SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0165 232X srt2:(2020-2024)"

Sökning: L773:0165 232X > (2020-2024)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Andrén, Anna, et al. (författare)
  • Evaluation of a laboratory model test using field measurements of frost penetration in railway tunnels
  • 2022
  • Ingår i: Cold Regions Science and Technology. - : Elsevier. - 0165-232X .- 1872-7441. ; 204
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite extensive grouting efforts to prevent water from leaking into tunnels, water seepages remain. When exposed to freezing temperatures, ice formations occur. During the winter, the Swedish Transport Administration's railway tunnels are affected by major problems caused by ice, such as icicles from roof and walls, ice loads on installations, ice-covered tracks and roads, etc. To ensure safety and prevent traffic disruptions, many tunnels require extensive maintenance. Improved knowledge about frost penetration in tunnels is required to reduce maintenance of the tunnels. Frost insulated drain mats are often used at leakage spots to prevent ice formation along the tunnels. To find out which parts of a tunnel are exposed to freezing temperatures, the University of Gävle and the Royal Institute of Technology in Stockholm conducted a laboratory model test on behalf of the Swedish National Rail Administration (now the Swedish Transport Administration). The laboratory model test aimed to find a method to determine the expected temperature conditions along a tunnel to decide which parts of the tunnel require frost insulation to protect the drainage system from freezing and prevent ice formation. To evaluate the laboratory model test, the Swedish Transport Administration in collaboration with Luleå University of Technology have performed field surveys in two Swedish railway tunnels. The field measurements involved monitoring temperatures in air, rock surfaces and rock mass, as well as measuring wind direction, wind and air velocity and air pressure. The measurements in the tunnels show that the frost penetrates further into the tunnels than was expected from the laboratory model test, which was based on a completely uninsulated tunnel. Frost insulated drains do not only prevent the cold air from reaching the rock mass, but also prevent the rock from emitting geothermal heat that warms up the cold tunnel air. Consequently, the frost penetrates further into the tunnel than it would do if the heat from the rock mass was allowed to warm up the outside air on its way into the tunnel. The number of frost insulated drains and how much of the tunnel walls and roof are covered thereby affect the length of the frost penetration.
  •  
2.
  • Eidevåg, Tobias, 1987, et al. (författare)
  • Angle of repose of snow: An experimental study on cohesive properties
  • 2022
  • Ingår i: Cold Regions Science and Technology. - : Elsevier BV. - 0165-232X .- 1872-7441. ; 194
  • Tidskriftsartikel (refereegranskat)abstract
    • The angle of repose is a measure reflecting the internal friction and cohesion properties of a granular material. In this paper, we present an experimental setup and measurements for the angle of repose of snow for seven different snow samples over a large range of temperatures. The results show that the angle of repose is dependent on the fall height, the temperature, and the grain size of the snow. These variables are quantified, and their interdependencies are separately studied. With increased snow temperature, the angle of repose increases, and this can be explained by the presence of a liquid layer on ice that can be thermodynamically stable at temperatures below the melting point of water. With decreasing grain size the angle of repose also increases which is expected since the cohesive energy decreases more slowly than the grain mass. For increasing fall height, the snow grains generally accelerate to larger collisional velocities, yielding a smaller angle of repose. In general, the dimensionless cohesion number was found to largely reflect the dependencies of the variables and is therefore useful for understanding what affects the angle of repose. The results demonstrate that the drag force and collision dynamics of ice grains are important for understanding how snow accumulates on a surface, for example if one desires predicting snow accretion by simulating a dispersed cloud of snow. © 2021
  •  
3.
  • Hellgren, Rikard, 1988-, et al. (författare)
  • Ice load measurements on Rätan concrete dam using different sensor types
  • 2021
  • Ingår i: Cold Regions Science and Technology. - : Elsevier BV. - 0165-232X .- 1872-7441. ; , s. 103425-103425
  • Tidskriftsartikel (refereegranskat)abstract
    • Concrete dams in cold regions are designed to withstand loads from the ice sheet on top of the reservoir. However, the ice load's magnitude and return period are among the most considerable uncertainties in safety assessments of concrete dams. In a previous study, the development and installation of a 1 × 3 m2 prototype ice load panel attached at the upstream face of a concrete dam was presented. The panel is large enough for the ice sheet's cross-section to remain in contact with the panel as the water level varies, and it measures the total ice load without interpolation. This paper presents measurement results from the load panel from winters 2018–19 and 2019–20, an update to the measurement design, and additional ice pressure measurements with traditional stress cells. The panel measured seasonal maximum ice loads of 100 and 200 kN/m for the two winters, respectively. Winter 2019–20, when the panel measured the largest loads, was mild for the location, with great ice thickness near the dam face (1.2 m) and an almost snow-free ice sheet throughout the winter. Two 2.75 × 1.75 m2 dummy panels were installed adjacent to the load panel prior to the winter 2019–20 to minimize the load panel's protruding effect. These panels significantly reduced the local impact, as evident by the crack-pattern of the ice sheet near the load panel. The load panel recorded large ice loads (>75 kN/m) for all combinations with increasing/decreasing air temperature and/or water level. Identification of temperature change events and water level change events during the winters, shows that a change in air temperature, water level, or any combination of these, is not sufficient alone to explain large ice loads at Rätan dam. These findings suggest that other conditions must be satisfied before a water level or temperature change results in large ice loads. In February 2020, three panels consisting of a steel frame with four stress cells on each were placed on the dummy panels’ upstream face, and one single stress cell was placed 6 m out in the reservoir in front of the load panel. The majority of the stress cells recorded ice pressure larger than their measurement range. At the end of the ice season, only two of the panels’ twelve stress cells were still functional, and the ice vastly deformed the steel frames. From the period before the frames were damaged and unrelated to the choice of interpolation method, the recordings by the three stress cell panels at the dam are among the historically largest inferred ice loads on dams.
  •  
4.
  • Hellgren, Rikard, 1988-, et al. (författare)
  • Measurement of ice pressure on a concrete dam with a prototype ice load panel
  • 2020
  • Ingår i: Cold Regions Science and Technology. - : Elsevier. - 0165-232X .- 1872-7441. ; 170
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper presents the development and installation of a prototype ice load panel and measurements of ice load from February 2016 to February 2018 at the Rätan hydropower dam in Sweden. The design of the 1 × 3 m2 panel enables direct measurement of ice pressure on the concrete surface is based on previous experience from similar measurements with sea ice. Important features of the design are sufficient height and width to reduce scale effects and to cover the ice thickness and variations in water level. The Rätan dam was chosen based on several criteria so that the ice load is considered to be reasonably idealized against the dam structure.For the three winters 2016, 2016/2017, 2017/2018, the maximum ice load recorded was 161 kN/m, 164 kN/m and 61 kN/m respectively. There were significant daily fluctuations during the cold winter months, and the daily peak ice loads showed a visual correlation with the daily average temperature and with the daily pattern of operation of the power station with its corresponding water level variations.
  •  
5.
  • Mähönen, Joonas, et al. (författare)
  • Bevameter pressure-sinkage testing on snow
  • 2024
  • Ingår i: Cold Regions Science and Technology. - : Elsevier. - 0165-232X .- 1872-7441. ; 222
  • Tidskriftsartikel (refereegranskat)abstract
    • Pressure-sinkage tests for determining vehicle sinkage on soft soils can be done using a bevameter. In this study, pressure-sinkage tests were performed on snow, which, like soil, is a granular material. However, unlike soil, snow layers are inhomogeneous with varying properties. For tracked vehicles, the shape of the track print is rectangular, which is why rectangular plates are often used for pressure-sinkage tests. The aim of this study was to see if smaller circular plate or smaller rectangular plates can be used instead of larger rectangular plates, and to understand the possible limitations of using small plates. Radius for the circular plate was chosen to be equal to the width of the rectangular plate. Three measuring sessions were performed at different locations during different snow conditions using circular pressure plates and rectangular pressure plates of different aspect ratios. The results show that smaller rectangular plates can be used if the width of the plates remains the same, or circular plates can be used if the radius of the circular plate is equal to the width of the rectangular plate. Limitation comes with increasing pressure, which occurs more quickly with larger-area plates, as larger plates sense solid ground more rapidly than smaller plates. To avoid this, snowpack thickness should be a minimum of five times thicker than maximum sinkage.
  •  
6.
  • Mähönen, Joonas, et al. (författare)
  • Portable bevameter for measuring snow properties in field
  • 2021
  • Ingår i: Cold Regions Science and Technology. - : Elsevier. - 0165-232X .- 1872-7441. ; 182
  • Tidskriftsartikel (refereegranskat)abstract
    • Mechanical properties of snow related to snowmobiles or similar lightweight tracked vehicles aren't widely researched today and it is difficult to find data. One challenge is that snow properties constantly are changing due to aging, climate conditions and location. Also the measuring procedure is difficult since aged snow often contains layers with various densities and hardness. Soil is to some extent similar to snow, in the context that both are granular materials. The bevameter is a popular device for measuring soil properties, however this device needs to be scaled in order to meet criteria of target for research, i.e. in this case snowmobiles. In this paper a new type of portable bevameter is presented, which is designed and built for measuring snow properties in the field. Results from initial tests are also presented. The aim with the bevameter is to measure snow properties which can be used to simulate the interaction between a snowmobile and soft snow. The designed bevameter can be towed with one snowmobile to the field to execute measurements. One full set of test results is introduced and parameters for simulations are extracted from the result data. The parameters from the data were usable but the quality of the measurements can be improved. One problem with the data collected was noise, which was caused by the interaction between the mechanical parts and the low mass of the bevameter. Furthermore, the usability can be improved by reducing cables which can be hard and fragile during cold weather and by replacing the laser distance-sensor with a string wire potentiometer which isn't sensitive to snow dropping in the measurement area. With some improvements the constructed bevameter is a very useful tool which can be used for field measurements to determine snow properties for snowmobile-size vehicle simulations.
  •  
7.
  • Niemelä, Henna, et al. (författare)
  • Effects of multiple wetting incidents, shear and sliding friction on lubricant stability in SLIPS
  • 2023
  • Ingår i: Cold Regions Science and Technology. - : Elsevier B.V.. - 0165-232X .- 1872-7441. ; 211
  • Tidskriftsartikel (refereegranskat)abstract
    • Surface icing almost invariably derives from the precursory step of liquid water encountering the surface. Thus, slippery liquid infused porous surfaces, SLIPS, must possess steady wetting durability, and lubricant stability to function as a reliable hydro−/icephobic surface design especially in outdoor applications. Additionally, they should maintain their phobic performance under shear forces, and possess low sliding friction to act as a slippery, multirepellent surfaces. These characteristics are needed in variable applications ranging from moving and rotating blades to steady surfaces, operating in altering climate conditions. More profound durability testing is needed to examine the loss of surface functionality when the lubricant is depleted from the structure via various routes. In addition, the durability tests should be designed to serve the application-related purposes and thus, to reveal performance differences between slippery surfaces for further analysis and targeted end-use development. Here, we tested the wetting durability and stability of SLIPS with multicycle Wilhelmy plate by dipping the surfaces multiple times in water bath. Additionally, we examined the effects of centrifugal and friction-based shear stress to investigate the lubricant depletion from the structure. Tests that measure the durability and the stability of SLIPS designs are in great need in further developing functional slippery surfaces for real outdoor application coatings which encounter environmental stresses, e.g., wetting and icing. Acknowledging the material differences under specific stresses will guide designing the slippery surfaces towards more specific and functionable end-use applications
  •  
8.
  • Tommik, Karina, et al. (författare)
  • Air velocity and temperature distribution in culverts
  • 2023
  • Ingår i: Cold Regions Science and Technology. - : Elsevier. - 0165-232X .- 1872-7441. ; 212
  • Tidskriftsartikel (refereegranskat)abstract
    • Uneven frost heave in roads and railways is a frequent problem in cold regions leading to degradation of structures. To improve drainage, culverts are frequently integrated into road and railway embankments. The presence of culverts changes the temperature distribution in the surrounding soil as cold air passes through the culvert. Consequently, frost depth and corresponding frost heave are increased in the vicinity of the culvert compared to the rest of the structure if frost susceptible soil is present. For an accurate frost related design, information of heat balance between the culvert and the surrounding soil is needed. A field study focusing on convective heat transfer in culverts was conducted in northern Sweden by the authors. Temperatures and air velocities in culverts of three sizes (0.6, 0.8 and 3.4 m) were recorded. Analysis of obtained data is presented in this paper with emphasis on the influence of air velocity on the temperature distribution. Influence of wind on development of airflow in culverts is also addressed. Accuracy of trained gaussian process regression (GPR) models is estimated in predicting temperature distribution inside of culverts. It is concluded, based on the field measurement data, that airflow can significantly affect temperature distribution inside culverts and development of airflow in culverts is largely influenced by the orientation of the culvert in relation to the predominant wind direction.
  •  
9.
  • Zastruzny, Sebastian F., et al. (författare)
  • Accelerated permafrost thaw and increased drainage in the active layer : Responses from experimental surface alteration
  • 2023
  • Ingår i: Cold Regions Science and Technology. - 0165-232X. ; 212
  • Tidskriftsartikel (refereegranskat)abstract
    • Erosion and infrastructure in the Arctic can change the thickness of the active layer which can subsequently alternate the thermal-hydrological regime and change the drainage patterns on slopes. Previous studies have shown that drainage can either decrease due to the movement of water occurring in deeper soil layers with lower permeability or increase due to the formation of features like gullies and channels. In a field experiment conducted in Qaanaaq, Greenland, the surface topography was altered by adding 35 cm soil in one treatment, removing 33 cm in another, while an untreated plot measuring 10 × 10 m was maintained for comparison purposes. The temperature and water content of these plots were monitored in the three following years. Based on field measurements, a 1-dimensional model was set up in CoupModel to simulate the field experiment and quantify changes in the thickness of the saturated zone and drainage as a consequence of the treatment. Both field observations and simulations show that the addition and removal of soil changed the thickness of the saturated layer in the active layer, which changed the thermal properties in the soil and, thus, the response of thawing or recovery of permafrost. The simulations showed that during the summer depressions there were higher water contents, which accelerated warming of the soil and increased permafrost thawing of 35.7 cm in depth. In contrast, raising the soil surface aggregated only 19.8 cm of permafrost due to higher buffering from lower water contents. Changed active layer thickness altered the thickness of the saturated zone, leading to changed drainage patterns: In depressions, first drainage occurs three days earlier, and maximum daily drainage is increased by 154% as compared to ambient conditions. In contrast, raising the surface delayed the runoff from the plot by up to eight days, and decreased the maximum daily drainage to 72%. Effects of the treatment were most pronounced during the first year after the experiment, with diminishing effects during the consecutive year as the system equilibrated to the new state. Results from our study can advance our understanding of impacts of both natural and human-induced surface alterations on active layer thickening and water movement in permafrost-affected areas, which ultimately affect the entire ecosystem and the living conditions for local communities.
  •  
10.
  • Zhaka, Vasiola, 1992-, et al. (författare)
  • Brash ice macroporosity and piece size distribution in ship channels
  • 2024
  • Ingår i: Cold Regions Science and Technology. - : Elsevier. - 0165-232X .- 1872-7441. ; 217
  • Tidskriftsartikel (refereegranskat)abstract
    • Merchant vessels' performance on brash ice plays an important role in navigation in fast ice conditions in Northern Baltic ports. Among many parameters, the piece size distribution and macroporosity of the brash ice influence the accuracy of the model simulations of ship performance in brash ice. These properties also govern the brash ice accumulation and consolidation in ship channels. The current work presents analyses of macroporosity and piece size distribution from three full-scale brash ice channels investigated during winters 2020–21 and 2021–22. The results provide insights into brash ice macroporosity and piece size distribution. Smaller brash ice pieces exhibited higher porosity. On each measured cross-section, the average macroporosity ranged from 1.4% to 23%, with standard deviations of 3.8% and 16%, respectively. Porosity variations were observed in relation to equivalent brash ice thickness, the number of ship passages, and cumulative freezing air temperatures. Total porosity and the channel's brash ice porosity initially increased with breaking events and then stabilized at approximately 23% and 30%, respectively, after 9 passages. In contrast, side ridge porosity increased initially (up to 23%) and subsequently decreased. The initial total, brash ice and side ridge maximal porosities after the breaking event were estimated equal to 25%, 35% and 30%, respectively. The first two channels, which were navigated a total of 9 and 10 times, had an average degree of brash ice consolidation equal to 0.84 and 0.76, and an average degree of side ridge consolidation equal to 1.1 and 1.0, respectively. The third channel, characterized by frequent navigation, exhibited a consolidation degree of 0.82 for brash ice and 1.35 in the side ridges. The average vertical piece size across all cross-sections ranged from 0.28 m to 0.52 m with standard deviations of 0.16 m and 0.25 m. The average horizontal piece size ranged from 0.33 m to 0.4 m with standard deviations between 0.2 m and 0.34 m. The horizontal piece size distribution of brash ice was best described by the probability density function of a three-parameter lognormal distribution.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy