SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0090 6964 OR L773:1573 9686 srt2:(2020-2024)"

Sökning: L773:0090 6964 OR L773:1573 9686 > (2020-2024)

  • Resultat 1-16 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abayazid, Fady, et al. (författare)
  • A New Assessment of Bicycle Helmets: The Brain Injury Mitigation Effects of New Technologies in Oblique Impacts
  • 2021
  • Ingår i: Annals of Biomedical Engineering. - : Springer Science and Business Media LLC. - 1573-9686 .- 0090-6964. ; 49:10, s. 2716-2733
  • Tidskriftsartikel (refereegranskat)abstract
    • New helmet technologies have been developed to improve the mitigation of traumatic brain injury (TBI) in bicycle accidents. However, their effectiveness under oblique impacts, which produce more strains in the brain in comparison with vertical impacts adopted by helmet standards, is still unclear. Here we used a new method to assess the brain injury prevention effects of 27 bicycle helmets in oblique impacts, including helmets fitted with a friction-reducing layer (MIPS), a shearing pad (SPIN), a wavy cellular liner (WaveCel), an airbag helmet (Hövding) and a number of conventional helmets. We tested whether helmets fitted with the new technologies can provide better brain protection than conventional helmets. Each helmeted headform was dropped onto a 45° inclined anvil at 6.3 m/s at three locations, with each impact location producing a dominant head rotation about one anatomical axes of the head. A detailed computational model of TBI was used to determine strain distribution across the brain and in key anatomical regions, the corpus callosum and sulci. Our results show that, in comparison with conventional helmets, the majority of helmets incorporating new technologies significantly reduced peak rotational acceleration and velocity and maximal strain in corpus callosum and sulci. Only one helmet with MIPS significantly increased strain in the corpus collosum. The helmets fitted with MIPS and WaveCel were more effective in reducing strain in impacts producing sagittal rotations and a helmet fitted with SPIN in coronal rotations. The airbag helmet was effective in reducing brain strain in all impacts, however, peak rotational velocity and brain strain heavily depended on the analysis time. These results suggest that incorporating different impact locations in future oblique impact test methods and designing helmet technologies for the mitigation of head rotation in different planes are key to reducing brain injuries in bicycle accidents.
  •  
2.
  • Ahmed, Kirstin, 1974, et al. (författare)
  • Experimental Validation of an ITAP Numerical Model and the Effect of Implant Stem Stiffness on Bone Strain Energy
  • 2020
  • Ingår i: Annals of Biomedical Engineering. - : Springer Science and Business Media LLC. - 1573-9686 .- 0090-6964.
  • Tidskriftsartikel (refereegranskat)abstract
    • The Intraosseous Transcutaneous Amputation Prosthesis (ITAP) offers transfemoral amputees an ambulatory method potentially reducing soft tissue complications seen with socket and stump devices. This study validated a finite element (in silico) model based on an ITAP design and investigated implant stem stiffness influence on periprosthetic femoral bone strain. Results showed good agreement in the validation of the in silico model against the in vitro results using uniaxial strain gauges and Digital Image Correlation (DIC). Using Strain Energy Density (SED) thresholds as the stimulus for adaptive bone remodelling, the validated model illustrated that: (a) bone apposition increased and resorption decreased with increasing implant stem flexibility in early stance; (b) bone apposition decreased (mean change = − 9.8%) and resorption increased (mean change = 20.3%) from distal to proximal in most stem stiffness models in early stance. By engineering the flow of force through the implant/bone (e.g. by changing material properties) these results demonstrate how periprosthetic bone remodelling, thus aseptic loosening, can be managed. This paper finds that future implant designs should be optimised for bone strain under a variety of relevant loading conditions using finite element models to maximise the chances of clinical success.
  •  
3.
  • Cecchi, N. J., et al. (författare)
  • Identifying Factors Associated with Head Impact Kinematics and Brain Strain in High School American Football via Instrumented Mouthguards
  • 2021
  • Ingår i: Annals of Biomedical Engineering. - : Springer Nature. - 0090-6964 .- 1573-9686. ; 49:10, s. 2814-2826
  • Tidskriftsartikel (refereegranskat)abstract
    • Repeated head impact exposure and concussions are common in American football. Identifying the factors associated with high magnitude impacts aids in informing sport policy changes, improvements to protective equipment, and better understanding of the brain’s response to mechanical loading. Recently, the Stanford Instrumented Mouthguard (MiG2.0) has seen several improvements in its accuracy in measuring head kinematics and its ability to correctly differentiate between true head impact events and false positives. Using this device, the present study sought to identify factors (e.g., player position, helmet model, direction of head acceleration, etc.) that are associated with head impact kinematics and brain strain in high school American football athletes. 116 athletes were monitored over a total of 888 athlete exposures. 602 total impacts were captured and verified by the MiG2.0’s validated impact detection algorithm. Peak values of linear acceleration, angular velocity, and angular acceleration were obtained from the mouthguard kinematics. The kinematics were also entered into a previously developed finite element model of the human brain to compute the 95th percentile maximum principal strain. Overall, impacts were (mean ± SD) 34.0 ± 24.3 g for peak linear acceleration, 22.2 ± 15.4 rad/s for peak angular velocity, 2979.4 ± 3030.4 rad/s2 for peak angular acceleration, and 0.262 ± 0.241 for 95th percentile maximum principal strain. Statistical analyses revealed that impacts resulting in Forward head accelerations had higher magnitudes of peak kinematics and brain strain than Lateral or Rearward impacts and that athletes in skill positions sustained impacts of greater magnitude than athletes in line positions. 95th percentile maximum principal strain was significantly lower in the observed cohort of high school football athletes than previous reports of collegiate football athletes. No differences in impact magnitude were observed in athletes with or without previous concussion history, in athletes wearing different helmet models, or in junior varsity or varsity athletes. This study presents novel information on head acceleration events and their resulting brain strain in high school American football from our advanced, validated method of measuring head kinematics via instrumented mouthguard technology.
  •  
4.
  • Ebrahimi, Mohammadhossein, et al. (författare)
  • Elastic, Dynamic Viscoelastic and Model-Derived Fibril-Reinforced Poroelastic Mechanical Properties of Normal and Osteoarthritic Human Femoral Condyle Cartilage
  • 2021
  • Ingår i: Annals of Biomedical Engineering. - : Springer Science and Business Media LLC. - 0090-6964 .- 1573-9686. ; 49:9, s. 2622-2634
  • Tidskriftsartikel (refereegranskat)abstract
    • Osteoarthritis (OA) degrades articular cartilage and weakens its function. Modern fibril-reinforced poroelastic (FRPE) computational models can distinguish the mechanical properties of main cartilage constituents, namely collagen, proteoglycans, and fluid, thus, they can precisely characterize the complex mechanical behavior of the tissue. However, these properties are not known for human femoral condyle cartilage. Therefore, we aimed to characterize them from human subjects undergoing knee replacement and from deceased donors without known OA. Multi-step stress-relaxation measurements coupled with sample-specific finite element analyses were conducted to obtain the FRPE material properties. Samples were graded using OARSI scoring to determine the severity of histopathological cartilage degradation. The results suggest that alterations in the FRPE properties are not evident in the moderate stages of cartilage degradation (OARSI 2-3) as compared with normal tissue (OARSI 0-1). Drastic deterioration of the FRPE properties was observed in severely degraded cartilage (OARSI 4). We also found that the FRPE properties of femoral condyle cartilage related to the collagen network (initial fibril-network modulus) and proteoglycan matrix (non-fibrillar matrix modulus) were greater compared to tibial and patellar cartilage in OA. These findings may inform cartilage tissue-engineering efforts and help to improve the accuracy of cartilage representations in computational knee joint models.
  •  
5.
  • Fahlstedt, Madelen, 1983-, et al. (författare)
  • Ranking and Rating Bicycle Helmet Safety Performance in Oblique Impacts Using Eight Different Brain Injury Models
  • 2021
  • Ingår i: Annals of Biomedical Engineering. - : Springer. - 0090-6964 .- 1573-9686.
  • Tidskriftsartikel (refereegranskat)abstract
    • Bicycle helmets are shown to offer protection against head injuries. Rating methods and test standards are used to evaluate different helmet designs and safety performance. Both strain-based injury criteria obtained from finite element brain injury models and metrics derived from global kinematic responses can be used to evaluate helmet safety performance. Little is known about how different injury models or injury metrics would rank and rate different helmets. The objective of this study was to determine how eight brain models and eight metrics based on global kinematics rank and rate a large number of bicycle helmets (n=17) subjected to oblique impacts. The results showed that the ranking and rating are influenced by the choice of model and metric. Kendall’s tau varied between 0.50 and 0.95 when the ranking was based on maximum principal strain from brain models. One specific helmet was rated as 2-star when using one brain model but as 4-star by another model. This could cause confusion for consumers rather than inform them of the relative safety performance of a helmet. Therefore, we suggest that the biomechanics community should create a norm or recommendation for future ranking and rating methods.
  •  
6.
  • Fice, Jason, 1985, et al. (författare)
  • Neck Muscle and Head/Neck Kinematic Responses While Bracing Against the Steering Wheel During Front and Rear Impacts
  • 2021
  • Ingår i: Annals of Biomedical Engineering. - : Springer Science and Business Media LLC. - 1573-9686 .- 0090-6964. ; 49:3, s. 1069-1082
  • Tidskriftsartikel (refereegranskat)abstract
    • Drivers often react to an impending collision by bracing against the steering wheel. The goal of the present study was to quantify the effect of bracing on neck muscle activity and head/torso kinematics during low-speed front and rear impacts. Eleven seated subjects (3F, 8 M) experienced multiple sled impacts (Delta v = 0.77 m/s; a(peak) = 19.9 m/s(2), Delta t = 65.5 ms) with their hands on the steering wheel in two conditions: relaxed and braced against the steering wheel. Electromyographic activity in eight neck muscles (sternohyoid, sternocleidomastoid, splenius capitis, semispinalis capitis, semispinalis cervicis, multifidus, levator scapulae, and trapezius) was recorded unilaterally with indwelling electrodes and normalized by maximum voluntary contraction (MVC) levels. Head and torso kinematics (linear acceleration, angular velocity, angular rotation, and retraction) were measured with sensors and motion tracking. Muscle and kinematic variables were compared between the relaxed and braced conditions using linear mixed models. We found that pre-impact bracing generated only small increases in the pre-impact muscle activity (< 5% MVC) when compared to the relaxed condition. Pre-impact bracing did not increase peak neck muscle responses during the impacts; instead it reduced peak trapezius and multifidus muscle activity by about half during front impacts. Bracing led to widespread changes in the peak amplitude and timing of the torso and head kinematics that were not consistent with a simple stiffening of the head/neck/torso system. Instead pre-impact bracing served to couple the torso more rigidly to the seat while not necessarily coupling the head more rigidly to the torso.
  •  
7.
  • Flodin, Johanna, et al. (författare)
  • Wearable Neuromuscular Electrical Stimulation on Quadriceps Muscle Can Increase Venous Flow
  • 2023
  • Ingår i: Annals of Biomedical Engineering. - 0090-6964 .- 1573-9686. ; 51:12, s. 2873-2882
  • Tidskriftsartikel (refereegranskat)abstract
    • Neuromuscular electrical stimulation (NMES) of the quadriceps (Q) may increase venous blood flow to reduce the risk of venous thromboembolism. This study assessed whether Q-NMES pants could increase peak venous velocity (PVV) in the femoral vein using Doppler ultrasound and minimize discomfort. On 15 healthy subjects, Q-NMES using textile electrodes integrated in pants was applied with increasing intensity (mA) until the first visible muscle contraction [measurement level (ML)-I] and with an additional increase of six NMES levels (ML II). Discomfort using a numeric rating scale (NRS, 0–10) and PVV were used to assess different NMES parameters: frequency (1, 36, 66 Hz), ramp-up/-down time (RUD) (0, 1 s), plateau time (1.5, 4, and 6 s), and on:off duty cycle (1:1, 1:2, 1:3, 1:4). Q-NMES pants significantly increased PVV from baseline with 93% at ML I and 173% at ML II. Frequencies 36 Hz and 66 Hz and no RUD resulted in significantly higher PVV at both MLs compared to 1 Hz and 1 s RUD, respectively. Plateau time, and duty cycle did not significantly change PVV. Discomfort was only significantly higher with increasing intensity and frequency. Q-NMES pants produces intensity-dependent 2−3-fold increases of venous blood flow with minimal discomfort. The superior NMES parameters were a frequency of 36 Hz, 0 s RUD, and intensity at ML II. Textile-based NMES wearables are promising for non-episodic venous thromboembolism prevention. 
  •  
8.
  • Gunther, M, et al. (författare)
  • An Experimental Model for the Study of Underwater Pressure Waves on the Central Nervous System in Rodents: A Feasibility Study
  • 2022
  • Ingår i: Annals of biomedical engineering. - : Springer Science and Business Media LLC. - 1573-9686 .- 0090-6964. ; 50:1, s. 78-85
  • Tidskriftsartikel (refereegranskat)abstract
    • Underwater blast differs from blast in air. The increased density and viscosity of water relative to air cause injuries to occur almost exclusively as primary blast, and may cause disorientation in a diver, which may lead to inability to protect the airway and cause drowning. However, cognitive impairments from under water blast wave exposure have not been properly investigated, and no experimental model has been described. We established an experimental model (water shock tube) for simulating the effects of underwater blast pressure waves in rodents, and to investigate neurology in relation to organ injury. The model produced standardized pressure waves (duration of the primary peak 3.5 ms, duration of the entire complex waveform including all subsequent reflections 325 ms, mean impulse 141–281 kPa-ms, mean peak pressure 91–194 kPa). 31 rats were randomized to control (n = 6), exposure 90 kPa (n = 8), 152 kPa (n = 8), and 194 kPa (n = 9). There was a linear trend between the drop height of the water shock tube and electroencephalography (EEG) changes (p = 0.014), while no differences in oxygen saturation, heart rate, S100b or macroscopic bleedings were detected. Microscopic bleedings were detected in lung, intestines, and meninges. Underwater pressure waves caused changes in EEG, at pressures when mild hemorrhage occurred in organs, suggesting an impact on brain functions. The consistent injury profile enabled for the addition of future experimental interventions.
  •  
9.
  • Ji, S., et al. (författare)
  • Use of Brain Biomechanical Models for Monitoring Impact Exposure in Contact Sports
  • 2022
  • Ingår i: Annals of Biomedical Engineering. - : Springer Nature. - 0090-6964 .- 1573-9686. ; 50:11, s. 1389-1408
  • Tidskriftsartikel (refereegranskat)abstract
    • Head acceleration measurement sensors are now widely deployed in the field to monitor head kinematic exposure in contact sports. The wealth of impact kinematics data provides valuable, yet challenging, opportunities to study the biomechanical basis of mild traumatic brain injury (mTBI) and subconcussive kinematic exposure. Head impact kinematics are translated into brain mechanical responses through physics-based computational simulations using validated brain models to study the mechanisms of injury. First, this article reviews representative legacy and contemporary brain biomechanical models primarily used for blunt impact simulation. Then, it summarizes perspectives regarding the development and validation of these models, and discusses how simulation results can be interpreted to facilitate injury risk assessment and head acceleration exposure monitoring in the context of contact sports. Recommendations and consensus statements are presented on the use of validated brain models in conjunction with kinematic sensor data to understand the biomechanics of mTBI and subconcussion. Mainly, there is general consensus that validated brain models have strong potential to improve injury prediction and interpretation of subconcussive kinematic exposure over global head kinematics alone. Nevertheless, a major roadblock to this capability is the lack of sufficient data encompassing different sports, sex, age and other factors. The authors recommend further integration of sensor data and simulations with modern data science techniques to generate large datasets of exposures and predicted brain responses along with associated clinical findings. These efforts are anticipated to help better understand the biomechanical basis of mTBI and improve the effectiveness in monitoring kinematic exposure in contact sports for risk and injury mitigation purposes. 
  •  
10.
  • Neidlin, Michael, et al. (författare)
  • A Novel Multiplex Based Platform for Osteoarthritis Drug Candidate Evaluation
  • 2020
  • Ingår i: Annals of Biomedical Engineering. - : Springer Science and Business Media LLC. - 0090-6964 .- 1573-9686. ; 48:10, s. 2438-2448
  • Tidskriftsartikel (refereegranskat)abstract
    • Osteoarthritis (OA) is characterized by irreversible cartilage degradation with very limited therapeutic interventions. Drug candidates targeted at prototypic players had limited success until now and systems based approaches might be necessary. Consequently, drug evaluation platforms should consider the biological complexity looking beyond well-known contributors of OA. In this study an ex vivo model of cartilage degradation, combined with measuring releases of 27 proteins, was utilized to study 9 drug candidates. After an initial single drug evaluation step the 3 most promising compounds were selected and employed in an exhaustive combinatorial experiment. The resulting most and least promising treatment candidates were selected and validated in an independent study. This included estimation of mechanical properties via finite element modelling (FEM) and quantification of cartilage degradation as glycosaminoglycan (GAG) release. The most promising candidate showed increase of Young’s modulus, decrease of hydraulic permeability and decrease of GAG release. The least promising candidate exhibited the opposite behaviour. The study shows the potential of a novel drug evaluation platform in identifying treatments that might reduce cartilage degradation. It also demonstrates the promise of exhaustive combination experiments and a connection between chondrocyte responses at the molecular level with changes of biomechanical properties at the tissue level.
  •  
11.
  • Orozco, Gustavo A, et al. (författare)
  • Adaptation of Fibril-Reinforced Poroviscoelastic Properties in Rabbit Collateral Ligaments 8 Weeks After Anterior Cruciate Ligament Transection
  • 2023
  • Ingår i: Annals of Biomedical Engineering. - : Springer Science and Business Media LLC. - 1573-9686 .- 0090-6964. ; 51:4, s. 726-740
  • Tidskriftsartikel (refereegranskat)abstract
    • Ligaments of the knee provide stability and prevent excessive motions of the joint. Rupture of the anterior cruciate ligament (ACL), a common sports injury, results in an altered loading environment for other tissues in the joint, likely leading to their mechanical adaptation. In the collateral ligaments, the patterns and mechanisms of biomechanical adaptation following ACL transection (ACLT) remain unknown. We aimed to characterize the adaptation of elastic and viscoelastic properties of the lateral and medial collateral ligaments eight weeks after ACLT. Unilateral ACLT was performed in six rabbits, and collateral ligaments were harvested from transected and contralateral knee joints after eight weeks, and from an intact control group (eight knees from four animals). The cross-sectional areas were measured with micro-computed tomography. Stepwise tensile stress-relaxation testing was conducted up to 6% final strain, and the elastic and viscoelastic properties were characterized with a fibril-reinforced poroviscoelastic material model. We found that the cross-sectional area of the collateral ligaments in the ACL transected knees increased, the nonlinear elastic collagen network modulus of the LCL decreased, and the amount of fast relaxation in the MCL decreased. Our results indicate that rupture of the ACL leads to an early adaptation of the elastic and viscoelastic properties of the collagen fibrillar network in the collateral ligaments. These adaptations may be important to consider when evaluating whole knee joint mechanics after ACL rupture, and the results aid in understanding the consequences of ACL rupture on other tissues.
  •  
12.
  • Putra, I Putu Alit, 1992, et al. (författare)
  • Optimization of Female Head–Neck Model with Active Reflexive Cervical Muscles in Low Severity Rear Impact Collisions
  • 2021
  • Ingår i: Annals of Biomedical Engineering. - : Springer Science and Business Media LLC. - 1573-9686 .- 0090-6964. ; 49:1, s. 115-128
  • Tidskriftsartikel (refereegranskat)abstract
    • ViVA Open Human Body Model (HBM) is an open-source human body model that was developed to fill the gap of currently available models that lacked the average female size. In this study, the head–neck model of ViVA OpenHBM was further developed by adding active muscle controllers for the cervical muscles to represent the human neck muscle reflex system as studies have shown that cervical muscles influence head–neck kinematics during impacts. The muscle controller was calibrated by conducting optimizationbased parameter identification of published-volunteer data. The effects of different calibration objectives to head–neck kinematics were analyzed and compared. In general, a model with active neck muscles improved the head–neck kinematics agreement with volunteer responses. The current study highlights the importance of including active muscle response to mimic the volunteer’s kinematics. A simple PD controller has found to be able to represent the behavior of the neck muscle reflex system. The optimum gains that defined the muscle controllers in the present study were able to be identified using optimizations. The present study provides a basis for describing an active muscle controller that can be used in future studies to investigate whiplash injuries in rear impacts.
  •  
13.
  •  
14.
  • Zhang, Zhengpei, et al. (författare)
  • Micromechanical Loading Studies in Ex Vivo Cultured Embryonic Rat Bones Enabled by a Newly Developed Portable Loading Device
  • 2023
  • Ingår i: Annals of Biomedical Engineering. - : Springer Nature. - 0090-6964 .- 1573-9686. ; 51:10, s. 2229-2236
  • Tidskriftsartikel (refereegranskat)abstract
    • Mechanical loading has been described as having the potential to affect bone growth. In order to experimentally study the potential clinical applications of mechanical loading as a novel treatment to locally modulate bone growth, there is a need to develop a portable mechanical loading device enabling studies in small bones. Existing devices are bulky and challenging to transfer within and between laboratories and animal facilities, and they do not offer user-friendly mechanical testing across both ex vivo cultured small bones and in vivo animal models. To address this, we developed a portable loading device comprised of a linear actuator fixed within a stainless-steel frame equipped with suitable structures and interfaces. The actuator, along with the supplied control system, can achieve high-precision force control within the desired force and frequency range, allowing various load application scenarios. To validate the functionality of this new device, proof-of-concept studies were performed in ex vivo cultured rat bones of varying sizes. First, very small fetal metatarsal bones were microdissected and exposed to 0.4 N loading applied at 0.77 Hz for 30 s. When bone lengths were measured after 5 days in culture, loaded bones had grown less than unloaded controls (p < 0.05). Next, fetal rat femur bones were periodically exposed to 0.4 N loading at 0.77 Hz while being cultured ex vivo for 12 days. Interestingly, this loading regimen had the opposite effect on bone growth, i.e., loaded femur bones grew significantly more than unloaded controls (p < 0.001). These findings suggest that complex relationships between longitudinal bone growth and mechanical loading can be determined using this device. We conclude that our new portable mechanical loading device allows experimental studies in small bones of varying sizes, which may facilitate further preclinical studies exploring the potential clinical applications of mechanical loading.
  •  
15.
  •  
16.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-16 av 16

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy