SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0006 8314 OR L773:1573 1472 srt2:(2010-2014)"

Sökning: L773:0006 8314 OR L773:1573 1472 > (2010-2014)

  • Resultat 1-13 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bocquet, Florence, et al. (författare)
  • Comparing Estimates of Turbulence Based on Near-Surface Measurements in the Nocturnal Stable Boundary Layer
  • 2011
  • Ingår i: Boundary-layer Meteorology. - : Springer Science and Business Media LLC. - 0006-8314 .- 1573-1472. ; 138:1, s. 43-60
  • Tidskriftsartikel (refereegranskat)abstract
    • Tethered Lifting System (TLS) estimates of the dissipation rate of turbulent kinetic energy (epsilon) are reasonably well correlated with concurrent measurements of vertical velocity variance (sigma(2)(w)) obtained from sonic anemometers located on a nearby 60-m tower during the CASES-99 field experiment. Additional results in the first 100m of the nocturnal stable boundary layer confirm our earlier claim that the presence of weak but persistent background turbulence exists even during the most stable atmospheric conditions, where e can exhibit values as low as 10(-7) m(2) s(-3). We also present a set of empirical equations that incorporates TLS measurements of temperature, horizontal wind speed, and e to provide a proxy measurement for sigma(2)(w) at altitudes higher than tower heights.
  •  
2.
  • Bosveld, Fred C., et al. (författare)
  • The Third GABLS Intercomparison Case for Evaluation Studies of Boundary-Layer Models. Part B : Results and Process Understanding
  • 2014
  • Ingår i: Boundary-layer Meteorology. - : Springer Science and Business Media LLC. - 0006-8314 .- 1573-1472. ; 152:2, s. 157-187
  • Tidskriftsartikel (refereegranskat)abstract
    • We describe and analyze the results of the third global energy and water cycle experiment atmospheric boundary layer Study intercomparison and evaluation study for single-column models. Each of the nineteen participating models was operated with its own physics package, including land-surface, radiation and turbulent mixing schemes, for a full diurnal cycle selected from the Cabauw observatory archive. By carefully prescribing the temporal evolution of the forcings on the vertical column, the models could be evaluated against observations. We focus on the gross features of the stable boundary layer (SBL), such as the onset of evening momentum decoupling, the 2-m minimum temperature, the evolution of the inertial oscillation and the morning transition. New process diagrams are introduced to interpret the variety of model results and the relative importance of processes in the SBL; the diagrams include the results of a number of sensitivity runs performed with one of the models. The models are characterized in terms of thermal coupling to the soil, longwave radiation and turbulent mixing. It is shown that differences in longwave radiation schemes among the models have only a small effect on the simulations; however, there are significant variations in downward radiation due to different boundary-layer profiles of temperature and humidity. The differences in modelled thermal coupling to the land surface are large and explain most of the variations in 2-m air temperature and longwave incoming radiation among models. Models with strong turbulent mixing overestimate the boundary-layer height, underestimate the wind speed at 200 m, and give a relatively large downward sensible heat flux. The result is that 2-m air temperature is relatively insensitive to turbulent mixing intensity. Evening transition times spread 1.5 h around the observed time of transition, with later transitions for models with coarse resolution. Time of onset in the morning transition spreads 2 h around the observed transition time. With this case, the morning transition appeared to be difficult to study, no relation could be found between the studied processes, and the variation in the time of the morning transition among the models.
  •  
3.
  • Högström, Ulf, et al. (författare)
  • Air–Sea Interaction Features in the Baltic Sea and at a Pacific Trade-Wind Site : An Inter-comparison Study
  • 2013
  • Ingår i: Boundary-layer Meteorology. - : Springer Science and Business Media LLC. - 0006-8314 .- 1573-1472. ; 147:1, s. 139-163
  • Tidskriftsartikel (refereegranskat)abstract
    • A systematic comparison of wind profiles and momentum exchange at a trade wind site outside Oahu, Hawaii and corresponding data from the Baltic Sea is presented. The trade wind data are to a very high degree swell dominated, whereas the Baltic Sea data include a more varied assortment of wave conditions, ranging from a pure growing sea to swell. In the trade wind region swell waves travel predominantly in the wind direction, while in the Baltic, significant cross-wind swells are also present. Showing the drag coefficient as a function of the 10-m wind speed demonstrates striking differences for unstable conditions with swell for the wind-speed range 2 m s−1 < U 10 < 7 m s−1, where the trade-wind site drag values are significantly larger than the corresponding Baltic Sea values. In striking contrast to this disagreement, other features studied are surprisingly similar between the two sites. Thus, exactly as found previously in Baltic Sea studies during unstable conditions and swell, the wind profile in light winds (3 m s−1) shows a wind maximum at around 7–8 m above the water, with close to constant wind speed above. Also, for slightly higher wind speeds (4 m s−1 < U 10 < 7 m s−1), the similarity between wind profiles is striking, with a strong wind-speed increase below a height of about 7–8 m followed by a layer of virtually constant wind speed above. A consequence of these wind-profile features is that Monin–Obukhov similarity is no longer valid. At the trade-wind site this was observed to be the case even for wind speeds as high as 10 m s−1. The turbulence kinetic energy budget was evaluated for four cases of 8–16 30- min periods at the trade-wind site, giving results that agree very well with corresponding figures from the Baltic Sea.
  •  
4.
  • Inagaki, A., et al. (författare)
  • Thermal Image Velocimetry
  • 2013
  • Ingår i: Boundary-Layer Meteorology. - : Springer Science and Business Media LLC. - 0006-8314 .- 1573-1472. ; 149:1, s. 1-18
  • Tidskriftsartikel (refereegranskat)abstract
    • A method for measuring the two-dimensional distribution of wind velocity vectors near a surface exposed to solar radiation, by tracking brightness temperature images instead of particle images, is proposed. It is based on time-sequential thermography with the algorithm used for particle image velocimetry. This thermal image velocimetry (TIV) was tested on a full-scale building wall covered by polystyrene boards attached side-by-side over a vertically elongated area measuring 22.2 m by 2.73 m. A thermal infrared camera was installed 8 m from the test wall to capture the wall-surface temperature at 30 Hz frequency. A sonic anemometer was also installed 35 mm from the surface used for validation of the TIV. The advection velocity estimated from thermal infrared imagery had a linear relationship with the wind velocity measured by the sonic anemometer, irrespective of the wind speed and direction. This linear slope was multiplied by the advection velocity of the thermal infrared image to rescale it to the wind velocity, and the term 'TIV velocity' was then used. A histogram and power spectra of the TIV velocity showed quantitatively good agreement with the velocity measured by the sonic anemometer, except for the high-frequency region of the spectra, where the TIV velocity was overestimated compared with that of the sonic anemometer. The method was also tested on ground covered by artificial turf to demonstrate its application to a horizontal plane with a wider area, extending for more than 80 m by 60 m.
  •  
5.
  • Ketterer, C., et al. (författare)
  • Investigation of the Planetary Boundary Layer in the Swiss Alps Using Remote Sensing and In Situ Measurements
  • 2014
  • Ingår i: Boundary-layer Meteorology. - : Springer Science and Business Media LLC. - 0006-8314 .- 1573-1472. ; 151:2, s. 317-334
  • Tidskriftsartikel (refereegranskat)abstract
    • The development of the planetary boundary layer (PBL) has been studied in a complex terrain using various remote sensing and in situ techniques. The high-altitude research station at Jungfraujoch (3,580 m a.s.l.) in the Swiss Alps lies for most of the time in the free troposphere except when it is influenced by the PBL reaching the station, especially during the summer season. A ceilometer and a wind profiler were installed at Kleine Scheidegg, a mountain pass close to Jungfraujoch, located at an altitude of 2,061 m a.s.l. Data from the ceilometer were analyzed using two different algorithms, while the signal-to-noise ratio of the wind profiler was studied to compare the retrieved PBL heights. The retrieved values from the ceilometer and wind profiler agreed well during daytime and cloud-free conditions. The results were additionally compared with the PBL height estimated by the numerical weather prediction model COSMO-2, which showed a clear underestimation of the PBL height for most of the cases but occasionally also a slight overestimation especially around noon, when the PBL showed its maximum extent. Air parcels were transported upwards by slope winds towards Jungfraujoch when the PBL was higher than 2,800 m a.s.l. during cloud-free cases. This was confirmed by the in situ aerosol measurements at Jungfraujoch with a significant increase in particle number concentration, particle light absorption and scattering coefficients when PBL-influenced air masses reached the station in the afternoon hours. The continuous aerosol in situ measurements at Jungfraujoch were clearly influenced by the local PBL development but also by long-range transport phenomena such as Saharan dust or pollution from the south.
  •  
6.
  •  
7.
  • Loridan, Thomas, et al. (författare)
  • High Resolution Simulation of the Variability of Surface Energy Balance Fluxes Across Central London with Urban Zones for Energy Partitioning
  • 2013
  • Ingår i: Boundary-Layer Meteorology. - : Springer Netherlands. - 0006-8314 .- 1573-1472. ; 147:3, s. 493-523
  • Tidskriftsartikel (refereegranskat)abstract
    • The parameterization of surface heat-flux variability in urban areas relies on adequate representation of surface characteristics. Given the horizontal resolutions (e.g. ≈ 0.1–1 km) currently used in numerical weather prediction (NWP) models, properties of the urban surface (e.g. vegetated/built surfaces, street-canyon geometries) often have large spatial variability. Here, a new approach based on Urban Zones to characterize Energy partitioning (UZE) is tested within a NWP model (Weather Research and Forecasting model; WRF v3.2.1) for Greater London. The urban land-surface scheme is the Noah/Single-Layer Urban Canopy Model (SLUCM). Detailed surface information (horizontal resolution 1 km) in central London shows that the UZE offers better characterization of surface properties and their variability compared to default WRF-SLUCM input parameters. In situ observations of the surface energy fluxes and near-surface meteorological variables are used to select the radiation and turbulence parameterization schemes and to evaluate the land-surface scheme and choice of surface parameters. For radiative fluxes, improved performance (e.g. > 25 W m −2 root-mean-square error reduction for the net radiation) is attained with UZE parameters compared to the WRF v3.2.1 default for all three methods from the simplest to the most detailed. The UZE-based spatial fluxes reproduce a priori expectations of greater energy storage and less evaporation in the dense city centre compared to the residential surroundings. Problems in Noah/SLUCM partitioning of energy between the daytime turbulent fluxes are identified with the overestimation of the turbulent sensible heat and underestimation of the turbulent latent heat fluxes.
  •  
8.
  •  
9.
  • Norman, Maria, 1973-, et al. (författare)
  • Methods for Estimating Air-Sea Fluxes of CO2 Using High-Frequency Measurements
  • 2012
  • Ingår i: Boundary-layer Meteorology. - : Springer Science and Business Media LLC. - 0006-8314 .- 1573-1472. ; 144:3, s. 379-400
  • Tidskriftsartikel (refereegranskat)abstract
    • The most direct method for flux estimation uses eddy covariance, which is also the most commonly used method for land-based measurements of surface fluxes. Moving platforms are frequently used to make measurements over the sea, in which case motion can disturb the measurements. An alternative method for flux estimation should be considered if the effects of platform motion cannot be properly corrected for. Three methods for estimating CO2 fluxes are studied here: the eddy-covariance, the inertial-dissipation, and the cospectral-peak methods. High-frequency measurements made at the land-based Ostergarnsholm marine station in the Baltic Sea and measurements made from a ship during the Galathea 3 expedition are used. The Kolmogorov constant for CO2, used in the inertial-dissipation method, is estimated to be 0.68 and is determined using direct flux measurements made at the Ostergarnsholm site. The cospectral-peak method, originally developed for neutral stratification, is modified to be applicable in all stratifications. With these modifications, the CO2 fluxes estimated using the three methods agree well. Using data from the Ostergarnsholm site, the mean absolute error between the eddy-covariance and inertial-dissipation methods is 0.25 mu mol m(-2) s(-1). The corresponding mean absolute error between the eddy-covariance and cospectral-peak methods is 0.26 mu mol m(-2) s(-1), while between the inertial-dissipation and cospectral-peak methods it is 0.14 mu mol m(-2) s(-1).
  •  
10.
  • Sahlée, Erik, et al. (författare)
  • Influence from Surrounding Land on the Turbulence Measurements Above a Lake
  • 2014
  • Ingår i: Boundary-layer Meteorology. - : Springer Science and Business Media LLC. - 0006-8314 .- 1573-1472. ; 150:2, s. 235-258
  • Tidskriftsartikel (refereegranskat)abstract
    • Turbulence measurements taken at a Swedish lake are analyzed. Although the measurements took place over a relatively large lake with several km of undisturbed fetch, the turbulence structure was found to be highly influenced by the surrounding land during daytime. Variance spectra of both horizontal velocity and scalars during both unstable and stable stratification displayed a low frequency peak. The energy at lower frequencies showed a daily variation, increasing in the morning and decreasing in the afternoon. This behaviour is explained by spectral lag, where the low frequency energy due to large eddies that originate from the convective boundary layer above the surrounding land. When the air is advected over the lake the small eddies rapidly equilibrate with the new surface forcing. However, the large eddies remain for an appreciable distance and influence the turbulence in the developing lake boundary layer. The variances of the horizontal velocity and scalars are increased by these large eddies, while the turbulent fluxes are mainly unaffected. The drag coefficient, Stanton number and Dalton number used to parametrize the momentum flux, heat flux and latent heat flux respectively all compare well with current parametrizations developed for open sea conditions. The diurnal cycle of the partial pressure of methane, TeX , observed at this site is closely related to the diurnal cycle of the lake-air methane flux. An idealized two-dimensional model simulation of the boundary layer at a lake site indicates that the strong response of TeX to the surface methane flux is due to the shallow internal boundary layer that develops above the lake, allowing methane to accumulate in a relatively small volume.
  •  
11.
  • Segalini, Antonio, et al. (författare)
  • Scaling Laws in Canopy Flows : A Wind-Tunnel Analysis
  • 2013
  • Ingår i: Boundary-layer Meteorology. - : Springer Netherlands. - 0006-8314 .- 1573-1472. ; 148:2, s. 269-283
  • Tidskriftsartikel (refereegranskat)abstract
    • An analysis of velocity statistics and spectra measured above a wind-tunnel forest model is reported. Several measurement stations downstream of the forest edge have been investigated and it is observed that, while the mean velocity profile adjusts quickly to the new canopy boundary condition, the turbulence lags behind and shows a continuous penetration towards the free stream along the canopy model. The statistical profiles illustrate this growth and do not collapse when plotted as a function of the vertical coordinate. However, when the statistics are plotted as function of the local mean velocity (normalized with a characteristic velocity scale), they do collapse, independently of the streamwise position and freestream velocity. A new scaling for the spectra of all three velocity components is proposed based on the velocity variance and integral time scale. This normalization improves the collapse of the spectra compared to existing scalings adopted in atmospheric measurements, and allows the determination of a universal function that provides the velocity spectrum. Furthermore, a comparison of the proposed scaling laws for two different canopy densities is shown, demonstrating that the vertical velocity variance is the most sensible statistical quantity to the characteristics of the canopy roughness.
  •  
12.
  • Segalini, Antonio, et al. (författare)
  • Techniques for the Eduction of Coherent Structures from Flow Measurements in the Atmospheric Boundary Layer
  • 2012
  • Ingår i: Boundary-layer Meteorology. - : Springer. - 0006-8314 .- 1573-1472. ; 143:3, s. 433-450
  • Tidskriftsartikel (refereegranskat)abstract
    • Two empirical methods to detect coherent motions embedded in the flow field have been compared, namely the variable interval time average (VITA) method and a wavelet-based technique, both with artificial signals as well as velocity measurements from the atmospheric boundary layer over a forest canopy. It has been found that the wavelet method is slightly better than the VITA approach in coherent structure eduction, even if the results of both techniques are comparable. Also the application of the present approach to simultaneous conditionally sampled wind data has highlighted some important features of coherent structures and gust generation in canopy flows.
  •  
13.
  • Svensson, Gunilla, et al. (författare)
  • Evaluation of the Diurnal Cycle in the Atmospheric Boundary Layer Over Land as Represented by a Variety of Single-Column Models : The Second GABLS Experiment
  • 2011
  • Ingår i: Boundary-layer Meteorology. - : Springer Science and Business Media LLC. - 0006-8314 .- 1573-1472. ; 140:2, s. 177-206
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the main results from the second model intercomparison within the GEWEX (Global Energy and Water cycle EXperiment) Atmospheric Boundary Layer Study (GABLS). The target is to examine the diurnal cycle over land in today's numerical weather prediction and climate models for operational and research purposes. The set-up of the case is based on observations taken during the Cooperative Atmosphere-Surface Exchange Study-1999 (CASES-99), which was held in Kansas, USA in the early autumn with a strong diurnal cycle with no clouds present. The models are forced with a constant geostrophic wind, prescribed surface temperature and large-scale divergence. Results from 30 different model simulations and one large-eddy simulation (LES) are analyzed and compared with observations. Even though the surface temperature is prescribed, the models give variable near-surface air temperatures. This, in turn, gives rise to differences in low-level stability affecting the turbulence and the turbulent heat fluxes. The increase in modelled upward sensible heat flux during the morning transition is typically too weak and the growth of the convective boundary layer before noon is too slow. This is related to weak modelled near-surface winds during the morning hours. The agreement between the models, the LES and observations is the best during the late afternoon. From this intercomparison study, we find that modelling the diurnal cycle is still a big challenge. For the convective part of the diurnal cycle, some of the first-order schemes perform somewhat better while the turbulent kinetic energy (TKE) schemes tend to be slightly better during nighttime conditions. Finer vertical resolution tends to improve results to some extent, but is certainly not the solution to all the deficiencies identified.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-13 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy