SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0026 895X OR L773:1521 0111 srt2:(2000-2004)"

Sökning: L773:0026 895X OR L773:1521 0111 > (2000-2004)

  • Resultat 1-34 av 34
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  • Christian, Kyle, et al. (författare)
  • Interaction of heterogeneous nuclear ribonucleoprotein A1 with cytochrome P450 2A6 mRNA : implications for post-transcriptional regulation of the CYP2A6 gene
  • 2004
  • Ingår i: Molecular Pharmacology. - : American Society for Pharmacology & Experimental Therapeutics (ASPET). - 0026-895X .- 1521-0111. ; 65:6, s. 1405-14
  • Tidskriftsartikel (refereegranskat)abstract
    • The human xenobiotic-metabolizing enzyme cytochrome P450, CYP2A6, catalyzes the bioactivation of a number of carcinogens and drugs and is overexpressed in cases of liver diseases, such as cirrhosis, viral hepatitis, and parasitic infestation, and in certain tumor cells. This suggests that CYP2A6 may be a major liver catalyst in pathological conditions. In the present study, we have addressed molecular mechanisms underlying the regulation of the CYP2A6 gene. We present evidence of several proteins present in human hepatocytes that interact specifically with the 3′-untranslated region (UTR) of CYP2A6 mRNA. Biochemical and immunological evidence show that the RNA-protein complex of highest intensity contains the heterogeneous nuclear ribonucleoprotein (hnRNP) A1 or a closely related protein. Mapping of the hnRNP A1 binding site within CYP2A6 3′-UTR reveals that the smallest portion of RNA supporting significant binding consists of 111 central nucleotides of the 3′-UTR. Our studies also indicate that hnRNPA1 from HepG2 cancer cells exhibits modified binding characteristics to the CYP2A6 3′-UTR compared with primary hepatocytes. We found that the level of CYP2A6 mRNA remains high in conditions of impaired transcription in primary human hepatocytes, showing that CYP2A6 expression can be affected post-transcriptionally in conditions of cellular stress. Our results indicate that the post-transcriptional regulation involves interaction of the hnRNP A1 protein with CYP2A6 mRNA. The present data suggest that hnRNPA1 is a critical regulator of expression of the human CYP2A6 gene and support the notion that this P450 isoform may be of particular significance in stressed human liver cells.
  •  
11.
  • Dalziel, J E, et al. (författare)
  • Mutating the highly conserved second membrane-spanning region 9' leucine residue in the alpha(1) or beta(1) subunit produces subunit-specific changes in the function of human alpha(1)beta(1) gamma-aminobutyric Acid(A) receptors.
  • 2000
  • Ingår i: Molecular Pharmacology. - 0026-895X .- 1521-0111. ; 57:5, s. 875-82
  • Tidskriftsartikel (refereegranskat)abstract
    • The properties of the human alpha(1)beta(1) gamma-aminobutyric acid (GABA)(A) receptors were investigated after mutation of a highly conserved leucine residue at the 9' position in the second membrane-spanning region (TM2). The role of this residue in alpha(1) and beta(1) subunits was examined by mutating the 9' leucine to phenylalanine, tyrosine, or alanine. The mutations were in either the alpha(1) subunit (alpha*beta), the beta(1) subunit (alphabeta*), or in both subunits (alpha*beta*), and the receptors were expressed in Sf9 cells. Our results show that the rate of desensitization is increased as the size and hydrophobicity of the 9' residue in the alpha(1) subunit is increased: Y, F > L > A, T. Mutation of L9' in only the beta(1) subunit (alphabeta*) to either phenylalanine or tyrosine increased the EC(50) value for GABA at least 100 times, but the EC(50) was unchanged in alphabeta* alanine mutants. In the 9' alpha(1) mutants (alpha*beta, alpha*beta*) the GABA EC(50) was minimally affected. In alpha*beta and alpha*beta*, but not alphabeta*, the peak currents evoked by millimolar concentrations of GABA were greatly reduced. The reduction in currents could only be partially accounted for by decreased expression of the receptors These findings suggest different roles for the two types of subunits in GABA activation and later desensitization of alpha(1)beta(1) receptors. In addition, an increase in the resting membrane conductance was recorded in alanine but not in phenylalanine and tyrosine mutants, indicating that the side chain size at the 9' position is a major determinant of current flow in the closed conformation.
  •  
12.
  •  
13.
  •  
14.
  • Eghbali, M, et al. (författare)
  • Pentobarbital modulates gamma-aminobutyric acid-activated single-channel conductance in rat cultured hippocampal neurons.
  • 2000
  • Ingår i: Molecular Pharmacology. - 0026-895X .- 1521-0111. ; 58:3, s. 463-9
  • Tidskriftsartikel (refereegranskat)abstract
    • We examined the effect of a range of pentobarbital concentrations on 0.5 microM gamma-aminobutyric acid (GABA)-activated channels (10 +/- 1 pS) in inside-out or outside-out patches from rat cultured hippocampal neurons. The conductance increased from 12 +/- 4 to 62 +/- 9 pS as the pentobarbital concentration was raised from 10 to 500 microM and the data could be fitted by a Hill-type equation. At 100 microM pentobarbital plus 0.5 microM GABA, the conductance seemed to reach a plateau. The pentobarbital EC(50)(0.5 microM GABA) value was 22 +/- 4 microM and n was 1.9 +/- 0.5. In 1 mM pentobarbital plus 0.5 microM GABA, the single-channel conductance decreased to 34 +/- 8 pS. This apparent inhibition of channel conductance was relieved by 1 microM diazepam. The channel conductance was 64 +/- 6 pS in the presence of all three drugs. The channels were open more in the presence of both GABA and pentobarbital than in the presence of either drug alone. Pentobarbital alone (100 microM) activated channels with conductance (30 +/- 2 pS) and kinetic properties distinct from those activated by either GABA alone or GABA plus pentobarbital. Whether pentobarbital induces new conformations or promotes conformations observed in the presence of GABA alone cannot be determined from our study, but the results clearly show that it is the combination of drugs present that determines the single-channel conductance and the kinetic properties of the receptors.
  •  
15.
  •  
16.
  • Fredriksson, Robert, et al. (författare)
  • The G-Protein-Coupled Receptors in the Human Genome Form Five Main Families : Phylogenetic Analysis, Paralogon Groups, and Fingerprints
  • 2003
  • Ingår i: Molecular Pharmacology. - : American Society for Pharmacology & Experimental Therapeutics (ASPET). - 0026-895X .- 1521-0111. ; 63:6, s. 1256-1272
  • Tidskriftsartikel (refereegranskat)abstract
    • The superfamily of G-protein-coupled receptors (GPCRs) is very diverse in structure and function and its members are among the most pursued targets for drug development. We identified more than 800 human GPCR sequences and simultaneously analyzed 342 unique functional nonolfactory human GPCR sequences with phylogenetic analyses. Our results show, with high bootstrap support, five main families, named glutamate, rhodopsin, adhesion, frizzled/taste2, and secretin, forming the GRAFS classification system. The rhodopsin family is the largest and forms four main groups with 13 sub-branches. Positions of the GPCRs in chromosomal paralogons regions indicate the importance of tetraploidizations or local gene duplication events for their creation. We also searched for "fingerprint" motifs using Hidden Markov Models delineating the putative inter-relationship of the GRAFS families. We show several common structural features indicating that the human GPCRs in the GRAFS families share a common ancestor. This study represents the first overall map of the GPCRs in a single mammalian genome. Our novel approach of analyzing such large and diverse sequence sets may be useful for studies on GPCRs in other genomes and divergent protein families.
  •  
17.
  • Johansson, Ann-Sofie, et al. (författare)
  • The human glutathione transferase P1-1 specific inhibitor TER 117 designed for overcoming cytostatic-drug resistance is also a strong inhibitor of glyoxalase I
  • 2000
  • Ingår i: Molecular Pharmacology. - 0026-895X .- 1521-0111. ; 57:3, s. 619-624
  • Tidskriftsartikel (refereegranskat)abstract
    • gamma-L-Glutamyl-S-(benzyl)-L-cysteinyl-R-(-)-phenylglycine (TER 117) has previously been developed for selective inhibition of human glutathione S-transferase P1-1 (GST P1-1) based on the postulated contribution of this isoenzyme to the development of drug resistance in cancer cells. In the present investigation, the inhibitory effect of TER 117 on the human glyoxalase system was studied. Although designed as an inhibitor specific for GST P1-1, TER 117 also competitively inhibits glyoxalase I (K(I) = 0.56 microM). In contrast, no inhibition of glyoxalase II was detected. Reduced glyoxalase activity is expected to raise intracellular levels of toxic 2-oxoaldehydes otherwise eliminated by glyoxalase I. The resulting toxicity would accompany the potentiation of cytostatic drugs, caused by inhibition of the detoxication effected by GST P1-1. TER 117 was designed for efficient inhibition of the most abundant form GST P1-1/Ile105. Therefore, the inhibitory effect of TER 117 on a second allelic variant GST P1-1/Val105 was also studied. TER 117 was shown to competitively inhibit both GST P1-1 variants. The apparent K(I) values at glutathione concentrations relevant to the intracellular milieu were in the micromolar range for both enzyme forms. Extrapolation to free enzyme produced K(I) values of approximately 0.1 microM for both isoenzymes, reflecting the high affinity of GST P1-1 for the inhibitor. Thus, the allelic variation in position 105 of GST P1-1 does not affect the inhibitory potency of TER 117. The inhibitory effects of TER 117 on GST P1-1 and glyoxalase I activities may act in synergy in the cell and improve the effectiveness of chemotherapy.
  •  
18.
  •  
19.
  • Mennerick, Steven, et al. (författare)
  • Selective antagonism of 5alpha-reduced neurosteroid effects at GABA(A) receptors
  • 2004
  • Ingår i: Molecular Pharmacology. - : American Society for Pharmacology & Experimental Therapeutics (ASPET). - 0026-895X .- 1521-0111. ; 65:5, s. 1191-1197
  • Tidskriftsartikel (refereegranskat)abstract
    • Although neurosteroids have rapid effects on GABA(A) receptors, study of steroid actions at GABA receptors has been hampered by a lack of pharmacological antagonists. In this study, we report the synthesis and characterization of a steroid analog, (3alpha,5alpha)-17-phenylandrost-16-en-3-ol (17PA), that selectively antagonized neurosteroid potentiation of GABA responses. We examined 17PA using the alpha1beta2gamma2 subunit combination expressed in Xenopus laevis oocytes. 17PA had little or no effect on baseline GABA responses but antagonized both the response augmentation and the direct gating of GABA receptors by 5alpha-reduced potentiating steroids. The effect was selective for 5alpha-reduced potentiating steroids; 5beta-reduced potentiators were only weakly affected. Likewise, 17PA did not affect barbiturate and benzodiazepine potentiation. 17PA acted primarily by shifting the concentration response for steroid potentiation to the right, suggesting the possibility of a competitive component to the antagonism. 17PA also antagonized 5alpha-reduced steroid potentiation and gating in hippocampal neurons and inhibited anesthetic actions in X. laevis tadpoles. Analogous to benzodiazepine site antagonists, the development of neurosteroid antagonists may help clarify the role of GABA-potentiating neurosteroids in health and disease.
  •  
20.
  • Movérare, Sofia, et al. (författare)
  • Estren is a selective estrogen receptor modulator with transcriptional activity.
  • 2003
  • Ingår i: Molecular pharmacology. - : American Society for Pharmacology & Experimental Therapeutics (ASPET). - 0026-895X .- 1521-0111. ; 64:6, s. 1428-33
  • Tidskriftsartikel (refereegranskat)abstract
    • It was recently reported that the synthetic compound estren increases bone mass without affecting reproductive organs or classic transcription. The aim of the present study was to further characterize the in vivo and in vitro effects of estren. We demonstrate that estren is a selective estrogen receptor modulator (SERM) with a strong effect on thymus, a moderate effect on uterus and trabecular bone, but no major effect on fat or cortical bone in 11-month-old ovariectomized mice. The effect of estren on trabecular bone and uterus is mediated via estrogen receptors (ERs) because no effect is seen in ER double-inactivated mice. Furthermore, with the use of ERalpha- and ERbeta-expressing reporter cell lines, we demonstrate that estren displays an agonistic effect on transcriptional activity of an estrogen-responsive element-driven reporter gene with a degree of agonism similar to that of 17beta-estradiol for both ERalpha and ERbeta. Thus, estren has the capacity to exert genomic effects via both ERalpha and ERbeta. We conclude, in contrast to what was previously reported by others, that estren is a SERM with transcriptional activity.
  •  
21.
  •  
22.
  •  
23.
  •  
24.
  •  
25.
  •  
26.
  •  
27.
  •  
28.
  •  
29.
  • Tavelin, Staffan, et al. (författare)
  • A new principle for tight junction modulation based on occludin peptides
  • 2003
  • Ingår i: Molecular Pharmacology. - : American Society for Pharmacology & Experimental Therapeutics (ASPET). - 0026-895X .- 1521-0111. ; 64:6, s. 1530-1540
  • Tidskriftsartikel (refereegranskat)abstract
    • The aim of this study was to investigate whether peptides from the extracellular loops of the tight junction protein occludin could be used as a new principle for tight junction modulation. Peptides of 4 to 47 amino acids in length and covering the two extracellular loops of the tight junction protein occludin were synthesized, and their effect on the tight junction permeability in Caco-2 cells was investigated using [14C]mannitol as a para-cellular marker. Lipopeptide derivatives of one of the active occludin peptides (OPs), synthesized by adding a lipoamino acid containing 14 carbon atoms (C14-) to the N terminus of the peptide, were also investigated. Peptides corresponding to the N terminus of the first extracellular loop of occludin increased the permeability of the tight junctions without causing short-term toxicity. However, the peptides had an effect only when added to the basolateral side of the cells, which could be partly explained by degradation by apical peptidases and aggregate formation. By contrast, the lipopeptide C14-OP90-103, which protects the peptide from degradation and aggregation, displayed a rapid apical effect. The l- and d-diastereomers of C14-OP90-103 had distinctly different effects. The d-isomer, which releases intact OP90-103 from the lipoamino acid, displayed a rapid and transient increase in tight junction permeability. The l-isomer, which releases OP90-103 more rapidly, gave a more sustained increase in tight junction permeability. In conclusion, C14-OP90-103 represents a prototype of a new class of tight junction modulators that act on the extracellular domains of tight junction proteins.
  •  
30.
  •  
31.
  •  
32.
  •  
33.
  • Andersson, David, et al. (författare)
  • Mechanisms underlying tissue selectivity of anandamide and other vanilloid receptor agonists.
  • 2002
  • Ingår i: Molecular Pharmacology. - 1521-0111. ; 62:3, s. 705-713
  • Tidskriftsartikel (refereegranskat)abstract
    • Anandamide acts as a full vanilloid receptor agonist in many bioassay systems, but it is a weak activator of primary afferents in the airways. To address this discrepancy, we compared the effect of different vanilloid receptor agonists in isolated airways and mesenteric arteries of guinea pig using preparations containing different phenotypes of the capsaicin-sensitive sensory nerve. We found that anandamide is a powerful vasodilator of mesenteric arteries but a weak constrictor of main bronchi. These effects of anandamide are mediated by vanilloid receptors on primary afferents and do not involve cannabinoid receptors. Anandamide also contracts isolated lung strips, an effect caused by the hydrolysis of anandamide and subsequent formation of cyclooxygenase products. Although capsaicin is equally potent in bronchi and mesenteric arteries, anandamide, resiniferatoxin, and particularly olvanil are significantly less potent in bronchi. Competition experiments with the vanilloid receptor antagonist capsazepine did not provide evidence of vanilloid receptor heterogeneity. Arachidonoyl-5-methoxytryptamine (VDM13), an inhibitor of the anandamide membrane transporter, attenuates responses to olvanil and anandamide, but not capsaicin and resiniferatoxin, in mesenteric arteries. VDM13 did not affect responses to these agonists in bronchi, suggesting that the anandamide membrane transporter is absent in this phenotype of the sensory nerve. Computer simulations using an operational model of agonism were consistent, with differences in intrinsic efficacy and receptor content being responsible for the remaining differences in agonist potency between the tissues. This study describes differences between vanilloid receptor agonists regarding tissue selectivity and provides a conceptual framework for developing tissue-selective vanilloid receptor agonists devoid of bronchoconstrictor activity.
  •  
34.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-34 av 34

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy