is limited by lack of online tools capable of realtime in-process monitoring, particularly of simultaneous changes in multiple orthogonal (mutually independent) parameters. Here, we studied changes in CD36 expression, number density and size (area) of erythroblasts through different stages of erythropoiesis in vitro using a quartz crystal resonator (QCR), integrated with a microscope, and flow cytometry in parallel. An analytical model was developed extending the Kanazawa-Gordon theory. Based on this model, independent correlations were established between changes in each QCR parameter, dissipation (ΔΓ) and resonance frequency (−Δf0), and CD36 expression (from flow cytometry) and cell area (from microscope). The correlation functions were used to derive an acoustic signature (−ΔΓ/Δf0) of the differentiation process that uniquely mapped the relative changes in CD36 expression and late-stage enucleation-related deviations. A method to quantify relative changes in cell area purely from the acoustic parameters was also proposed. This work demonstrated for the first time the potential of an electromechanical tool for online monitoring of concurrently varying orthogonal phenotypic parameters in cell therapy manufacturing.
  •  
12.
  • Abarenkov, Kessy, et al. (author)
  • The UNITE database for molecular identification and taxonomic communication of fungi and other eukaryotes: sequences, taxa and classifications reconsidered
  • 2024
  • In: Nucleic Acids Research. - 0305-1048 .- 1362-4962. ; 52:D1, s. D791-D797
  • Journal article (peer-reviewed)abstract
    • UNITE (https://unite.ut.ee) is a web-based database and sequence management environment for molecular identification of eukaryotes. It targets the nuclear ribosomal internal transcribed spacer (ITS) region and offers nearly 10 million such sequences for reference. These are clustered into similar to 2.4M species hypotheses (SHs), each assigned a unique digital object identifier (DOI) to promote unambiguous referencing across studies. UNITE users have contributed over 600 000 third-party sequence annotations, which are shared with a range of databases and other community resources. Recent improvements facilitate the detection of cross-kingdom biological associations and the integration of undescribed groups of organisms into everyday biological pursuits. Serving as a digital twin for eukaryotic biodiversity and communities worldwide, the latest release of UNITE offers improved avenues for biodiversity discovery, precise taxonomic communication and integration of biological knowledge across platforms. Graphical Abstract
  •  
13.
  • Chen, Xin, 1980, et al. (author)
  • Suppressors of amyloid-β toxicity improve recombinant protein production in yeast by reducing oxidative stress and tuning cellular metabolism
  • 2022
  • In: Metabolic Engineering. - : Elsevier BV. - 1096-7176 .- 1096-7184. ; 72, s. 311-324
  • Journal article (peer-reviewed)abstract
    • High-level production of recombinant proteins in industrial microorganisms is often limited by the formation of misfolded proteins or protein aggregates, which consequently induce cellular stress responses. We hypothesized that in a yeast Alzheimer's disease (AD) model overexpression of amyloid-β peptides (Aβ42), one of the main peptides relevant for AD pathologies, induces similar phenotypes of cellular stress. Using this humanized AD model, we previously identified suppressors of Aβ42 cytotoxicity. Here we hypothesize that these suppressors could be used as metabolic engineering targets to alleviate cellular stress and improve recombinant protein production in the yeast Saccharomyces cerevisiae. Forty-six candidate genes were individually deleted and twenty were individually overexpressed. The positive targets that increased recombinant α-amylase production were further combined leading to an 18.7-fold increased recombinant protein production. These target genes are involved in multiple cellular networks including RNA processing, transcription, ER-mitochondrial complex, and protein unfolding. By using transcriptomics and proteomics analyses, combined with reverse metabolic engineering, we showed that reduced oxidative stress, increased membrane lipid biosynthesis and repressed arginine and sulfur amino acid biosynthesis are significant pathways for increased recombinant protein production. Our findings provide new insights towards developing synthetic yeast cell factories for biosynthesis of valuable proteins.
  •  
14.
  • Hubert, Madlen, et al. (author)
  • Lipid accumulation controls the balance between surface connection and scission of caveolae.
  • 2020
  • In: eLIFE. - : eLife Sciences Publications Ltd. - 2050-084X. ; 9
  • Journal article (peer-reviewed)abstract
    • Caveolae are bulb-shaped invaginations of the plasma membrane (PM) that undergo scission and fusion at the cell surface and are enriched in specific lipids. However, the influence of lipid composition on caveolae surface stability is not well described or understood. Accordingly, we inserted specific lipids into the cell PM via membrane fusion and studied their acute effects on caveolae dynamics. We demonstrate that sphingomyelin stabilizes caveolae to the cell surface, whereas cholesterol and glycosphingolipids drive caveolae scission from the PM. Although all three lipids accumulated specifically in caveolae, cholesterol and sphingomyelin were actively sequestered, whereas glycosphingolipids diffused freely. The ATPase EHD2 restricts lipid diffusion and counteracts lipid-induced scission. We propose that specific lipid accumulation in caveolae generates an intrinsically unstable domain prone to scission if not restrained by EHD2 at the caveolae neck. This work provides a mechanistic link between caveolae and their ability to sense the PM lipid composition.
  •  
15.
  • Zhang, Heyang, et al. (author)
  • Together is Better : mRNA Co-Encapsulation in Lipoplexes is Required to Obtain Ratiometric Co-Delivery and Protein Expression on the Single Cell Level
  • 2022
  • In: Advanced Science. - : John Wiley and Sons Inc. - 2198-3844. ; 9:4
  • Journal article (peer-reviewed)abstract
    • Liposomes can efficiently deliver messenger RNA (mRNA) into cells. When mRNA cocktails encoding different proteins are needed, a considerable challenge is to efficiently deliver all mRNAs into the cytosol of each individual cell. In this work, two methods are explored to co-deliver varying ratiometric doses of mRNA encoding red (R) or green (G) fluorescent proteins and it is found that packaging mRNAs into the same lipoplexes (mingle-lipoplexes) is crucial to efficiently deliver multiple mRNA types into the cytosol of individual cells according to the pre-defined ratio. A mixture of lipoplexes containing only one mRNA type (single-lipoplexes), however, seem to follow the “first come – first serve” principle, resulting in a large variation of R/G uptake and expression levels for individual cells leading to ratiometric dosing only on the population level, but rarely on the single-cell level. These experimental observations are quantitatively explained by a theoretical framework based on the stochasticity of mRNA uptake in cells and endosomal escape of mingle- and single-lipoplexes, respectively. Furthermore, the findings are confirmed in 3D retinal organoids and zebrafish embryos, where mingle-lipoplexes outperformed single-lipoplexes to reliably bring both mRNA types into single cells. This benefits applications that require a strict control of protein expression in individual cells. © 2021 The Authors. 
  •  
16.
  • Persson, Sebastian, 1996, et al. (author)
  • Modelling of glucose repression signalling in yeast Saccharomyces cerevisiae
  • 2022
  • In: FEMS Yeast Research. - : Oxford University Press (OUP). - 1567-1356 .- 1567-1364. ; 22:1
  • Research review (peer-reviewed)abstract
    • Saccharomyces cerevisiae has a sophisticated signalling system that plays a crucial role in cellular adaptation to changing environments. The SNF1 pathway regulates energy homeostasis upon glucose derepression; hence, it plays an important role in various processes, such as metabolism, cell cycle and autophagy. To unravel its behaviour, SNF1 signalling has been extensively studied. However, the pathway components are strongly interconnected and inconstant; therefore, elucidating its dynamic behaviour based on experimental data only is challenging. To tackle this complexity, systems biology approaches have been successfully employed. This review summarizes the progress, advantages and disadvantages of the available mathematical modelling frameworks covering Boolean, dynamic kinetic, single-cell models, which have been used to study processes and phenomena ranging from crosstalks to sources of cell-to-cell variability in the context of SNF1 signalling. Based on the lessons from existing models, we further discuss how to develop a consensus dynamic mechanistic model of the entire SNF1 pathway that can provide novel insights into the dynamics of nutrient signalling.
  •  
17.
  • Mozzachiodi, S., et al. (author)
  • Aborting meiosis allows recombination in sterile diploid yeast hybrids
  • 2021
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 12:1
  • Journal article (peer-reviewed)abstract
    • Hybrids are often considered evolutionary dead ends because they do not generate viable offspring. Here, the authors show that sterile yeast hybrids generate genetic diversity through meiotic-like recombination by aborting meiosis and return to asexual growth. Hybrids between diverged lineages contain novel genetic combinations but an impaired meiosis often makes them evolutionary dead ends. Here, we explore to what extent an aborted meiosis followed by a return-to-growth (RTG) promotes recombination across a panel of 20 Saccharomyces cerevisiae and S. paradoxus diploid hybrids with different genomic structures and levels of sterility. Genome analyses of 275 clones reveal that RTG promotes recombination and generates extensive regions of loss-of-heterozygosity in sterile hybrids with either a defective meiosis or a heavily rearranged karyotype, whereas RTG recombination is reduced by high sequence divergence between parental subgenomes. The RTG recombination preferentially arises in regions with low local heterozygosity and near meiotic recombination hotspots. The loss-of-heterozygosity has a profound impact on sexual and asexual fitness, and enables genetic mapping of phenotypic differences in sterile lineages where linkage analysis would fail. We propose that RTG gives sterile yeast hybrids access to a natural route for genome recombination and adaptation.
  •  
18.
  • Robinson, Jonathan, 1986, et al. (author)
  • An atlas of human metabolism
  • 2020
  • In: Science Signaling. - : American Association for the Advancement of Science (AAAS). - 1945-0877 .- 1937-9145. ; 13:624
  • Journal article (peer-reviewed)abstract
    • Genome-scale metabolic models (GEMs) are valuable tools to study metabolism and provide a scaffold for the integrative analysis of omics data. Researchers have developed increasingly comprehensive human GEMs, but the disconnect among different model sources and versions impedes further progress. We therefore integrated and extensively curated the most recent human metabolic models to construct a consensus GEM, Human1. We demonstrated the versatility of Human1 through the generation and analysis of cell- and tissue-specific models using transcriptomic, proteomic, and kinetic data. We also present an accompanying web portal, Metabolic Atlas (https://www.metabolicatlas.org/), which facilitates further exploration and visualization of Human1 content. Human1 was created using a version-controlled, open-source model development framework to enable community-driven curation and refinement. This framework allows Human1 to be an evolving shared resource for future studies of human health and disease.
  •  
19.
  • Eltahir, Mohamed, et al. (author)
  • An Adaptable Antibody-Based Platform for Flexible Synthetic Peptide Delivery Built on Agonistic CD40 Antibodies
  • 2022
  • In: Advanced Therapeutics. - : Wiley. - 2366-3987. ; 5:7
  • Journal article (peer-reviewed)abstract
    • The agonistic potentials of therapeutic anti-CD40 antibodies have been profiled in relation to antibody isotype and epitope specificity. Still, clinical impact relies on a well-balanced clinical efficacy versus target-mediated toxicity. As CD40-mediated immune activation must rely on a combination of stimulation of antigen-presenting cells (APCs) alongside antigen presentation, for efficient T cell priming, alternative approaches to improve the therapeutic outcome of CD40-targeting strategies should focus on providing optimal antigen presentation together with CD40 stimulation. Herein, a bispecific antibody targeting CD40 as a means to deliver cargo (i.e., synthetic peptides) into APCs through a non-covalent, high-affinity interaction between the antibody and the cargo peptide, further referred to as the Adaptable Drug Affinity Conjugate (ADAC) technology, has been developed. The ADAC platform demonstrated a target-specific CD4+ and CD8+ T cell expansion in vitro and significantly improved peptide-specific CD8+ T cell proliferation in vivo. In addition, the strategy dramatically improved the in vitro and in vivo half-life of the synthetic peptides. Future applications of ADAC involve pandemic preparedness to viral genetic drift as well as neoepitope vaccination strategies where the bispecific antibody is an off-the-shelf product, and the peptide antigen is synthesized based on next-generation sequencing data mining. 
  •  
20.
  • Lammi, Mikko J., 1961-, et al. (author)
  • Regulation of oxygen tension as a strategy to control chondrocytic phenotype for cartilage tissue engineering and regeneration
  • 2024
  • In: Bioengineering. - : MDPI. - 2306-5354. ; 11:3
  • Research review (peer-reviewed)abstract
    • Cartilage defects and osteoarthritis are health problems which are major burdens on health care systems globally, especially in aging populations. Cartilage is a vulnerable tissue, which generally faces a progressive degenerative process when injured. This makes it the 11th most common cause of global disability. Conservative methods are used to treat the initial phases of the illness, while orthopedic management is the method used for more progressed phases. These include, for instance, arthroscopic shaving, microfracturing and mosaicplasty, and joint replacement as the final treatment. Cell-based implantation methods have also been developed. Despite reports of successful treatments, they often suffer from the non-optimal nature of chondrocyte phenotype in the repair tissue. Thus, improved strategies to control the phenotype of the regenerating cells are needed. Avascular tissue cartilage relies on diffusion for nutrients acquisition and the removal of metabolic waste products. A low oxygen content is also present in cartilage, and the chondrocytes are, in fact, well adapted to it. Therefore, this raises an idea that the regulation of oxygen tension could be a strategy to control the chondrocyte phenotype expression, important in cartilage tissue for regenerative purposes. This narrative review discusses the aspects related to oxygen tension in the metabolism and regulation of articular and growth plate chondrocytes and progenitor cell phenotypes, and the role of some microenvironmental factors as regulators of chondrocytes.
  •  
21.
  • Schnitzer, Barbara, et al. (author)
  • Multi-scale model suggests the trade-off between protein and ATP demand as a driver of metabolic changes during yeast replicative ageing
  • 2022
  • In: PLoS Computational Biology. - : Public Library of Science (PLoS). - 1553-734X .- 1553-7358. ; 18:7
  • Journal article (peer-reviewed)abstract
    • The accumulation of protein damage is one of the major drivers of replicative ageing, describing a cell’s reduced ability to reproduce over time even under optimal conditions. Reactive oxygen and nitrogen species are precursors of protein damage and therefore tightly linked to ageing. At the same time, they are an inevitable by-product of the cell’s metabolism. Cells are able to sense high levels of reactive oxygen and nitrogen species and can subsequently adapt their metabolism through gene regulation to slow down damage accumulation. However, the older or damaged a cell is the less flexibility it has to allocate enzymes across the metabolic network, forcing further adaptions in the metabolism. To investigate changes in the metabolism during replicative ageing, we developed an multi-scale mathematical model using budding yeast as a model organism. The model consists of three interconnected modules: a Boolean model of the signalling network, an enzyme-constrained flux balance model of the central carbon metabolism and a dynamic model of growth and protein damage accumulation with discrete cell divisions. The model can explain known features of replicative ageing, like average lifespan and increase in generation time during successive division, in yeast wildtype cells by a decreasing pool of functional enzymes and an increasing energy demand for maintenance. We further used the model to identify three consecutive metabolic phases, that a cell can undergo during its life, and their influence on the replicative potential, and proposed an intervention span for lifespan control. © 2022 Schnitzer et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
  •  
22.
  • Jagers, Peter, 1941 (author)
  • Branching Processes: A Personal Historical Perspective.
  • 2020
  • In: Statistical Modeling for Biological Systems: In Memory of Andrei Yakovlev. - Cham : Springer International Publishing.
  • Book chapter (other academic/artistic)abstract
    • The chapter, based on an Oberwolfach talk,  gives a - personally biased - sketch of the development of branching processes, from the mid 19th Century to recently, emphasizing relations to bioscience and demography, and to society and culture in general.
  •  
23.
  • Cheregi, Otilia, et al. (author)
  • Transcriptome analysis reveals insights into adaptive responses of two marine microalgae species to Nordic seasons
  • 2023
  • In: Algal Research. - 2211-9264. ; 74
  • Journal article (peer-reviewed)abstract
    • There is an increasing interest in algae-based biomass produced outdoors in natural and industrial settings for biotechnological applications. To predict the yield and biochemical composition of the biomass, it is important to understand how the transcriptome of species and strains of interest is affected by seasonal changes. Here we studied the effects of Nordic winter and summer on the transcriptome of two phytoplankton species, namely the diatom Skeletonema marinoi (Sm) and the eustigmatophyte Nannochloropsis granulata (Ng), recently identified as potentially important for biomass production on the west coast of Sweden. Cultures were grown in photobioreactors in simulated Nordic summer and winter, and the gene expression in two phases was quantified by Illumina RNA-sequencing. Five paired comparisons were made among the four conditions. Sm was overall more responsive to seasons since 70 % of the total transcriptome (14,783 genes) showed differential expression in at least one comparison as compared to 1.6 % (1403 genes) for Ng. For both species, we observed larger differences between the seasons than between the phases of the same season. In summer phase 1, Sm cells focused on photosynthesis and polysaccharide biosynthesis. Nitrate assimilation and recycling of intracellular nitrogen for protein biosynthesis were more active in summer phase 2 and throughout winter. Lipid catabolism was upregulated in winter relative to summer to supply carbon for respiration. Ng favored lipid accumulation in summer, while in winter activated different lipid remodeling pathways as compared to Sm. To cope with winter, Ng upregulated breakdown and transport of carbohydrates for energy production. Taken together, our transcriptome data reveal insights into adaptive seasonal responses of Sm and Ng important for biotechnological applications on the west coast of Sweden, but more work is required to decipher the molecular mechanisms behind these responses.
  •  
24.
  • Dukic Marinkov, Emilija, 1991, et al. (author)
  • Chloroplast magnesium transporters play essential but differential roles in maintaining magnesium homeostasis
  • 2023
  • In: Frontiers in Plant Science. - 1664-462X. ; 14
  • Journal article (peer-reviewed)abstract
    • Magnesium (Mg2+ ) is essential for photosynthesis in the chloroplasts of land plants and algae. Being the central ion of chlorophyll, cofactor and activator of many photosynthetic enzymes including RuBisCO, magnesium-deficient plants may suffer from leaf chlorosis symptoms and retarded growth. Therefore, the chloroplast Mg2+ concentration is tightly controlled by magnesium transport proteins. Recently, three different transporters from two distinct families have been identified in the chloroplast inner envelope of the model plant Arabidopsis thaliana: MGT10, MGR8, and MGR9. Here, we assess the individual roles of these three proteins in maintaining chloroplast Mg2+ homeostasis and regulating photosynthesis, and if their role is conserved in the model green alga Chlamydomonas reinhardtii. Phylogenetic analysis and heterologous expression revealed that the CorC-like MGR8 and MGR9 transport Mg2+ by a different mechanism than the CorA-like MGT10. MGR8 and MGT10 genes are highest expressed in leaves, indicating a function in chloroplast Mg2+ transport. MGR9 is important for chloroplast function and plant adaptation in conditions of deficiency or excess of Mg2+ . Transmission electron microscopy indicated that MGT10 plays a differential role in thylakoid stacking than MGR8 and MGR9. Furthermore, we report that MGR8, MGR9, and MGT10 are involved in building up the pH gradient across the thylakoid membrane and activating photoprotection in conditions of excess light, however the mechanism has not been resolved yet. While there are no chloroplast MGR-like transporters in Chlamydomonas, we show that MRS4 is a homolog of MGT10, that is required for photosynthesis and cell growth. Taken together, our findings reveal that the studied Mg2+ transporters play essential but differential roles in maintaining chloroplast Mg2+ homeostasis.
  •  
25.
  • Stamenković, Marija, et al. (author)
  • Fatty acids as chemotaxonomic and ecophysiological traits in green microalgae (desmids, Zygnematophyceae, Streptophyta): A discriminant analysis approach
  • 2020
  • In: Phytochemistry. - : Elsevier BV. - 0031-9422. ; 170
  • Journal article (peer-reviewed)abstract
    • © 2019 Elsevier Ltd Desmids (Zygnematophyceae) are a group of poorly studied green microalgae. The aim of the present study was to identify fatty acids (FAs) that could be used as biomarkers in desmids in general, and to determine FAs as traits within different ecophysiological desmid groups. FA profiles of 29 desmid strains were determined and analysed with respect to their geographic origin, trophic preference and age of cultivation. It appeared that merely FAs present in relatively large proportions such as palmitic, linoleic, α-linolenic and hexadecatrienoic acids could be used as biomarkers for reliable categorization of this microalgal group. Linear discriminant analysis applied to three a priori defined groups of desmids, revealed clear strain-specific characteristics regarding FA distribution, influenced by climate and trophic conditions at the source sites as well as by the age of culture and growth phase. Accordingly, when considering FAs for the determination of lower taxonomic ranks we recommend using the term “trait” instead of “biomarker”, as the latter designates unchangeable “fingerprint” of a specific taxon. Furthermore, despite that desmids were regarded as microalgae having stable genomes, long-term cultivation appeared to cause modifications in FA metabolic pathways, evident as a larger proportion of stearidonic acid in desmid strains cultivated over extensive time periods (>35 years).
  •  
26.
  • Marco Salas, Sergio, et al. (author)
  • De novo spatiotemporal modelling of cell-type signatures in the developmental human heart using graph convolutional neural networks
  • 2022
  • In: PloS Computational Biology. - : Public Library of Science (PLoS). - 1553-734X .- 1553-7358. ; 18:8
  • Journal article (peer-reviewed)abstract
    • With the emergence of high throughput single cell techniques, the understanding of the molecular and cellular diversity of mammalian organs have rapidly increased. In order to understand the spatial organization of this diversity, single cell data is often integrated with spatial data to create probabilistic cell maps. However, targeted cell typing approaches relying on existing single cell data achieve incomplete and biased maps that could mask the true diversity present in a tissue slide. Here we applied a de novo technique to spatially resolve and characterize cellular diversity of in situ sequencing data during human heart development. We obtained and made accessible well defined spatial cell-type maps of fetal hearts from 4.5 to 9 post conception weeks, not biased by probabilistic cell typing approaches. With our analysis, we could characterize previously unreported molecular diversity within cardiomyocytes and epicardial cells and identified their characteristic expression signatures, comparing them with specific subpopulations found in single cell RNA sequencing datasets. We further characterized the differentiation trajectories of epicardial cells, identifying a clear spatial component on it. All in all, our study provides a novel technique for conducting de novo spatial-temporal analyses in developmental tissue samples and a useful resource for online exploration of cell-type differentiation during heart development at sub-cellular image resolution.
  •  
27.
  • Roger, Friederike, et al. (author)
  • Peroxiredoxin promotes longevity and H2O2-resistance in yeast through redox-modulation of protein kinase A
  • 2020
  • In: eLife. - 2050-084X. ; 9, s. 1-32
  • Journal article (peer-reviewed)abstract
    • Peroxiredoxins are H2O2 scavenging enzymes that also carry out H2O2 signaling and chaperone functions. In yeast, the major cytosolic peroxiredoxin, Tsa1 is required for both promoting resistance to H2O2 and extending lifespan upon caloric restriction. We show here that Tsa1 effects both these functions not by scavenging H2O2, but by repressing the nutrient signaling Ras-cAMP-PKA pathway at the level of the protein kinase A (PKA) enzyme. Tsa1 stimulates sulfenylation of cysteines in the PKA catalytic subunit by H2O2 and a significant proportion of the catalytic subunits are glutathionylated on two cysteine residues. Redox modification of the conserved Cys243 inhibits the phosphorylation of a conserved Thr241 in the kinase activation loop and enzyme activity, and preventing Thr241 phosphorylation can overcome the H2O2 sensitivity of Tsa1-deficient cells. Results support a model of aging where nutrient signaling pathways constitute hubs integrating information from multiple aging-related conduits, including a peroxiredoxin-dependent response to H2O2.
  •  
28.
  • Zhang, Feng'e, et al. (author)
  • Cell cycle-related lncRNAs and mRNAs in osteoarthritis chondrocytes in a Northwest Chinese Han Population
  • 2020
  • In: Medicine. - : Lippincott Williams & Wilkins. - 0025-7974 .- 1536-5964. ; 99:24
  • Journal article (peer-reviewed)abstract
    • Background: A group of differentially expressed long non-coding RNAs (lncRNAs) have been shown to play key roles in osteoarthritis (OA), although they represented only a small proportion of lncRNAs that may be biologically and physiologically relevant. Since our knowledge of regulatory functions of non-coding RNAs is still limited, it is important to gain better understanding of their relation to the pathogenesis of OA.Methods: We performed mRNA and lncRNA microarray analysis to detect differentially expressed RNAs in chondrocytes from three OA patients compared with four healthy controls. Then, enrichment analysis of the differentially expressed mRNAs was carried out to define disease molecular networks, pathways and gene ontology (GO) function. Furthermore, target gene prediction based on the co-expression network was performed to reveal the potential relationships between lncRNAs and mRNAs, contributing an exploration of a role of lncRNAs in OA mechanism. Quantitative RT-PCR analyses were used to demonstrate the reliability of the experimental results.Findings: Altogether 990 lncRNAs (666 up-regulated and 324 down-regulated) and 546 mRNAs (419 up-regulated and 127 down-regulated) were differentially expressed in OA samples compared with the normal ones. The enrichment analysis revealed a set of genes involved in cell cycle. In total, 854 pairs of mRNA and lncRNA were highly linked, and further target prediction appointed 12 genes specifically for their corresponding lncRNAs. The lncRNAs lncRNA-CTD-2184D3.4, ENST00000564198.1, and ENST00000520562.1 were predicted to regulate SPC24, GALM, and ZNF345 mRNA expressions in OA.Interpretation: This study uncovered several novel genes potentially important in pathogenesis of OA, and forecast the potential function of lnc-CTD-2184D3.4, especially for the cell cycle in the chondrocytes. These findings may promote additional aspects in studies of OA.
  •  
29.
  • Gollan, Peter, et al. (author)
  • Photosynthetic and transcriptome responses to fluctuating light in Arabidopsis thylakoid ion transport triple mutant
  • 2023
  • In: Plant Direct. - 2475-4455. ; 7:10
  • Journal article (peer-reviewed)abstract
    • Fluctuating light intensity challenges fluent photosynthetic electron transport in plants, inducing photoprotection while diminishing carbon assimilation and growth, and also influencing photosynthetic signaling for regulation of gene expression. Here, we employed in vivo chlorophyll-a fluorescence and P700 difference absorption measurements to demonstrate the enhancement of photoprotective energy dissipation of both photosystems in wild-type Arabidopsis thaliana after 6 h exposure to fluctuating light as compared with constant light conditions. This acclimation response to fluctuating light was hampered in a triple mutant lacking the thylakoid ion transport proteins KEA3, VCCN1, and CLCe, leading to photoinhibition of photosystem I. Transcriptome analysis revealed upregulation of genes involved in biotic stress and defense responses in both genotypes after exposure to fluctuating as compared with constant light, yet these responses were demonstrated to be largely upregulated in triple mutant already under constant light conditions compared with wild type. The current study illustrates the rapid acclimation of plants to fluctuating light, including photosynthetic, transcriptomic, and metabolic adjustments, and highlights the connection among thylakoid ion transport, photosynthetic energy balance, and cell signaling.
  •  
30.
  • Brechmann, Nils A., et al. (author)
  • Antibody capture process based on magnetic beads from very high cell density suspension
  • 2021
  • In: Biotechnology and Bioengineering. - : John Wiley and Sons Inc. - 0006-3592 .- 1097-0290. ; 118:9, s. 3499-3510
  • Journal article (peer-reviewed)abstract
    • Cell clarification represents a major challenge for the intensification through very high cell density in the production of biopharmaceuticals such as monoclonal antibodies (mAbs). The present report proposes a solution to this challenge in a streamlined process where cell clarification and mAb capture are performed in a single step using magnetic beads coupled with protein A. Capture of mAb from non-clarified CHO cell suspension showed promising results; however, it has not been demonstrated that it can handle the challenge of very high cell density as observed in intensified fed-batch cultures. The performances of magnetic bead-based mAb capture on non-clarified cell suspension from intensified fed-batch culture were studied. Capture from a culture at density larger than 100 × 106 cells/ml provided an adsorption efficiency of 99% and an overall yield of 93% with a logarithmic host cell protein (HCP) clearance of ≈2–3 and a resulting HCP concentration ≤≈5 ppm. These results show that direct capture from very high cell density cell suspension is possible without prior processing. This technology, which brings significant benefits in terms of operational cost reduction and performance improvements such as low HCP, can be a powerful tool alleviating the challenge of process intensification. 
  •  
31.
  • Schulze, Yves, et al. (author)
  • Chemical-genomic profiling identifies genes that protect yeast from aluminium, gallium, and indium toxicity
  • 2023
  • In: Metallomics. - : Oxford University Press. - 1756-5901 .- 1756-591X. ; 15:6
  • Journal article (peer-reviewed)abstract
    • Aluminium, gallium, and indium are group 13 metals with similar chemical and physical properties. While aluminium is one of the most abundant elements in the Earth's crust, gallium and indium are present only in trace amounts. However, the increased use of the latter metals in novel technologies may result in increased human and environmental exposure. There is mounting evidence that these metals are toxic, but the underlying mechanisms remain poorly understood. Likewise, little is known about how cells protect themselves from these metals. Aluminium, gallium, and indium are relatively insoluble at neutral pH, and here we show that they precipitate in yeast culture medium at acidic pH as metal-phosphate species. Despite this, the dissolved metal concentrations are sufficient to induce toxicity in the yeast Saccharomyces cerevisiae. By chemical-genomic profiling of the S. cerevisiae gene deletion collection, we identified genes that maintain growth in the presence of the three metals. We found both shared and metal-specific genes that confer resistance. The shared gene products included functions related to calcium metabolism and Ire1/Hac1-mediated protection. Metal-specific gene products included functions in vesicle-mediated transport and autophagy for aluminium, protein folding and phospholipid metabolism for gallium, and chorismate metabolic processes for indium. Many of the identified yeast genes have human orthologues involved in disease processes. Thus, similar protective mechanisms may act in yeast and humans. The protective functions identified in this study provide a basis for further investigations into toxicity and resistance mechanisms in yeast, plants, and humans. © 2023 The Author(s). 
  •  
32.
  • Yu, R., et al. (author)
  • Nitrogen limitation reveals large reserves in metabolic and translational capacities of yeast
  • 2020
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 11:1
  • Journal article (peer-reviewed)abstract
    • Cells maintain reserves in their metabolic and translational capacities as a strategy to quickly respond to changing environments. Here we quantify these reserves by stepwisereducing nitrogen availability in yeast steady-state chemostat cultures, imposing severe restrictions on total cellular protein and transcript content. Combining multi-omics analysis with metabolic modeling, we find that seven metabolic superpathways maintain >50% metabolic capacity in reserve, with glucose metabolism maintaining >80% reserve capacity. Cells maintain >50% reserve in translational capacity for 2490 out of 3361 expressed genes (74%), with a disproportionately large reserve dedicated to translating metabolic proteins. Finally, ribosome reserves contain up to 30% sub-stoichiometric ribosomal proteins, with activation of reserve translational capacity associated with selective upregulation of 17 ribosomal proteins. Together, our dataset provides a quantitative link between yeast physiology and cellular economics, which could be leveraged in future cell engineering through targeted proteome streamlining. © 2020, The Author(s).
  •  
33.
  •  
34.
  • Schmidt, G. W., et al. (author)
  • Mig1 localization exhibits biphasic behavior which is controlled by both metabolic and regulatory roles of the sugar kinases
  • 2020
  • In: Molecular Genetics and Genomics. - : Springer Science and Business Media LLC. - 1617-4615 .- 1617-4623. ; 295, s. 1489-1500
  • Journal article (peer-reviewed)abstract
    • Glucose, fructose and mannose are the preferred carbon/energy sources for the yeastSaccharomyces cerevisiae. Absence of preferred energy sources activates glucose derepression, which is regulated by the kinase Snf1. Snf1 phosphorylates the transcriptional repressor Mig1, which results in its exit from the nucleus and subsequent derepression of genes. In contrast, Snf1 is inactive when preferred carbon sources are available, which leads to dephosphorylation of Mig1 and its translocation to the nucleus where Mig1 acts as a transcription repressor. Here we revisit the role of the three hexose kinases, Hxk1, Hxk2 and Glk1, in glucose de/repression. We demonstrate that all three sugar kinases initially affect Mig1 nuclear localization upon addition of glucose, fructose and mannose. This initial import of Mig1 into the nucleus was temporary; for continuous nucleocytoplasmic shuttling of Mig1, Hxk2 is required in the presence of glucose and mannose and in the presence of fructose Hxk2 or Hxk1 is required. Our data suggest that Mig1 import following exposure to preferred energy sources is controlled via two different pathways, where (1) the initial import is regulated by signals derived from metabolism and (2) continuous shuttling is regulated by the Hxk2 and Hxk1 proteins. Mig1 nucleocytoplasmic shuttling appears to be important for the maintenance of the repressed state in which Hxk1/2 seems to play an essential role.
  •  
35.
  • Akkuratov, Evgeny E. (author)
  • The Biophysics of Na+,K+-ATPase in neuronal health and disease
  • 2020
  • Doctoral thesis (other academic/artistic)abstract
    • Na+,K+-ATPase is one of the most important proteins in the mammalian cell. It creates sodium and potassium gradients which are fundamental for the membrane potential and sodium-dependent secondary active transport. It has a second role in the cell as a receptor that by binding chemicals from the cardiotonic steroids family, the most knowledgeable of them is ouabain, triggers various signaling pathways in the cell which regulate gene activation, proliferation, apoptosis, etc. It has been shown that several severe neurological diseases are associated with mutations in the Na+,K+-ATPase encoding genes. Although Na+,K+-ATPase was discovered already in 1957 by the Danish scientist Jens Skou, the knowledge about the function of this enzyme  is still not complete. In the studies included in the thesis, we have learned more about the function of Na+,K+-ATPase in different aspects of health and disease. In study I we showed a mechanism of ouabain-dependent regulation of the NMDA receptor, one of the most important receptors in the nervous system, via binding with Na+,K+-ATPase. This allows us to look at the Na+,K+-ATPase as regulator via protein-protein interaction. In study II we investigated a different aspect of Na+,K+-ATPase functioning – to look at how binding of ouabain to Na+,K+-ATPase activates a number of signaling cascades by looking at the phosphoproteome status of the cells. This allows us to see the whole picture of ouabain-mediated cascades and further characterize them. In study III we focused on the role of Na+,K+-ATPase in severe epileptic encephalopathy caused by a mutation in the ATP1A1 gene. We performed a molecular and cellular study to describe how mutations affects protein structure and function and found that this mutation converts the ion pump to a nonspecific leak channel. In study IV we performed a translational study of the most common mutation for rapid-onset dystonia-parkinsonism. We studied how this mutation affects the nervous system on the protein-, cellular-, and organism level and found that the complete absence of ultraslow afterhyperpolarization (usAHP) could explain gait disturbances found in patients. In the on-going study we showed that Na+,K+-ATPase can oligomerize and that this effect is triggered by ouabain binding to the Na+,K+-ATPase. In this study, we utilized a novel fluorescence labelling approach and used biophysical techniques with single molecule sensitivity to track Na+,K+-ATPase interactions. In summary, we applied biophysical and molecular methods to study different aspects of the function of Na+,K+-ATPase, and gained insights that could be helpful not only for answering fundamental questions about Na+,K+-ATPase but also to find a treatment for patients with diseases associated with mutations in this protein.
  •  
36.
  • Mohammed, Mubasher, Msc, et al. (author)
  • Single-Cell Transcriptomics To Define Plasmodium falciparum Stage Transition in the Mosquito Midgut
  • 2023
  • In: Microbiology Spectrum. - : American Society for Microbiology. - 2165-0497. ; 11:2
  • Journal article (peer-reviewed)abstract
    • Malaria inflicts the highest rate of morbidity and mortality among the vector-borne diseases. The dramatic bottleneck of parasite numbers that occurs in the gut of the obligatory mosquito vector provides a promising target for novel control strategies. Using single-cell transcriptomics, we analyzed Plasmodium falciparum development in the mosquito gut, from unfertilized female gametes through the first 20 h after blood feeding, including the zygote and ookinete stages. This study revealed the temporal gene expression of the ApiAP2 family of transcription factors and of parasite stress genes in response to the harsh environment of the mosquito midgut. Further, employing structural protein prediction analyses, we found several upregulated genes predicted to encode intrinsically disordered proteins (IDPs), a category of proteins known for their importance in regulation of transcription, translation, and protein-protein interactions. IDPs are known for their antigenic properties and may serve as suitable targets for antibody- or peptide-based transmission suppression strategies. In total, this study uncovers the P. falciparum transcriptome from early to late parasite development in the mosquito midgut, inside its natural vector, which provides an important resource for future malaria transmission-blocking initiatives.
  •  
37.
  • Lorentzon, Emma, 1995, et al. (author)
  • Effects of the toxic metals arsenite and cadmium on α-synuclein aggregation in vitro and in cells
  • 2021
  • In: International Journal of Molecular Sciences. - : MDPI AG. - 1661-6596 .- 1422-0067. ; 22:21
  • Journal article (peer-reviewed)abstract
    • Exposure to heavy metals, including arsenic and cadmium, is associated with neurodegen-erative disorders such as Parkinson’s disease. However, the mechanistic details of how these metals contribute to pathogenesis are not well understood. To search for underlying mechanisms involving α-synuclein, the protein that forms amyloids in Parkinson’s disease, we here assessed the effects of arsenic and cadmium on α-synuclein amyloid formation in vitro and in Saccharomyces cerevisiae (budding yeast) cells. Atomic force microscopy experiments with acetylated human α-synuclein demonstrated that amyloid fibers formed in the presence of the metals have a different fiber pitch compared to those formed without metals. Both metal ions become incorporated into the amyloid fibers, and cadmium also accelerated the nucleation step in the amyloid formation process, likely via binding to intermediate species. Fluorescence microscopy analyses of yeast cells expressing fluorescently tagged α-synuclein demonstrated that arsenic and cadmium affected the distribution of α-synuclein aggregates within the cells, reduced aggregate clearance, and aggravated α-synuclein toxicity. Taken together, our in vitro data demonstrate that interactions between these two metals and α-synuclein modulate the resulting amyloid fiber structures, which, in turn, might relate to the observed effects in the yeast cells. Whilst our study advances our understanding of how these metals affect α-synuclein biophysics, further in vitro characterization as well as human cell studies are desired to fully appreciate their role in the progression of Parkinson’s disease.
  •  
38.
  • Wiktor, Jakub, et al. (author)
  • RecA finds homologous DNA by reduced dimensionality search
  • 2021
  • In: Nature. - : Springer Nature. - 0028-0836 .- 1476-4687. ; 597:7876, s. 426-429
  • Journal article (peer-reviewed)abstract
    • Homologous recombination is essential for the accurate repair of double-stranded DNA breaks (DSBs)1. Initially, the RecBCD complex2 resects the ends of the DSB into 3′ single-stranded DNA on which a RecA filament assembles3. Next, the filament locates the homologous repair template on the sister chromosome4. Here we directly visualize the repair of DSBs in single cells, using high-throughput microfluidics and fluorescence microscopy. We find that, in Escherichia coli, repair of DSBs between segregated sister loci is completed in 15 ± 5 min (mean ± s.d.) with minimal fitness loss. We further show that the search takes less than 9 ± 3 min (mean ± s.d) and is mediated by a thin, highly dynamic RecA filament that stretches throughout the cell. We propose that the architecture of the RecA filament effectively reduces search dimensionality. This model predicts a search time that is consistent with our measurement and is corroborated by the observation that the search time does not depend on the length of the cell or the amount of DNA. Given the abundance of RecA homologues5, we believe this model to be widely conserved across living organisms. 
  •  
39.
  • Shashkova, Sviatlana, 1987, et al. (author)
  • Correlating single-molecule characteristics of the yeast aquaglyceroporin Fps1 with environmental perturbations directly in living cells
  • 2021
  • In: Methods. - : Elsevier BV. - 1095-9130 .- 1046-2023. ; 193, s. 46-53
  • Journal article (peer-reviewed)abstract
    • Membrane proteins play key roles at the interface between the cell and its environment by mediating selective import and export of molecules via plasma membrane channels. Despite a multitude of studies on transmembrane channels, understanding of their dynamics directly within living systems is limited. To address this, we correlated molecular scale information from living cells with real time changes to their microenvironment. We employed super-resolved millisecond fluorescence microscopy with a single-molecule sensitivity, to track labelled molecules of interest in real time. We use as example the aquaglyceroporin Fps1 in the yeast Saccharomyces cerevisiae to dissect and correlate its stoichiometry and molecular turnover kinetics with various extracellular conditions. We show that Fps1 resides in multi tetrameric clusters while hyperosmotic and oxidative stress conditions cause Fps1 reorganization. Moreover, we demonstrate that rapid exposure to hydrogen peroxide causes Fps1 degradation. In this way we shed new light on aspects of architecture and dynamics of glycerol-permeable plasma membrane channels.
  •  
40.
  • Kvello, Pål, et al. (author)
  • Identifying knowledge important to teach about the nervous system in the context of secondary biology and science education-A Delphi study
  • 2021
  • In: PLOS ONE. - : Public Library of Science. - 1932-6203. ; 16:12 December, s. 1-32
  • Journal article (peer-reviewed)abstract
    • Teaching about the nervous system has become a challenging task in secondary biology and science education because of the fast development in the field of neuroscience. A major challenge is to determine what content to teach. Curricula goals are often too general to guide instruction, and information about the nervous system has become overwhelming and diverse with ubiquitous relevance in society. In addition, several misconceptions and myths are circulating in educational communities causing world-wide confusion as to what content is correct. To help teachers, textbook authors, and curricula developers in this challenging landscape of knowledge, the aim of the present study is to identify the expert view on what knowledge is important for understanding the nervous system in the context of secondary biology and science education. To accomplish this, we have conducted a thematic content analysis of textbooks followed by a Delphi study of 15 experts in diverse but relevant fields. The results demonstrate six curriculum themes including gross anatomy and function, cell types and functional units, the nerve signal, connections between neurons, when nerve signals travel through networks of neurons, and plasticity in the nervous system, as well as 26 content principles organized in a coherent curriculum progression from general content to more specific content. Whereas some of the principles clarify and elaborate on traditional school biology knowledge, others add new knowledge to the curriculum. Importantly, the new framework for teaching about the nervous system presented here, meets the needs of society, as expressed by recent international policy frameworks of OECD and WHO, and it addresses common misconceptions about the brain. The study suggests an update of the biology and science curriculum.
  •  
41.
  • Zhang, Xiaolu, 1983, et al. (author)
  • The Caenorhabditis elegans homolog of human copper chaperone Atox1, CUC-1, aids in distal tip cell migration
  • 2020
  • In: Biometals. - : Springer Science and Business Media LLC. - 0966-0844 .- 1572-8773. ; :33, s. 147-157
  • Journal article (peer-reviewed)abstract
    • Cell migration is a fundamental biological process involved in for example embryonic development, immune system and wound healing. Cell migration is also a key step in cancer metastasis and the human copper chaperone Atox1 was recently found to facilitate this process in breast cancer cells. To explore the role of the copper chaperone in other cell migration processes, we here investigated the putative involvement of an Atox1 homolog in Caenorhabditis elegans, CUC-1, in distal tip cell migration, which is a key process during the development of the C. elegans gonad. Using knock-out worms, in which the cuc-1 gene was removed by CRISPR-Cas9 technology, we probed life span, brood size, as well as distal tip cell migration in the absence or presence of supplemented copper. Upon scoring of gonads, we found that cuc-1 knock-out, but not wild-type, worms exhibited distal tip cell migration defects in approximately 10-15% of animals and, had a significantly reduced brood size. Importantly, the distal tip cell migration defect was rescued by a wild-type cuc-1 transgene provided to cuc-1 knock-out worms. The results obtained here for C. elegans CUC-1 imply that Atox1 homologs, in addition to their well-known cytoplasmic copper transport, may contribute to developmental cell migration processes.
  •  
42.
  • Mehmedovic, Majda, et al. (author)
  • Disease causing mutation (P178L) in mitochondrial transcription factor A results in impaired mitochondrial transcription initiation
  • 2022
  • In: Biochimica Et Biophysica Acta-Molecular Basis of Disease. - : Elsevier BV. - 0925-4439 .- 1879-260X. ; 1868:10
  • Journal article (peer-reviewed)abstract
    • Mitochondrial transcription factor A (TFAM) is essential for the maintenance, expression, and packaging of mitochondrial DNA (mtDNA). Recently, a pathogenic homozygous variant in TFAM (P178L) has been associated with a severe mtDNA depletion syndrome leading to neonatal liver failure and early death. We have performed a biochemical characterization of the TFAM variant P178L in order to understand the molecular basis for the pathogenicity of this mutation. We observe no effects on DNA binding, and compaction of DNA is only mildly affected by the P178L amino acid change. Instead, the mutation severely impairs mtDNA transcription initiation at the mitochondrial heavy and light strand promoters. Molecular modeling suggests that the P178L mutation affects promoter sequence recognition and the interaction between TFAM and the tether helix of POLRMT, thus explaining transcription initiation deficiency.
  •  
43.
  • Troussicot, Laura, et al. (author)
  • Structural determinants of multimerization and dissociation in 2-Cys peroxiredoxin chaperone function
  • 2021
  • In: Structure. - : Elsevier BV. - 0969-2126 .- 1878-4186. ; 29:7, s. 640-654
  • Journal article (peer-reviewed)abstract
    • Peroxiredoxins (PRDXs) are abundant peroxidases present in all kingdoms of life. Recently, they have been shown to also carry out additional roles as molecular chaperones. To address this emerging supplementary function, this review focuses on structural studies of 2-Cys PRDX systems exhibiting chaperone activity. We provide a detailed understanding of the current knowledge of structural determinants underlying the chaperone function of PRDXs. Specifically, we describe the mechanisms which may modulate their quaternary structure to facilitate interactions with client proteins and how they are coordinated with the functions of other molecular chaperones. Following an overview of PRDX molecular architecture, we outline structural details of the presently best-characterized peroxiredoxins exhibiting chaperone function and highlight common denominators. Finally, we discuss the remarkable structural similarities between 2-Cys PRDXs, small HSPs, and J-domain-independent Hsp40 holdases in terms of their functions and dynamic equilibria between lowand high-molecular-weight oligomers.
  •  
44.
  • García-Díaz, Carmen C., et al. (author)
  • Plasticity of mitochondrial function safeguards phosphorylating respiration during in vitro simulation of rest-phase hypothermia
  • 2023
  • In: FASEB Journal. - 1530-6860. ; 37:4
  • Journal article (peer-reviewed)abstract
    • Many animals downregulate body temperature to save energy when resting (rest-phase hypothermia). Small birds that winter at high latitudes have comparatively limited capacity for hypothermia and so pay large energy costs for thermoregulation during cold nights. Available evidence suggests this process is fueled by adenosine triphosphate (ATP)-dependent mechanisms. Most ATP is produced by oxidative phosphorylation in the mitochondria, but mitochondrial respiration may be lower during hypothermia because of the temperature dependence of biological processes. This can create conflict between increased organismal ATP demand and a lower mitochondrial capacity to provide it. We studied this in blood cell mitochondria of wild great tits (Parus major) by simulating rest-phase hypothermia via a 6°C reduction in assay temperature in vitro. The birds had spent the night preceding the experiment in thermoneutrality or in temperatures representing mild or very cold winter nights, but night temperatures never affected mitochondrial respiration. However, across temperature groups, endogenous respiration was 14% lower in hypothermia. This did not reflect general thermal suppression of mitochondrial function because phosphorylating respiration was unaffected by thermal state. Instead, hypothermia was associated with a threefold reduction of leak respiration, from 17% in normothermia to 4% in hypothermia. Thus, the coupling of total respiration to ATP production was 96% in hypothermia, compared to 83% in normothermia. Our study shows that the thermal insensitivity of phosphorylation combined with short-term plasticity of leak respiration may safeguard ATP production when endogenous respiration is suppressed. This casts new light on the process by which small birds endure harsh winter cold and warrants future tests across tissues in vivo.
  •  
45.
  • Davidsson, Sabina, 1972-, et al. (author)
  • Infiltration of M2 Macrophages and Regulatory T Cells Plays a Role in Recurrence of Renal Cell Carcinoma
  • 2020
  • In: European Urology Open Science. - : Elsevier. - 2666-1691 .- 2666-1683. ; 20, s. 62-71
  • Journal article (peer-reviewed)abstract
    • Regulatory T cells (Tregs) and M2 macrophages have been hypothesized to contribute to tumor progression. We found that M2 macrophages and Tregs are associated with more aggressive renal cell carcinoma, and that they have a synergistic effect on clinical outcome. Background: It has been hypothesized that M2 macrophages and regulatory T cells (Tregs) may contribute to tumor progression by suppression of antitumor immunity. Objective: To investigate the association between infiltration of CD163+ M2 macrophages and CD4+FOXP3+ Tregs with clinical outcomes in renal cell carcinoma patients. Design, setting, and participants: A cohort of 346 patients diagnosed with renal cell carcinoma at Örebro University Hospital between 1986 and 2011 was evaluated for CD163+ M2 macrophage and CD4+FOXP3+ Treg infiltration by immunohistochemistry. Outcome measurements and statistical analysis: Associations between clinicopathological features and infiltration of CD163+ M2 macrophages and/or CD4+FOXP3+ Tregs were estimated with chi-square or Fisher's exact tests. For survival analyses, Kaplan-Meier curves with log-rank tests and multivariate Cox proportional hazards regression models were used. Results and limitations: We found that infiltration of CD163+ M2 macrophages and CD4+FOXP3+ Tregs were associated with adverse clinical outcomes. Our data further demonstrate that CD163+ M2 macrophages and CD4+FOXP3+ Tregs colocalize in tumor and normal tissue, and that this colocalization may have synergistic effects on tumor aggressiveness. The use of tissue microarrays rather than whole sections may be viewed as a limitation. Conclusions: Infiltration of CD163+ M2 macrophages and CD4+FOXP3+ Tregs is associated with recurrence of renal cell carcinoma, and colocalization of these cell types may have an association with clinical outcome. Patient summary: The aim of this study was to investigate the association between infiltration of M2 macrophages and regulatory T cells with clinical outcomes in renal cell carcinoma. We demonstrated that renal cell carcinoma patients with high infiltration of both these cell types are at an increased risk of poor clinical outcomes.
  •  
46.
  • Dziedziech, Alexis, 1991- (author)
  • Timing Matters : Wounding and entomopathogenic nematode infection kinetics
  • 2021
  • Doctoral thesis (other academic/artistic)abstract
    • Over time, insects have developed complex strategies to defend themselves against presenting threats. However, in the evolutionary arms race of survival, pathogens have adapted to quickly overcome the immune response mounted by the host. In this thesis, we assess how quickly entomopathogenic nematodes (EPNs) can overcome the host, Drosophila melanogaster. We then look at the clotting reaction at a hypothetical point of entry for the nematode and bring resolution to the order of protein interaction focusing on three proteins important in the anti-nematode defense. Finally, we look closer into detail at how crystal cells secrete one of those proteins, prophenoloxidase (PPOII) using a mode of programmed cell death. (Paper I) In the course of EPN infection, little was known about how quickly the worms can overcome the host immune system. Here we found that after penetrating the host, EPNs cause septicemia within 4 to 6 hours. (Paper II) Three proteins, Glutactin (Glt), Transglutaminase (Tg), and PPOII have been found to be important in the anti-nematode response. Here we created GFP-tagged fly constructs to follow their role in clot formation. In early clot formation, Tg was immediately secreted from hemocytes though it was localized around the cell membrane, Glt then entered clot fibers followed by PPOII which acted in late clot formation. (Paper III) Here we looked closer into Tg and PPOII secretion variability. PPOII from immature, but not mature crystal cells colocalized with a membrane marker. Tg, when driven with a pan tissue driver, was found located in clotting fibers, in contrast with paper II. (Paper IV) In an in vivo immune scenario, crystal cells were recruited to the wound site and burst rapidly in a caspase-dependent manner. We demonstrate that the mode of programmed cell death, pyroptosis, exists in Drosophila by way of convergent evolution.This thesis brings to light the variation found within the infection process for EPNs as well as the clotting response based on larval age, tissue type, and the maturity of a single cell type. Timing in each of these immune scenarios can give very different indications about the kind of immune response mounted and even the role of an individual cell.
  •  
47.
  • Berndtsson, Jens, et al. (author)
  • Respiratory supercomplexes enhance electron transport by decreasing cytochrome c diffusion distance
  • 2020
  • In: Embo Reports. - : EMBO. - 1469-221X .- 1469-3178. ; 21
  • Journal article (peer-reviewed)abstract
    • Respiratory chains are crucial for cellular energy conversion and consist of multi-subunit complexes that can assemble into supercomplexes. These structures have been intensively characterized in various organisms, but their physiological roles remain unclear. Here, we elucidate their function by leveraging a high-resolution structural model of yeast respiratory supercomplexes that allowed us to inhibit supercomplex formation by mutation of key residues in the interaction interface. Analyses of a mutant defective in supercomplex formation, which still contains fully functional individual complexes, show that the lack of supercomplex assembly delays the diffusion of cytochromec between the separated complexes, thus reducing electron transfer efficiency. Consequently, competitive cellular fitness is severely reduced in the absence of supercomplex formation and can be restored by overexpression of cytochromec. In sum, our results establish how respiratory supercomplexes increase the efficiency of cellular energy conversion, thereby providing an evolutionary advantage for aerobic organisms.
  •  
48.
  • Ceder, Mikaela, 1991- (author)
  • Characterization of Novel Solute Carriers in Humans, Mice and Flies : Solute Carriers in a Broad and Narrow Perspective
  • 2020
  • Doctoral thesis (other academic/artistic)abstract
    • The solute carrier family is the largest family of membrane-bound transporters in humans, with 430 members divided into 65 subfamilies. They transport various substrates across lipid barriers and are vital for absorption, distribution, metabolism and excretion in all cell types in the body. Despite being involved in vital functions, and their effect on both physiology and pathophysiology, many transporters are not characterized. The aim of this thesis was to study newly identified putative solute carriers of which little is known. In Paper I, the relationship of solute carriers in humans and fruit flies was studied. The study revealed that 54 of the 65 subfamilies in humans have one or more orthologues in fruit flies, and a total of 381 orthologues were identified in fruit flies. In Paper II, a comprehensive study of the putative solute carriers and their response to different sugar concentrations were performed. Several, but not all, putative solute carriers were altered in cell cultures maintained in media containing low or no glucose, and the expression normalized upon refeeding with glucose. Similar results were observed in fruit flies subjected to complete starvation or diets with varying sugar concentrations. Last, in Paper III and IV, characterization of one putative solute carrier, UNC93A, was performed. The studies revealed that UNC93A was a conserved protein with an abundant expression in the body of mice but with a restricted expression in fruit flies. The protein was found to possibly be expressed at, or close to, the plasma membrane of cells and to co-localize with Twik-Acid sensitive potassium channels. UNC93A was found to be important for the renal function in fruit flies and to affect survival and membrane potentials in cells. The findings of this thesis establish a high conservation of several putative solute carriers and that they have a highly dynamic regulation during fluctuating energy and glucose availability. Further, while several clear biological aspects of UNC93A was identified, the exact function of transporter proteins is cumbersome to find and more research about these transporters is needed to fully understand their mechanistic role and their association and/or involvement in health and sickness.
  •  
49.
  • Kohler, Verena, 1992-, et al. (author)
  • Closing the gap : membrane contact sites in the regulation of autophagy
  • 2020
  • In: Cells. - : MDPI. - 2073-4409. ; 9:5, s. 1184-1184
  • Research review (peer-reviewed)abstract
    • In all eukaryotic cells, intracellular organization and spatial separation of incompatible biochemical processes is established by individual cellular subcompartments in form of membrane-bound organelles. Virtually all of these organelles are physically connected via membrane contact sites (MCS), allowing interorganellar communication and a functional integration of cellular processes. These MCS coordinate the exchange of diverse metabolites and serve as hubs for lipid synthesis and trafficking. While this of course indirectly impacts on a plethora of biological functions, including autophagy, accumulating evidence shows that MCS can also directly regulate autophagic processes. Here, we focus on the nexus between interorganellar contacts and autophagy in yeast and mammalian cells, highlighting similarities and differences. We discuss MCS connecting the ER to mitochondria or the plasma membrane, crucial for early steps of both selective and non-selective autophagy, the yeast-specific nuclear–vacuolar tethering system and its role in microautophagy, the emerging function of distinct autophagy-related proteins in organellar tethering as well as novel MCS transiently emanating from the growing phagophore and mature autophagosome.
  •  
50.
  • Singh, Abeer Prakash, 1988, et al. (author)
  • Molecular Connectivity of Mitochondrial Gene Expression and OXPHOS Biogenesis
  • 2020
  • In: Molecular Cell. - : Elsevier BV. - 1097-2765 .- 1097-4164. ; 79:6
  • Journal article (peer-reviewed)abstract
    • Mitochondria contain their own gene expression systems, including membrane-bound ribosomes dedicated to synthesizing a few hydrophobic subunits of the oxidative phosphorylation (OXPHOS) complexes. We used a proximity-dependent biotinylation technique, BiolD, coupled with mass spectrometry to delineate in baker's yeast a comprehensive network of factors involved in biogenesis of mitochondrial encoded proteins. This mitochondrial gene expression network (MiGENet) encompasses proteins involved in transcription, RNA processing, translation, or protein biogenesis. Our analyses indicate the spatial organization of these processes, thereby revealing basic mechanistic principles and the proteins populating strategically important sites. For example, newly synthesized proteins are directly handed over to ribosomal tunnel exit-bound factors that mediate membrane insertion, co-factor acquisition, or their mounting into OXPHOS complexes in a special early assembly hub. Collectively, the data reveal the connectivity of mitochondrial gene expression, reflecting a unique tailoring of the mitochondrial gene expression system.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-50 of 1184
Type of publication
journal article (941)
doctoral thesis (94)
research review (85)
book chapter (44)
conference paper (13)
other publication (4)
show more...
licentiate thesis (2)
reports (1)
show less...
Type of content
peer-reviewed (1039)
other academic/artistic (144)
pop. science, debate, etc. (1)
Author/Editor
Nielsen, Jens B, 196 ... (29)
Nyström, Thomas, 196 ... (10)
Molin, Mikael, 1973 (10)
Uhlén, Mathias (9)
Hellman, Lars (9)
Akula, Srinivas (9)
show more...
Mijakovic, Ivan, 197 ... (8)
Liu, Beidong, 1972 (8)
Pejler, Gunnar (8)
Tamás, Markus J., 19 ... (8)
Ljung, Karin (8)
Shibuya, Hiroki, 198 ... (8)
Jörnsten, Rebecka, 1 ... (7)
Kerkhoven, Eduard, 1 ... (7)
Borén, Jan, 1963 (7)
Spetea, Cornelia, 19 ... (7)
Wu, Yao-Wen, Profess ... (7)
Cvijovic, Marija, 19 ... (7)
Esbjörner Winters, E ... (7)
Mardinoglu, Adil (6)
Sunnerhagen, Per, 19 ... (6)
Hao, Xinxin (6)
Sihlbom, Carina, 197 ... (6)
Nilsson, Bo (6)
Wittung-Stafshede, P ... (6)
Warringer, Jonas, 19 ... (6)
Lundqvist, Johan (6)
Falkenberg, Maria, 1 ... (6)
Eriksson, Leif A, 19 ... (6)
El-Seedi, Hesham (5)
Lindskog, Cecilia (5)
Palmer, Ruth H., 197 ... (5)
Pandit, Santosh, 198 ... (5)
Karlsson, Niclas G., ... (5)
Van Aken, Olivier (5)
Zhang, Jingjing, 198 ... (5)
Lundberg, Emma (5)
Teramura, Yuji (5)
Nilsson Ekdahl, Kris ... (5)
Parmryd, Ingela (5)
Chen, Xin, 1980 (5)
Jeppsson, Anders, 19 ... (5)
Elf, Johan (5)
Lundmark, Richard (5)
Wernersson, Sara (5)
Fu, Zhirong (5)
Olsson, Anna-Karin (5)
Peter, Bradley (5)
Andersson, Leif (5)
Nelander, Sven (5)
show less...
University
Uppsala University (288)
University of Gothenburg (260)
Umeå University (179)
Chalmers University of Technology (176)
Karolinska Institutet (148)
Lund University (141)
show more...
Stockholm University (123)
Royal Institute of Technology (114)
Swedish University of Agricultural Sciences (107)
Linköping University (69)
Örebro University (17)
Linnaeus University (17)
University of Skövde (16)
RISE (13)
Malmö University (8)
Luleå University of Technology (3)
Jönköping University (2)
Karlstad University (2)
Mid Sweden University (1)
University of Borås (1)
Swedish Museum of Natural History (1)
Sophiahemmet University College (1)
IVL Swedish Environmental Research Institute (1)
show less...
Language
English (1183)
Swedish (1)
Research subject (UKÄ/SCB)
Natural sciences (1184)
Medical and Health Sciences (624)
Engineering and Technology (34)
Agricultural Sciences (34)
Social Sciences (2)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view