SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0091 2700 OR L773:1552 4604 srt2:(2020-2024)"

Sökning: L773:0091 2700 OR L773:1552 4604 > (2020-2024)

  • Resultat 1-11 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Buesker, Soeren, et al. (författare)
  • Population Pharmacokinetics as a Tool to Reevaluate the Complex Disposition of Ethanol in the Fed and Fasted States
  • 2023
  • Ingår i: Journal of clinical pharmacology. - : WILEY. - 0091-2700 .- 1552-4604. ; 63, s. 681-694
  • Tidskriftsartikel (refereegranskat)abstract
    • The pharmacokinetics (PK) of ethanol are important in pharmacology and therapeutics because of potential drug-alcohol interactions as well as in forensic science when alcohol-related crimes are investigated. The PK of ethanol have been extensively studied since the 1930s, although some issues remain unresolved, such as the significance of first-pass metabolism, whether zero-order kinetics apply, and the effects of food on bioavailability. We took advantage of nonlinear mixed-effects modeling to describe blood-alcohol concentration (BAC) profiles derived from 3 published clinical studies involving oral, intraduodenal, and intravenous administration of ethanol with and without food. The overall data set included 1510 BACs derived from 72 healthy subjects (60 men, 12 women) aged between 20 and 60 years. Two-compartment models with first-order absorption and Michaelis-Menten elimination kinetics adequately described the BAC profiles. Food intake had 2 separate effects: It reduced the absorption rate constant and accelerated the maximum elimination rate. Estimates of the maximum elimination rate (fasted) and the food effect (as a factor) were 6.31 g/h (95%CI, 6.04-6.59 g/h) and 1.39-fold (95%CI, 1.33-1.46-fold), respectively. Simulations showed that the area under the BAC-time curve (AUC) was smaller with lower input rate of ethanol, irrespective of any first-pass metabolism. The AUC from time 0 to 10 hours for a 75-kg subject was 2.34 g center dot h/L (fed) and 3.83 g center dot h/L (fasted) after an oral dose of 45 g ethanol. This difference was mainly attributable to the food effect on ethanol elimination and depended less on the absorption rate. Our new approach to explain the complex human PK of ethanol may help when BAC predictions are made in clinical pharmacology and forensic medicine.
  •  
2.
  •  
3.
  • Huledal, Gunilla, et al. (författare)
  • Pharmacokinetics and Metabolism of Melflufen, an Alkylating Peptide-Drug Conjugate, in Patients with Relapsed Refractory Multiple Myeloma
  • 2024
  • Ingår i: Journal of clinical pharmacology. - : John Wiley & Sons. - 0091-2700 .- 1552-4604. ; 64:2, s. 240-252
  • Tidskriftsartikel (refereegranskat)abstract
    • Melphalan flufenamide (melflufen) is a novel lipophilic peptide-drug conjugate recently approved in the European Union and the United Kingdom for the treatment of relapsed refractory multiple myeloma. Melflufen rapidly crosses the cell membrane, and inside tumor cells, melflufen utilizes peptidases and esterases to release entrapped hydrophilic metabolites with alkylating activity. In vitro, in whole blood, melflufen was rapidly distributed into blood cells and quickly converted to its main metabolite melphalan, with maximum cellular concentrations of noncovalently bound melflufen and melphalan after 1 and 6 minutes, respectively. Melphalan outflow from blood cells was slow, with peak concentrations in plasma after 25 minutes. The pharmacokinetics of melflufen was best described by a 2-compartment model. Following a 30-minutes intravenous infusion of 40 mg in 27 patients with relapsed refactory multiple myeloma, mean half-life in the alpha phase of the curve was 1.24 minutes, half-life in the beta phase of the curve 26.7 minutes, and clearance 13.4 L/min. Desethyl-melflufen exposure was below 20% compared to melflufen. Based on population analysis (298 patients with relapsed refactory multiple myeloma), the melphalan pharmacokinetics were well characterized by a 3-compartment model with melflufen dosing into a peripheral compartment, assuming instantaneous distribution of melflufen into cells and subsequent rapid metabolism to melphalan. Mean clearance and central and deep peripheral volumes of distribution were 22.4 L/h, 2.70 L, and 51.3 L, respectively. Clearance increased and maximum concentration decreased with increasing body weight and estimated glomerular filtration rate. In conclusion, melflufen administration differs from melphalan administration by a more rapid distribution into cells, which, in conjunction with a rapid intracellular metabolism, allows for higher maximum concentrations of alkylating agents, and by a more extensive distribution of melphalan to peripheral tissues.
  •  
4.
  • Ibrahim, Moustafa M. A., et al. (författare)
  • Optimal Designs for Model-Based Assessment of Insulin Sensitivity and Glucose Effectiveness.
  • 2021
  • Ingår i: Journal of clinical pharmacology. - : John Wiley & Sons. - 0091-2700 .- 1552-4604. ; 61:1, s. 116-124
  • Tidskriftsartikel (refereegranskat)abstract
    • The integrated minimal model allows assessment of clinical diagnosis indices, for example, insulin sensitivity (SI ) and glucose effectiveness (SG ), from data of the insulin-modified intravenous glucose tolerance test (IVGTT), which is laborious with an intense sampling schedule, up to 32 samples. The aim of this study was to propose a more informative, although less laborious, IVGTT design to be used for model-based assessment of SI and SG . The IVGTT design was optimized simultaneously for all design variables: glucose and insulin infusion doses, time of glucose dose and start of insulin infusion, insulin infusion duration, sampling times, and number of samples. Design efficiency was used to compare among different designs. The simultaneously optimized designs showed a profound higher efficiency than both standard rich (32 samples) and sparse (10 samples) designs. The optimized designs, after removing replicate sample times, were 1.9 and 7.1 times more efficient than the standard rich and sparse designs, respectively. After including practical aspects of the designs, for example, sufficient duration between samples and avoidance of prolonged hypoglycemia, we propose 2 practical designs with fewer sampling times and lower input of glucose and insulin than standard designs, constrained to prevent hypoglycemia. The optimized practical rich design is equally efficient in assessing SI and SG as the rich standard design, but with half the number of the samples, while the optimized practical sparse design has 1 less sample and requires 4.6 times fewer individuals for equal certainty when assessing SI and SG than the sparse standard design.
  •  
5.
  • Kotani, Naoki, et al. (författare)
  • Population Pharmacokinetics and Exposure-Response Relationships of Astegolimab in Patients With Severe Asthma
  • 2022
  • Ingår i: Journal of clinical pharmacology. - : John Wiley & Sons. - 0091-2700 .- 1552-4604. ; 62:7, s. 905-917
  • Tidskriftsartikel (refereegranskat)abstract
    • Astegolimab is a fully human immunoglobulin G2 monoclonal antibody that binds to the ST2 receptor and blocks the interleukin-33 signaling. It was evaluated in patients with uncontrolled severe asthma in the phase 2b study (Zenyatta) at doses of 70, 210, and 490 mg subcutaneously every 4 weeks for 52 weeks. This work aimed to characterize astegolimab pharmacokinetics, identify influential covariates contributing to its interindividual variability, and make a descriptive assessment of the exposure-response relationships. A population pharmacokinetic model was developed using data from 368 patients in the Zenyatta study. Predicted average steady-state concentration was used in the subsequent exposure-response analyses, which evaluated efficacy (asthma exacerbation rate) and biomarker end points including forced expiratory volume in 1 second, fraction exhaled nitric oxide, blood eosinophils, and soluble ST2. A 2-compartment disposition model with first-order elimination and first-order absorption best described the astegolimab pharmacokinetics. The relative bioavailability for the 70-mg dose was 15.3% lower. Baseline body weight, estimated glomerular filtration rate, and eosinophils were statistically correlated with pharmacokinetic parameters, but only body weight had a clinically meaningful influence on the steady-state exposure (ratios exceeding 0.8-1.25). The exposure-response of efficacy and biomarkers were generally flat with a weak trend in favor of the highest dose/exposure. This study characterized astegolimab pharmacokinetics in patients with asthma and showed typical pharmacokinetic behavior as a monoclonal antibody-based drug. The exposure-response analyses suggested the highest dose tested in the Zenyatta study (490 mg every 4 weeks) performed close to the maximum effect, and no additional response may be expected above it.
  •  
6.
  • Litjens, Carlijn H. C., et al. (författare)
  • Prediction of Moxifloxacin Concentrations in Tuberculosis Patient Populations by Physiologically Based Pharmacokinetic Modeling
  • 2022
  • Ingår i: Journal of clinical pharmacology. - : John Wiley & Sons. - 0091-2700 .- 1552-4604. ; 62:3, s. 385-396
  • Tidskriftsartikel (refereegranskat)abstract
    • Moxifloxacin has an important role in the treatment of tuberculosis (TB). Unfortunately, coadministration with the cornerstone TB drug rifampicin results in suboptimal plasma exposure. We aimed to gain insight into the moxifloxacin pharmacokinetics and the interaction with rifampicin. Moreover, we provided a mechanistic framework to understand moxifloxacin pharmacokinetics. We developed a physiologically based pharmacokinetic model in Simcyp version 19, with available and newly generated in vitro and in vivo data, to estimate pharmacokinetic parameters of moxifloxacin alone and when administered with rifampicin. By combining these strategies, we illustrate that the role of P-glycoprotein in moxifloxacin transport is limited and implicate MRP2 as transporter of moxifloxacin-glucuronide followed by rapid hydrolysis in the gut. Simulations of multiple dose area under the plasma concentration-time curve (AUC) of moxifloxacin (400 mg once daily) with and without rifampicin (600 mg once daily) were in accordance with clinically observed data (predicted/observed [P/O] ratio of 0.87 and 0.80, respectively). Importantly, increasing the moxifloxacin dose to 600 mg restored the plasma exposure both in actual patients with TB as well as in our simulations. Furthermore, we extrapolated the single dose model to pediatric populations (P/O AUC ratios, 1.04-1.52) and the multiple dose model to children with TB (P/O AUC ratio, 1.51). In conclusion, our combined approach resulted in new insights into moxifloxacin pharmacokinetics and accurate simulations of moxifloxacin exposure with and without rifampicin. Finally, various knowledge gaps were identified, which may be considered as avenues for further physiologically based pharmacokinetic refinement.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  •  
11.
  • van Rhee, Koen P., et al. (författare)
  • Pooled Population Pharmacokinetic Analysis and Dose Recommendations for Ciprofloxacin in Intensive Care Unit Patients with Obesity
  • 2024
  • Ingår i: Journal of Clinical Pharmacology. - 0091-2700.
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent studies have explored the influence of obesity and critical illness on ciprofloxacin pharmacokinetics. However, variation across the subpopulation of individuals with obesity admitted to the intensive care unit (ICU) with varying renal function remains unexamined. This study aims to characterize ciprofloxacin pharmacokinetics in ICU patients with obesity and provide dose recommendations for this special population. Individual patient data of 34 ICU patients with obesity (BMI >30 kg/m2) from four studies evaluating ciprofloxacin pharmacokinetics in ICU patients were pooled and combined with data from a study involving 10 individuals with obesity undergoing bariatric surgery. All samples were collected after intravenous administration. Non-linear mixed effects modeling and simulation were used to develop a population pharmacokinetic model and describe ciprofloxacin exposure in plasma. Model-based dose evaluations were performed using a pharmacokinetic/pharmacodynamic target of AUC/MIC >125. The data from patients with BMI ranging from 30.2 to 58.1 were best described by a two-compartment model with first-order elimination and a proportional error model. The inclusion of Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) as a covariate on clearance reduced inter-individual variability from 57.3% to 38.5% (P <.001). Neither body weight nor ICU admission significantly influenced clearance or volume of distribution. Renal function is a viable predictor for ciprofloxacin clearance in ICU patients with obesity, while critical illness and body weight do not significantly alter clearance. As such, body weight and critical illness do not need to be accounted for when dosing ciprofloxacin in ICU patients with obesity. Individuals with CKD-EPI >60 mL/min/1.73 m2 may require higher dosages for the treatment of pathogens with minimal inhibitory concentration ≥0.25 mg/L.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-11 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy