SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0026 895X OR L773:1521 0111 "

Sökning: L773:0026 895X OR L773:1521 0111

  • Resultat 1-50 av 111
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  •  
11.
  •  
12.
  •  
13.
  •  
14.
  •  
15.
  •  
16.
  •  
17.
  • Burgess, G.M., et al. (författare)
  • Further studies on the interactions between the calcium mobilization and cyclic AMP pathways in guinea pig hepatocytes
  • 1986
  • Ingår i: Molecular Pharmacology. - : American Society for Pharmacology and Experimental Therapeutics. - 0026-895X .- 1521-0111. ; 30:4, s. 315-320
  • Tidskriftsartikel (refereegranskat)abstract
    • Isoproterenol (50 nM) potentiated the effects of angiotensin (1-50 nM) on 86Rb efflux and 45Ca efflux from guinea pig hepatocytes. This effect occurred in the presence or absence of extracellular Ca2+ and required the simultaneous presence of both isoproterenol and angiotensin. Neither the divalent cationophore, A23187, nor 4 beta-phorbol dibutyrate could substitute for angiotensin. The effects of isoproterenol were greatest with submaximal concentrations of angiotensin, whereas maximal concentrations of angiotensin were affected little. Isoproterenol did not substantially increase the formation of [3H]inositol triphosphate or the ratio of isomers [3H]inositol 1,4,5-trisphosphate and [3H]inositol 1,3,4-trisphosphate formed in response to angiotensin. Isoproterenol also enhanced the phase of Ca2+ mobilization involving Ca2+ entry which is consistent with the previously proposed functional linkage between receptor-regulated Ca2+ release and Ca2+ entry. These findings suggest that isoproterenol may act by increasing the sensitivity of the endoplasmic reticulum to the Ca2+-releasing action of inositol 1,4,5-trisphosphate.
  •  
18.
  • Christian, Kyle, et al. (författare)
  • Interaction of heterogeneous nuclear ribonucleoprotein A1 with cytochrome P450 2A6 mRNA : implications for post-transcriptional regulation of the CYP2A6 gene
  • 2004
  • Ingår i: Molecular Pharmacology. - : American Society for Pharmacology & Experimental Therapeutics (ASPET). - 0026-895X .- 1521-0111. ; 65:6, s. 1405-14
  • Tidskriftsartikel (refereegranskat)abstract
    • The human xenobiotic-metabolizing enzyme cytochrome P450, CYP2A6, catalyzes the bioactivation of a number of carcinogens and drugs and is overexpressed in cases of liver diseases, such as cirrhosis, viral hepatitis, and parasitic infestation, and in certain tumor cells. This suggests that CYP2A6 may be a major liver catalyst in pathological conditions. In the present study, we have addressed molecular mechanisms underlying the regulation of the CYP2A6 gene. We present evidence of several proteins present in human hepatocytes that interact specifically with the 3′-untranslated region (UTR) of CYP2A6 mRNA. Biochemical and immunological evidence show that the RNA-protein complex of highest intensity contains the heterogeneous nuclear ribonucleoprotein (hnRNP) A1 or a closely related protein. Mapping of the hnRNP A1 binding site within CYP2A6 3′-UTR reveals that the smallest portion of RNA supporting significant binding consists of 111 central nucleotides of the 3′-UTR. Our studies also indicate that hnRNPA1 from HepG2 cancer cells exhibits modified binding characteristics to the CYP2A6 3′-UTR compared with primary hepatocytes. We found that the level of CYP2A6 mRNA remains high in conditions of impaired transcription in primary human hepatocytes, showing that CYP2A6 expression can be affected post-transcriptionally in conditions of cellular stress. Our results indicate that the post-transcriptional regulation involves interaction of the hnRNP A1 protein with CYP2A6 mRNA. The present data suggest that hnRNPA1 is a critical regulator of expression of the human CYP2A6 gene and support the notion that this P450 isoform may be of particular significance in stressed human liver cells.
  •  
19.
  • Christian, Kyle J., et al. (författare)
  • Interaction of heterogeneous nuclear ribonucleoprotein C1/C2 with a novel cis-regulatory element within p53 mRNA as a response to cytostatic drug treatment
  • 2008
  • Ingår i: Molecular Pharmacology. - : Aspet. - 0026-895X .- 1521-0111. ; 73:5, s. 1558-1567
  • Tidskriftsartikel (refereegranskat)abstract
    • We describe a novel cis-element in the 5' coding region of p53 mRNA and its interaction with heterogeneous nuclear ribonucleoprotein (hnRNP) C1/C2. This element is located in a putative hairpin loop structure, within the first 101 nucleotides downstream of the start codon. The binding of hnRNPC1/C2 is strongly enhanced in response to the DNA-damaging drug cisplatin [cis-diamminedichloroplatinum(II)] and the cytostatic transcriptional inhibitor actinomycin D (dactinomycin), both known inducers of apoptosis and p53. Strongly stimulated binding is observed in both nuclear and cytoplasmic compartments, and it is accompanied by a cytoplasmic increase of hnRNPC1/C2. Changes in hnRNPC1/C2 protein levels are not proportional to binding activity, suggesting qualitative changes in hnRNPC1/C2 upon activation. Phosphorylation studies reveal contrasting characteristics of the cytoplasmic and nuclear hnRNPC1/C2 interaction with p53 mRNA. Results from chimeric p53-luciferase reporter constructs suggest that hnRNPC1/C2 regulates p53 expression via this binding site. Our results are consistent with a mechanism in which the interaction of hnRNPC1/C2 with a cis-element within the coding region of the p53 transcript regulates the expression of p53 mRNA before and during apoptosis. In addition, we report that preapoptotic signals induced by transcriptional inhibition trigger the appearance of a truncated, exclusively cytoplasmic 43-kDa variant of p53 before apoptosis.
  •  
20.
  •  
21.
  • Dalziel, J E, et al. (författare)
  • Mutating the highly conserved second membrane-spanning region 9' leucine residue in the alpha(1) or beta(1) subunit produces subunit-specific changes in the function of human alpha(1)beta(1) gamma-aminobutyric Acid(A) receptors.
  • 2000
  • Ingår i: Molecular Pharmacology. - 0026-895X .- 1521-0111. ; 57:5, s. 875-82
  • Tidskriftsartikel (refereegranskat)abstract
    • The properties of the human alpha(1)beta(1) gamma-aminobutyric acid (GABA)(A) receptors were investigated after mutation of a highly conserved leucine residue at the 9' position in the second membrane-spanning region (TM2). The role of this residue in alpha(1) and beta(1) subunits was examined by mutating the 9' leucine to phenylalanine, tyrosine, or alanine. The mutations were in either the alpha(1) subunit (alpha*beta), the beta(1) subunit (alphabeta*), or in both subunits (alpha*beta*), and the receptors were expressed in Sf9 cells. Our results show that the rate of desensitization is increased as the size and hydrophobicity of the 9' residue in the alpha(1) subunit is increased: Y, F > L > A, T. Mutation of L9' in only the beta(1) subunit (alphabeta*) to either phenylalanine or tyrosine increased the EC(50) value for GABA at least 100 times, but the EC(50) was unchanged in alphabeta* alanine mutants. In the 9' alpha(1) mutants (alpha*beta, alpha*beta*) the GABA EC(50) was minimally affected. In alpha*beta and alpha*beta*, but not alphabeta*, the peak currents evoked by millimolar concentrations of GABA were greatly reduced. The reduction in currents could only be partially accounted for by decreased expression of the receptors These findings suggest different roles for the two types of subunits in GABA activation and later desensitization of alpha(1)beta(1) receptors. In addition, an increase in the resting membrane conductance was recorded in alanine but not in phenylalanine and tyrosine mutants, indicating that the side chain size at the 9' position is a major determinant of current flow in the closed conformation.
  •  
22.
  • Daskalopoulos, Evangelos P., et al. (författare)
  • D-2-Dopaminergic Receptor-Linked Pathways : Critical Regulators of CYP3A, CYP2C, and CYP2D
  • 2012
  • Ingår i: Molecular Pharmacology. - : American Society for Pharmacology & Experimental Therapeutics (ASPET). - 0026-895X .- 1521-0111. ; 82:4, s. 668-678
  • Tidskriftsartikel (refereegranskat)abstract
    • Various hormonal and monoaminergic systems play determinant roles in the regulation of several cytochromes P450 (P450s) in the liver. Growth hormone (GH), prolactin, and insulin are involved in P450 regulation, and their release is under dopaminergic control. This study focused on the role of D-2-dopaminergic systems in the regulation of the major drug-metabolizing P450s, i.e., CYP3A, CYP2C, and CYP2D. Blockade of D-2-dopaminergic receptors with either sulpiride (SULP) or 4-(4-chlorophenyl)-1-(1H-indol-3-ylmethyl) piperidin-4-ol (L-741,626) markedly down-regulated CYP3A1/2, CYP2C11, and CYP2D1 expression in rat liver. This suppressive effect appeared to be mediated by the insulin/phosphatidylinositol 3-kinase/Akt/FOXO1 signaling pathway. Furthermore, inactivation of the GH/STAT5b signaling pathway appeared to play a role in D-2-dopaminergic receptor-mediated down-regulating effects on these P450s. SULP suppressed plasma GH levels, with subsequently reduced activation of STAT5b, which is the major GH pulse-activated transcription factor and has up-regulating effects on various P450s in hepatic tissue. Levels of prolactin, which exerts down-regulating control on P450s, were increased by SULP, which may contribute to SULP-mediated effects. Finally, it appears that SULP-induced inactivation of the cAMP/protein kinase A/cAMP-response element-binding protein signaling pathway, which is a critical regulator of pregnane X receptor and hepatocyte nuclear factor 1 alpha, and inactivation of the c-Jun N-terminal kinase contribute to SULP-induced down-regulation of the aforementioned P450s. Taken together, the present data provide evidence that drugs acting as D-2-dopaminergic receptor antagonists might interfere with several major signaling pathways involved in the regulation of CYP3A, CYP2C, and CYP2D, which are critical enzymes in drug metabolism, thus affecting the effectiveness of the majority of prescribed drugs and the toxicity and carcinogenic potency of a plethora of toxicants and carcinogens.
  •  
23.
  •  
24.
  • Diwakarla, Shanti, et al. (författare)
  • Binding to and Inhibition of Insulin-Regulated Aminopeptidase (IRAP) by Macrocyclic Disulfides Enhances Spine Density
  • 2016
  • Ingår i: Molecular Pharmacology. - : American Society for Pharmacology & Experimental Therapeutics (ASPET). - 0026-895X .- 1521-0111. ; 89:4, s. 413-424
  • Tidskriftsartikel (refereegranskat)abstract
    • Angiotensin IV (Ang IV) and related peptide analogues, as well as non-peptide inhibitors of insulin-regulated aminopeptidase (IRAP), have previously been shown to enhance memory and cognition in animal models. Furthermore, the endogenous IRAP substrates oxytocin and vasopressin are known to facilitate learning and memory. In this study, the two recently synthesized 13-membered macrocylic competitive IRAP inhibitors HA08 and HA09, which were designed to mimic the N-terminal of oxytocin and vasopressin, were assessed and compared based on their ability to bind to the IRAP active site, and alter dendritic spine density in rat hippocampal primary cultures. The binding modes of the IRAP inhibitors HA08, HA09 and of Ang IV in either the extended or γ-turn conformation at the C-terminal to human IRAP were predicted by docking and molecular dynamics (MD) simulations. The binding free energies calculated with the linear interaction energy (LIE) method, which are in excellent agreement with experimental data and simulations, have been used to explain the differences in activities of the IRAP inhibitors, both of which are structurally very similar, but differ only with regard to one stereogenic center. In addition, we show that HA08, which is 100-fold more potent than the epimer HA09, can enhance dendritic spine number and alter morphology, a process associated with memory facilitation. Therefore, HA08, one of the most potent IRAP inhibitors known today, may serve as a suitable starting point for medicinal chemistry programs aided by MD simulations aimed at discovering more drug-like cognitive enhancers acting via augmenting synaptic plasticity.
  •  
25.
  •  
26.
  • Eghbali, M, et al. (författare)
  • Pentobarbital modulates gamma-aminobutyric acid-activated single-channel conductance in rat cultured hippocampal neurons.
  • 2000
  • Ingår i: Molecular Pharmacology. - 0026-895X .- 1521-0111. ; 58:3, s. 463-9
  • Tidskriftsartikel (refereegranskat)abstract
    • We examined the effect of a range of pentobarbital concentrations on 0.5 microM gamma-aminobutyric acid (GABA)-activated channels (10 +/- 1 pS) in inside-out or outside-out patches from rat cultured hippocampal neurons. The conductance increased from 12 +/- 4 to 62 +/- 9 pS as the pentobarbital concentration was raised from 10 to 500 microM and the data could be fitted by a Hill-type equation. At 100 microM pentobarbital plus 0.5 microM GABA, the conductance seemed to reach a plateau. The pentobarbital EC(50)(0.5 microM GABA) value was 22 +/- 4 microM and n was 1.9 +/- 0.5. In 1 mM pentobarbital plus 0.5 microM GABA, the single-channel conductance decreased to 34 +/- 8 pS. This apparent inhibition of channel conductance was relieved by 1 microM diazepam. The channel conductance was 64 +/- 6 pS in the presence of all three drugs. The channels were open more in the presence of both GABA and pentobarbital than in the presence of either drug alone. Pentobarbital alone (100 microM) activated channels with conductance (30 +/- 2 pS) and kinetic properties distinct from those activated by either GABA alone or GABA plus pentobarbital. Whether pentobarbital induces new conformations or promotes conformations observed in the presence of GABA alone cannot be determined from our study, but the results clearly show that it is the combination of drugs present that determines the single-channel conductance and the kinetic properties of the receptors.
  •  
27.
  • Eklund, Birgitta I., et al. (författare)
  • Divergent activities of human glutathione transferases in the bioactivation of azathioprine
  • 2006
  • Ingår i: Molecular Pharmacology. - : American Society for Pharmacology & Experimental Therapeutics (ASPET). - 0026-895X .- 1521-0111. ; 70:2, s. 747-754
  • Tidskriftsartikel (refereegranskat)abstract
    • Azathioprine is a thiopurine prodrug clinically used for immunosuppression in the treatment of inflammatory diseases and in pharmacological regimens of organ transplantations. Its pharmacological action is based on the release of 6-mercaptopurine, but the biochemical processes underlying this biotransformation have remained obscure. In this investigation, human glutathione transferases (GSTs) from seven distinct classes were assayed with azathioprine. GSTs A1-1, A2-2, and M1-1, all abundantly expressed in human liver, displayed the highest activity among the 14 GSTs tested. The uncatalyzed reaction of azathioprine with glutathione was estimated to be less than 1% of the GST-catalyzed biotransformation. GST M1-1 is polymorphic with a frequently occurring null allele, and GSTs A1-1 and A2-2 show variable expression levels in human subjects, implying significant differences in the rate of 6-mercaptopurine release from azathioprine. Individuals expressing high GST activity are apparently predisposed for adverse reactions to azathioprine treatment, both by promoting excessively high concentrations of free 6-mercaptopurine and its toxic metabolites and by depleting cellular glutathione. These novel aspects of GST-dependent azathioprine biotransformation have not been considered previously.
  •  
28.
  • Ellfolk, Maria, et al. (författare)
  • Regulation of human vitamin D(3) 25-hydroxylases in dermal fibroblasts and prostate cancer LNCaP cells
  • 2009
  • Ingår i: Molecular Pharmacology. - : American Society for Pharmacology & Experimental Therapeutics (ASPET). - 0026-895X .- 1521-0111. ; 75:6, s. 1392-1399
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, we examined whether 1alpha,25-dihydroxyvitamin D(3) (calcitriol), phenobarbital, and the antiretroviral drug efavirenz, drugs used by patient groups with high incidence of low bone mineral density, could affect the 25-hydroxylase activity or expression of human 25-hydroxylases in dermal fibroblasts and prostate cancer LNCaP cells. Fibroblasts express the 25-hydroxylating enzymes CYP2R1 and CYP27A1. LNCaP cells were found to express two potential vitamin D 25-hydroxylases-CYP2R1 and CYP2J2. The presence in different cells of nuclear receptors vitamin D receptor (VDR), pregnane X receptor (PXR), and constitutive androstane receptor (CAR) was also determined. Phenobarbital suppressed the expression of CYP2R1 in fibroblasts and CYP2J2 in LNCaP cells. Efavirenz suppressed the expression of CYP2R1 in fibroblasts but not in LNCaP cells. CYP2J2 was slightly suppressed by efavirenz, whereas CYP27A1 was not affected by any of the two drugs. Calcitriol suppressed the expression of CYP2R1 in both fibroblasts and LNCaP cells but had no clear effect on the expression of either CYP2J2 or CYP27A1. The vitamin D(3) 25-hydroxylase activity in fibroblasts was suppressed by both calcitriol and efavirenz. In LNCaP cells, consumption of substrate (1alpha-hydroxyvitamin D(3)) was used as indicator of metabolism because no 1alpha,25-dihydroxyvitamin D(3) product could be determined. The amount of 1alpha-hydroxyvitamin D(3) remaining in cells treated with calcitriol was significantly increased. Taken together, 25-hydroxylation of vitamin D(3) was suppressed by calcitriol and drugs. The present study provides new information indicating that 25-hydroxylation of vitamin D(3) may be regulated. In addition, the current results may offer a possible explanation for the impaired bone health after treatment with certain drugs.
  •  
29.
  • Enquist, Johan, et al. (författare)
  • Kinins promote B2 receptor endocytosis and delay constitutive B1 receptor endocytosis.
  • 2007
  • Ingår i: Molecular Pharmacology. - : American Society for Pharmacology & Experimental Therapeutics (ASPET). - 1521-0111 .- 0026-895X. ; 71:2, s. 494-507
  • Tidskriftsartikel (refereegranskat)abstract
    • Upon sustained insult, kinins are released and many kinin responses, such as inflammatory pain, adapt from a B2 receptor (B2R) type in the acute phase to a B1 receptor (B1R) type in the chronic phase. In this study, we show that kinins modulate receptor endocytosis to rapidly decrease B2R and increase B1R on the cell surface. B2Rs, which require agonist for activity, are stable plasma membrane components without agonist but recruit beta-arrestin 2, internalize in a clathrin-dependent manner, and recycle rapidly upon agonist treatment. In contrast, B1Rs, which are inducible and constitutively active, constitutively internalize without agonist via a clathrin-dependent pathway, do not recruit beta-arrestin 2, bind G protein-coupled receptor sorting protein, and target lysosomes for degradation. Agonist delays B1R endocytosis, thus transiently stabilizing the receptor. Most of the receptor trafficking phenotypes are transplantable from one receptor to the other through exchange of the C-terminal receptor tails, indicating that the tails contain epitopes that are important for the binding of protein partners that participate in the endocytic and postendocytic receptor choices. It is noteworthy that the agonist delay of B1R endocytosis is not transplanted to the B2R via the B1R tail, suggesting that this property of the B1R requires another domain. These events provide a rapid kinin-dependent mechanism for 1) regulating the constitutive B1R activity and 2) shifting the balance of accessible receptors in favor of B1R.
  •  
30.
  •  
31.
  •  
32.
  •  
33.
  • Fredriksson, Robert, et al. (författare)
  • The G-Protein-Coupled Receptors in the Human Genome Form Five Main Families : Phylogenetic Analysis, Paralogon Groups, and Fingerprints
  • 2003
  • Ingår i: Molecular Pharmacology. - : American Society for Pharmacology & Experimental Therapeutics (ASPET). - 0026-895X .- 1521-0111. ; 63:6, s. 1256-1272
  • Tidskriftsartikel (refereegranskat)abstract
    • The superfamily of G-protein-coupled receptors (GPCRs) is very diverse in structure and function and its members are among the most pursued targets for drug development. We identified more than 800 human GPCR sequences and simultaneously analyzed 342 unique functional nonolfactory human GPCR sequences with phylogenetic analyses. Our results show, with high bootstrap support, five main families, named glutamate, rhodopsin, adhesion, frizzled/taste2, and secretin, forming the GRAFS classification system. The rhodopsin family is the largest and forms four main groups with 13 sub-branches. Positions of the GPCRs in chromosomal paralogons regions indicate the importance of tetraploidizations or local gene duplication events for their creation. We also searched for "fingerprint" motifs using Hidden Markov Models delineating the putative inter-relationship of the GRAFS families. We show several common structural features indicating that the human GPCRs in the GRAFS families share a common ancestor. This study represents the first overall map of the GPCRs in a single mammalian genome. Our novel approach of analyzing such large and diverse sequence sets may be useful for studies on GPCRs in other genomes and divergent protein families.
  •  
34.
  • Garcia-Guzman, M, et al. (författare)
  • Characterization of recombinant human P2X4 receptor reveals pharmacological differences to the rat homologue.
  • 1997
  • Ingår i: Molecular Pharmacology. - 0026-895X .- 1521-0111. ; 51:1, s. 109-18
  • Tidskriftsartikel (refereegranskat)abstract
    • We isolated a cDNA from human brain encoding a purinergic receptor that shows a high degree of homology to the rat P2X4 receptor (87% identity). By fluorescence in situ hybridization, the human P2X4 gene has been mapped to region q24.32 of chromosome 12. Tissue distribution analysis of human P2X4 transcripts demonstrates a broad expression pattern in that the mRNA was detected not only in brain but also in all tissues tested. Heterologous expression of the human P2X4 receptor in Xenopus laevis oocytes and human embryonic kidney 293 cells evoked an ATP-activated channel. Simultaneous whole-cell current and Fura-2 fluorescence measurements in human embronic kidney 293 cells transfected with human P2X4 cDNA allowed us to determine the fraction of the current carried by Ca2: this was approximately 8%, demonstrating a high Ca2+ permeability. Low extracellular Zn2+ concentrations (5-10 microM) increase the apparent gating efficiency of human P2X4 by ATP without affecting the maximal response. However, raising the concentration of the divalent cation (> 100 microM) inhibits the ATP-evoked current in a non-voltage-dependent manner. The human P2X4 receptor displays a very similar agonist potency profile to that of rat P2X4 (ATP > > 2-methylthio-ATP > or = CTP > alpha, beta-methylene-ATP > dATP) but has a notably higher sensitivity for the antagonists suramin, pyridoxal-phosphate-6-azophenyl-2',4'-disulfonic acid, and bromphenol blue. Chimeric constructs between human and rat isoforms as well as single-point mutations were engineered to map the regions responsible for the different sensitivity to suramin and pyridoxal-phosphate-6-azophenyl-2'4'-disulfonic acid.
  •  
35.
  •  
36.
  •  
37.
  •  
38.
  •  
39.
  •  
40.
  • Heusser, Stephanie A., et al. (författare)
  • Functional Validation of Virtual Screening for Novel Agents with General Anesthetic Action at Ligand-Gated Ion Channelss
  • 2013
  • Ingår i: Molecular Pharmacology. - : American Society for Pharmacology & Experimental Therapeutics (ASPET). - 0026-895X .- 1521-0111. ; 84:5, s. 670-678
  • Tidskriftsartikel (refereegranskat)abstract
    • GABA(A) receptors play a crucial role in the actions of general anesthetics. The recently published crystal structure of the general anesthetic propofol bound to Gloeobacter violaceus ligand-gated ion channel (GLIC), a bacterial homolog of GABA(A) receptors, provided an opportunity to explore structure-based ligand discovery for pentameric ligand-gated ion channels (pLGICs). We used molecular docking of 153,000 commercially available compounds to identify molecules that interact with the propofol binding site in GLIC. In total, 29 compounds were selected for functional testing on recombinant GLIC, and 16 of these compounds modulated GLIC function. Active compounds were also tested on recombinant GABA(A) receptors, and point mutations around the presumed binding pocket were introduced into GLIC and GABA(A) receptors to test for binding specificity. The potency of active compounds was only weakly correlated with properties such as lipophilicity or molecular weight. One compound was found to mimic the actions of propofol on GLIC and GABA(A), and to be sensitive to mutations that reduce the action of propofol in both receptors. Mutant receptors also provided insight about the position of the binding sites and the relevance of the receptor's conformation for anesthetic actions. Overall, the findings support the feasibility of the use of virtual screening to discover allosteric modulators of pLGICs, and suggest that GLIC is a valid model system to identify novel GABA(A) receptor ligands.
  •  
41.
  • Huang, Yang Zhong, et al. (författare)
  • RNA aptamer-based functional ligands of the neurotrophin receptor, TrkB
  • 2012
  • Ingår i: Molecular Pharmacology. - Bethesda, United States : American Society for Pharmacology and Experimental Therapeutics. - 0026-895X .- 1521-0111. ; 82:4, s. 623-635
  • Tidskriftsartikel (refereegranskat)abstract
    • Many cell surface signaling receptors, such as the neurotrophin receptor, TrkB, have emerged as potential therapeutic targets for diverse diseases. Reduced activation of TrkB in particular is thought to contribute to neurodegenerative diseases. Unfortunately, development of therapeutic reagents that selectively activate particular cell surface receptors such as TrkB has proven challenging. Like many cell surface signaling receptors, TrkB is internalized upon activation; in this proof-of-concept study, we exploited this fact to isolate a pool of nuclease-stabilized RNA aptamers enriched for TrkB agonists. One of the selected aptamers, C4-3, was characterized with recombinant protein-binding assays, cell-based signaling and functional assays, and, in vivo in a seizure model in mice. C4-3 binds the extracellular domain of TrkB with high affinity (KD ∼2 nM) and exhibits potent TrkB partial agonistic activity and neuroprotective effects in cultured cortical neurons. In mice, C4-3 activates TrkB upon infusion into the hippocampus; systemic administration of C4-3 potentiates kainic acid-induced seizure development. We conclude that C4-3 is a potentially useful therapeutic agent for neurodegenerative diseases in which reduced TrkB activation has been implicated. We anticipate that the cell-based aptamer selection approach used here will be broadly applicable to the identification of aptamer-based agonists for a variety of cell-surface signaling receptors. Copyright © 2012 The American Society for Pharmacology and Experimental Therapeutics.
  •  
42.
  • Johansson, Ann-Sofie, et al. (författare)
  • The human glutathione transferase P1-1 specific inhibitor TER 117 designed for overcoming cytostatic-drug resistance is also a strong inhibitor of glyoxalase I
  • 2000
  • Ingår i: Molecular Pharmacology. - 0026-895X .- 1521-0111. ; 57:3, s. 619-624
  • Tidskriftsartikel (refereegranskat)abstract
    • gamma-L-Glutamyl-S-(benzyl)-L-cysteinyl-R-(-)-phenylglycine (TER 117) has previously been developed for selective inhibition of human glutathione S-transferase P1-1 (GST P1-1) based on the postulated contribution of this isoenzyme to the development of drug resistance in cancer cells. In the present investigation, the inhibitory effect of TER 117 on the human glyoxalase system was studied. Although designed as an inhibitor specific for GST P1-1, TER 117 also competitively inhibits glyoxalase I (K(I) = 0.56 microM). In contrast, no inhibition of glyoxalase II was detected. Reduced glyoxalase activity is expected to raise intracellular levels of toxic 2-oxoaldehydes otherwise eliminated by glyoxalase I. The resulting toxicity would accompany the potentiation of cytostatic drugs, caused by inhibition of the detoxication effected by GST P1-1. TER 117 was designed for efficient inhibition of the most abundant form GST P1-1/Ile105. Therefore, the inhibitory effect of TER 117 on a second allelic variant GST P1-1/Val105 was also studied. TER 117 was shown to competitively inhibit both GST P1-1 variants. The apparent K(I) values at glutathione concentrations relevant to the intracellular milieu were in the micromolar range for both enzyme forms. Extrapolation to free enzyme produced K(I) values of approximately 0.1 microM for both isoenzymes, reflecting the high affinity of GST P1-1 for the inhibitor. Thus, the allelic variation in position 105 of GST P1-1 does not affect the inhibitory potency of TER 117. The inhibitory effects of TER 117 on GST P1-1 and glyoxalase I activities may act in synergy in the cell and improve the effectiveness of chemotherapy.
  •  
43.
  • Kang, Dongsoo, et al. (författare)
  • B1 Bradykinin Receptor Homo-oligomers in Receptor Cell Surface Expression and Signaling: Effects of Receptor Fragments.
  • 2005
  • Ingår i: Molecular Pharmacology. - : American Society for Pharmacology & Experimental Therapeutics (ASPET). - 1521-0111 .- 0026-895X. ; 67:1, s. 309-318
  • Tidskriftsartikel (refereegranskat)abstract
    • The human B1 bradykinin receptor is an inducible and constitutively active G protein-coupled receptor that is involved in the inflammatory and pain responses to injury. Here, we investigated the role of B1 receptor homo-oligomerization in cell surface receptor expression. B1 receptors tagged with either the FLAG or hemagglutinin epitope were monitored immunologically and by radio-ligand binding, biotinylation, and phosphoinositide hydrolysis in human embryonic kidney 293 cells. Selective immunoprecipitation, immunoblotting, and immunoelectron microscopy with epitope-specific antibodies together provided evidence for constitutively formed cell surface receptor homo-oligomers. Truncation of the receptor from the N- and C-terminal ends indicated that the epitope for oligomerization seems to be located between Leu26 on top of transmembrane helix 1 and Val71 at the bottom of helix 2. A receptor construct terminating at Asp134 at the bottom of helix 3, B1stop135, was expressed in the cell. It is interesting that this construct behaved as a dominant-negative mutant by competitively preventing formation of intact B1 receptor homo-oligomers, and redistributing B1 receptors from the cell surface to a common intracellular compartment. In contrast, expression of a construct containing the residues downstream of Asp134, B1del(2-134), was inactive in this regard. Together, these results are consistent with a mechanism where constitutive B1 receptor homooligomerization is required for expression of receptors on the cell surface and subsequent constitutive receptor signaling. This may be a novel mechanism by which the cell regulates the presentation of this constitutively highly active receptor at various stages of injury.
  •  
44.
  •  
45.
  •  
46.
  •  
47.
  • Kozielewicz, P, et al. (författare)
  • Molecular Pharmacology of Class F Receptor Activation
  • 2020
  • Ingår i: Molecular pharmacology. - : American Society for Pharmacology & Experimental Therapeutics (ASPET). - 1521-0111 .- 0026-895X. ; 97:2, s. 62-71
  • Tidskriftsartikel (refereegranskat)
  •  
48.
  •  
49.
  • Lapinsh, Maris, et al. (författare)
  • Proteochemometric mapping of the interaction of organic compounds with melanocortin receptor subtypes
  • 2005
  • Ingår i: Molecular Pharmacology. - : American Society for Pharmacology & Experimental Therapeutics (ASPET). - 0026-895X .- 1521-0111. ; 67:1, s. 50-59
  • Tidskriftsartikel (refereegranskat)abstract
    • Proteochemometrics was applied in the analysis of the binding of organic compounds to wild-type and chimeric melanocortin receptors. Thirteen chimeric melanocortin receptors were designed based on statistical molecular design; each chimera contained parts from three of the MC(1,3-5) receptors. The binding affinities of 18 compounds were determined for these chimeric melanocortin receptors and the four wild-type melanocortin receptors. The data for 14 of these compounds were correlated to the physicochemical and structural descriptors of compounds, binary descriptors of receptor sequences, and cross-terms derived from ligand and receptor descriptors to obtain a proteochemometric model (correlation was performed using partial least-squares projections to latent structures; PLS). A well fitted mathematical model (R(2) = 0.92) with high predictive ability (Q(2) = 0.79) was obtained. In a further validation of the model, the predictive ability for ligands (Q(2)lig = 0.68) and receptors (Q(2)rec = 0.76) was estimated. The model was moreover validated by external prediction by using the data for the four additional compounds that had not at all been included in the proteochemometric model; the analysis yielded a Q(2)ext = 0.73. An interpretation of the results using PLS coefficients revealed the influence of particular properties of organic compounds on their affinity to melanocortin receptors. Three-dimensional models of melanocortin receptors were also created, and physicochemical properties of the amino acids inside the receptors' transmembrane cavity were correlated to the PLS modeling results. The importance of particular amino acids for selective binding of organic compounds was estimated and used to outline the ligand recognition site in the melanocortin receptors.
  •  
50.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 111
Typ av publikation
tidskriftsartikel (111)
Typ av innehåll
refereegranskat (111)
Författare/redaktör
Gustafsson, JA (18)
Ingelman-Sundberg, M (11)
Karlsson, A. (10)
Balzarini, J (8)
Johansson, M (5)
Schulte, G (5)
visa fler...
Raffalli-Mathieu, Fr ... (5)
Lang, Matti A (4)
Oscarson, M (4)
Warner, M (4)
JOHANSSON, I (3)
Ellis, E (3)
Fredholm, BB (3)
Gutierrez-de-Teran, ... (3)
Nilsson, S. (3)
MODE, A (3)
Steffensen, KR (3)
Corton, JC (3)
Svenningsson, P (2)
Makino, Y. (2)
Mannervik, Bengt (2)
Tanaka, H. (2)
Pettersson, K (2)
Lang, Matti (2)
Mkrtchian, S (2)
Swärd, Karl (2)
Hellmold, H (2)
Hidestrand, M (2)
Fuxe, K (2)
Franco, R (2)
Lluis, C (2)
Toftgard, R (2)
Aklillu, E (2)
IngelmanSundberg, M (2)
Dahlman-Wright, K (2)
ALBANO, E (2)
Birnir, Bryndis (2)
Kozielewicz, P (2)
Åqvist, Johan (2)
Solaroli, N (2)
Wikberg, Jarl (2)
Olde, Björn (2)
Anderson, SP (2)
Stulnig, TM (2)
Danielson, Patrik (2)
Schuster, GU (2)
Strom, A (2)
Lagerström, Malin C. (2)
Reimers, M (2)
Van Rompay, AR (2)
visa färre...
Lärosäte
Karolinska Institutet (75)
Uppsala universitet (24)
Lunds universitet (8)
Göteborgs universitet (3)
Umeå universitet (3)
Stockholms universitet (3)
visa fler...
Örebro universitet (2)
Linköpings universitet (2)
Kungliga Tekniska Högskolan (1)
Chalmers tekniska högskola (1)
Karlstads universitet (1)
visa färre...
Språk
Engelska (107)
Odefinierat språk (4)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (23)
Naturvetenskap (7)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy