SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0886 6236 OR L773:1944 9224 srt2:(2000-2004)"

Sökning: L773:0886 6236 OR L773:1944 9224 > (2000-2004)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Algesten, Grete, 1974-, et al. (författare)
  • Seasonal variation of CO2 saturation in the Gulf of Bothnia : Indications of marine net heterotrophy
  • 2004
  • Ingår i: Global Biogeochemical Cycles. - Washington, D.C : American Geophysical Union (AGU). - 0886-6236 .- 1944-9224. ; 18, s. 4021-4028
  • Tidskriftsartikel (refereegranskat)abstract
    • Seasonal variation of pCO2 and primary and bacterioplankton production were measured in the Gulf of Bothnia during an annual cycle. Surface water was supersaturated with CO2 on an annual basis, indicating net heterotrophy and a source of CO2 to the atmosphere. However, the Gulf of Bothnia oscillated between being a sink and a source of CO2 over the studied period, largely decided by temporal variation in bacterial respiration (BR) and primary production (PP) in the water column above the pycnocline. The calculated annual respiration-production balance (BR-PP) was very similar to the estimated CO2 emission from the Gulf of Bothnia, which indicates that these processes were major determinants of the exchange of CO2 between water and atmosphere. The southern basin (the Bothnian Sea) had a lower net release of CO2 to the atmosphere than the northern Bothnian Bay (7.1 and 9.7 mmol C m−2 d−1, respectively), due to higher primary production, which to a larger extent balanced respiration in this basin.
  •  
2.
  • Bastviken, David, et al. (författare)
  • Methane emissions from lakes : Dependence of lake characteristics, two regional assessments, and a global estimate
  • 2004
  • Ingår i: Global Biogeochemical Cycles. - : Wiley-Blackwell Publishing Inc.. - 0886-6236 .- 1944-9224. ; 18, s. GB4009-
  • Tidskriftsartikel (refereegranskat)abstract
    • [ 1] Lake sediments are "hot spots'' of methane production in the landscape. However, regional and global lake methane emissions, contributing to the greenhouse effect, are poorly known. We developed predictions of methane emissions from easily measured lake characteristics based on measurements for 11 North American and 13 Swedish lakes, and literature values from 49 lakes. Results suggest that open water methane emission can be predicted from variables such as lake area, water depth, concentrations of total phosphorus, dissolved organic carbon, and methane, and the anoxic lake volume fraction. Using these relations, we provide regional estimates from lakes in Sweden and the upper midwest of the United States. Considering both open water and plant-mediated fluxes, we estimate global emissions as 8 - 48 Tg CH4 yr(-1) (6 - 16% of total natural methane emissions and greater than oceanic emission), indicating that lakes should be included as a significant source in global methane budgets.
  •  
3.
  • Guo, Laodong, et al. (författare)
  • Characterization of Siberian Arctic coastal sediments : implications for terrestrial organic carbon export
  • 2004
  • Ingår i: Global Biogeochemical Cycles. - 0886-6236 .- 1944-9224. ; 18:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Surface sediments were collected during the 2000 TransArctic Expedition along the Siberian Arctic coastline, including the Ob, Yenisey, Khatanga, Lena, and Indigirka estuaries. Sediments were characterized for elemental composition (total organic carbon, TOC, black carbon, BC, and total N, as well as major and trace elements), isotopic signature (δ13C, δ15N, Δ14C, ɛNd, 87Sr/86Sr), and organic molecular composition to better understand river export variations over the large spatial scale of the Siberian Arctic. On average, 79 ± 9% of the total C in sediments was organic while 21 ± 9% was inorganic. BC made up 9 ± 4% of the TOC pool, with a general increasing trend from west to east along the Siberian coast. The combined Nd- and Sr-isotopes (ɛNd and 87Sr/86Sr) were used to define two distinct sediment sources between east and west Siberian regions with the Khatanga River as a boundary. Data from pyrolysis-GC/MS of the sedimentary organic carbon (SOC) indicated an increase in the freshness of the organic matter from west to east on the Siberian Arctic coast, with increasing relative abundance of furfurals (polysaccharides) with respect to nitriles. Values for the δ13C of SOC ranged from -27.1‰ (mostly terrigenous) to -23.8‰, while δ15N increased from east to west (3.1 to 5.2‰) with a significant correlation with C/N ratio. Values for the Δ14C of SOC ranged from -805 to -279‰, with a consistent trend increasing from the east (Indigirka River) to the west (Ob River). These Δ14C values corresponded to a 14C age of 2570 ± 30 yBP in the Ob estuary and 13,050 ± 50 yBP in the Indigirka estuary. Most importantly, Δ14C values were significantly correlated with the ratio of BC/TOC (R2 = 0.91, n = 6), consistent with the distribution pattern of increasing permafrost zone from the west to the east along the Siberian coast. Together, our results suggest that older OC was derived from the release of recalcitrant BC during permafrost thawing and riverbank and coastal erosion, likely enhanced by ongoing environmental changes in the northern ecosystem
  •  
4.
  •  
5.
  • Christensen, Torben, et al. (författare)
  • Trace gas exchange in a high-arctic valley 1. Variations in CO2 and CH4 flux between tundra vegetation types
  • 2000
  • Ingår i: Global Biogeochemical Cycles. - 0886-6236. ; 14:3, s. 701-714
  • Tidskriftsartikel (refereegranskat)abstract
    • Ecosystem exchanges of CO2 and CH4 were studied by chamber techniques in five different vegetation types in a high arctic valley at Zackenberg, NE Greenland. The vegetation types were categorized as Cassiope heath, hummocky fen, continuous fen, grass land and Salix arctica snowbed. Integrated daytime fluxes for the different vegetation types of the valley showed that the fen areas and the grassland, were significant sources of CH4 with a mean efflux of 6.3 mg CH4 m(-2) h(-1) and sinks for CO2, with almost -170 mg CO2 m(-2) hr(-1). The heath and snowbed areas had much lower carbon sequestration rates of about -25 mg CO2 m(-2) hr(-1) and were also sinks for CH4. Methane emissions from the valley dominated in the hummocky fens. Computation of area integrated mean daytime flux values across all vegetation types of the entire valley bottom revealed that it was a sink of CO2 in the order of -96+/-33 mg CO2 m-2 hr-1 and a source of 1.9+/-0.7 m(-2) CH4 m(-2) hr(-1). These values were in accordance with eddy correlation measurements reported elsewhere in this issue and reflect a high-carbon exchange despite the high arctic location. In the fens, where the water table was at or above the soil surface, methane emissions increased with net ecosystem CO2 flux. In places with the water table below the soil surface, such as particularly in the hummocky parts of the fen, oxidation tended to become the dominant controlling factor on methane efflux.
  •  
6.
  •  
7.
  • Kaplan, Jed O, et al. (författare)
  • The stable carbon isotope composition of the terrestrial biosphere: Modeling at scales from the leaf to the globe
  • 2002
  • Ingår i: Global Biogeochemical Cycles. - 0886-6236. ; 16:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Global data sets of the stable carbon isotope composition of plant leaves, of CO2 in canopy air, and of CO2 in the background atmosphere were compiled and compared to results of a global vegetation model (BIOME4) that simulated, at these three scales, the magnitude, direction, and timing of fluxes of CO2 and C-13 between the biosphere and the atmosphere. Carbon isotope data on leaves were classified into 12 Plant Functional Types (PFTs), and measurements from canopy flasks were assigned to 16 biomes, for direct comparison to model results. BIOME4 simulated the observed leaf delta(13)C values to within 1 standard deviation of the measured mean for most PFTs. Modeled delta(13)C for C-3 grasses, tundra shrubs, and herbaceous plants of cold climates deviated only slightly more from measurements, perhaps as a result of the wide geographic range and a limited set of measurements of these PFTs. Modeled ecosystem isotopic discrimination against C-13 (Delta(e)) averaged 18.6 globally when simulating potential natural vegetation and 18.1 when an agricultural crop mask was superimposed. The difference was mainly due to the influence of C-4 agriculture in areas that are naturally dominated by C-3 vegetation. Model results show a gradient in Delta(e) among C-3-dominated biomes as a result of stomatal responses to aridity; this model result is supported by canopy air measurements. At the troposphere scale, BIOME4 was coupled to a matrix representation of an atmospheric tracer transport model to simulate seasonally varying concentrations of CO2 and C-13 at remote Northern Hemisphere measuring stations. Ocean CO2 and C-13 flux fields were included, using the HAMOCC3 ocean biogeochemistry model [Six and Maier-Reimer, 1996]. Model results and observations show similar seasonal cycles, and the model reproduces the inferred latitudinal trend toward smaller isotopic discrimination by the biosphere at lower latitudes. These results indicate that biologically mediated variations in C-13 discrimination by terrestrial ecosystems may be significant for atmospheric inverse modeling of carbon sources and sinks, and that such variations can be simulated using a process-based model.
  •  
8.
  • Silvola, J, et al. (författare)
  • Effects of elevated CO2 and N deposition on CH4 emissions from European mires
  • 2003
  • Ingår i: Global Biogeochemical Cycles. - 0886-6236. ; 17:2
  • Tidskriftsartikel (refereegranskat)abstract
    • [1] Methane fluxes were measured at five sites representing oligotrophic peatlands along a European transect. Five study plots were subjected to elevated CO2 concentration (560 ppm), and five plots to NH4NO3 (3 or 5 g N yr(-1)). The CH4 emissions from the control plots correlated in most cases with the soil temperatures. The depth of the water table, the pH, and the DOC, N and SO4 concentrations were only weakly correlated with the CH4 emissions. The elevated CO2 treatment gave nonsignificantly higher CH4 emissions at three sites and lower at two sites. The N treatment resulted in higher methane emissions at three sites (nonsignificant). At one site, the CH4 fluxes of the N-treatment plots were significantly lower than those of the control plots. These results were not in agreement with our hypotheses, nor with the results obtained in some earlier studies. However, the results are consistent with the results of the vegetation analyses, which showed no significant treatment effects on species relationships or biomass production.
  •  
9.
  • Sögaard, H, et al. (författare)
  • Trace gas exchange in a high-arctic valley 3. Integrating and scaling CO2 fluxes from canopy to landscape using flux data, footprint modeling, and remote sensing
  • 2000
  • Ingår i: Global Biogeochemical Cycles. - 0886-6236. ; 14:3, s. 725-744
  • Tidskriftsartikel (refereegranskat)abstract
    • Within the framework of the European Land Arctic Physical Processes project and as part of the Danish Research Council's Polar Program, a study on trace gas exchange in a high-arctic ecosystem was conducted in NE Greenland, May-August 1997. On the basis of carbon dioxide flux measurements from three dominant surface types, this paper reports on the upscaling of such measurements from canopy to landscape level. Over a three-week period starting in mid-July, the different surfaces revealed large differences in the CO2 flux with uptake rates ranging from 0.7 g C m(-2) d(-1) over the dwarf shrub heath to 3.0 g C m(2) d(-1) over denser parts of the fen, while willow snowbed revealed intermediate uptake rates. The carbon dioxide exchange could be simulated by a CO2 model, combining photosynthesis and soil respiration routines, for which the parametrization depended on the vegetation type. Results from the simulation were supported by a sensitivity analysis based on a three-dimensional footprint model where it was shown that the CO2 uptake was strongly related to the measured leaf area index. The CO2 model was used to calculate the spatial distribution in Net Ecosystem Exchange (NEE) on the basis of Landsat satellite data acquired at the peak of the growing season and stratified according to vegetation type. It was found that there was a reasonable agreement between the satellite-based flux estimate (-0.77 g C m(-2) d(-1)) and the CO2 flux found by areal weighting of the eddy correlation measurements (-0.88 g C m(-2) d(-1)) for Me specific study day. Finally, the summer season NEE was calculated for the whole Zackenberg Valley bottom. In June, there was a valley-wide carbon loss of 8.4+/-2.6 g C m(-2) month(-1), whereas the valley system accumulated 18.8+/-6.7 g C m(-2) season(-1) during the growing season (July-August).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy