SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0931 1890 OR L773:1432 2285 srt2:(2010-2014)"

Sökning: L773:0931 1890 OR L773:1432 2285 > (2010-2014)

  • Resultat 1-12 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bonosi, Lorenzo, et al. (författare)
  • Growth responses of 15 Salix genotypes to temporary water stress are different from the responses to permanent water shortage
  • 2010
  • Ingår i: Trees - Structure and Function. - : Springer Science and Business Media LLC. - 0931-1890 .- 1432-2285. ; 24, s. 843-854
  • Tidskriftsartikel (refereegranskat)abstract
    • Hybrids of willow (Salix spp.) are today grown as biomass crops for energy in several cool-temperate regions including Sweden. These trees have great growth potential also under warmer climates, but may suffer from drought and heat. Research on tree growth under drought has often focused on the responses to permanent water stress. Less attention has been paid to the effects of temporary water stress on tree growth, although periods of strong water shortage are recurrent in many regions of the world. We performed a greenhouse experiment to assess the impact of five treatments including permanent (PWS; 30 days of water shortage) and temporary (TWS; 4-12 days of water shortage followed by normal watering) water stress on growth and leaf traits of 15 Salix genotypes. Plant biomass and height increment decreased across treatments in the order control (well-watered) > TWS > PWS, but there was also a significant genotype x treatment interaction. The pattern in growth traits was not directly reflected by the leaf traits, for which there was no significant genotype x treatment interaction (except for leaf angle). The significant genotype x treatment interactions for growth traits indicate a potential for breeding. Permanent water shortage does not necessarily represent an appropriate environment for the selection of genotypes for environments characterised by temporary water stress.
  •  
2.
  • Canales, Javier, et al. (författare)
  • Gene expression profiling in the stem of young maritime pine trees : detection of ammonium stress-responsive genes in the apex
  • 2011
  • Ingår i: Trees. - : Springer Science and Business Media LLC. - 0931-1890 .- 1432-2285. ; 26:2, s. 609-619
  • Tidskriftsartikel (refereegranskat)abstract
    • The shoots of young conifer trees represent an interesting model to study the development and growth of conifers from meristematic cells in the shoot apex to differentiated tissues at the shoot base. In this work, microarray analysis was used to monitor contrasting patterns of gene expression between the apex and the base ofmaritime pine shoots. A group of differentially expressed genes were selected and validated by examining their relative expression levels in different sections along thestem, from the top to the bottom. After validation of the microarray data, additional geneexpression analyses were also performed in the shoots of young maritime pine treesexposed to different levels of ammonium nutrition. Our results show that the apex ofmaritime pine trees is extremely sensitive to conditions of ammonium excess or deficiency, as revealed by the observed changes in the expression of stress-responsivegenes. This new knowledge may be used to precocious detection of early symptoms of nitrogen nutritional stresses, thereby increasing survival and growth rates of young treesin managed forests. 
  •  
3.
  • Duethorn, Elisabeth, et al. (författare)
  • Influence of micro-site conditions on tree-ring climate signals and trends in central and northern Sweden
  • 2013
  • Ingår i: Trees. - : Springer Science and Business Media LLC. - 0931-1890 .- 1432-2285. ; 27:5, s. 1395-1404
  • Tidskriftsartikel (refereegranskat)abstract
    • Tree-ring chronologies are important indicators of pre-instrumental, natural climate variability. Some of the longest chronologies are from northern Fennoscandia, where ring width measurement series from living trees are combined with series from sub-fossil trees, preserved in shallow lakes, to form millennial-length records. We here assess the recent ends of such timeseries by comparing climate signals and growth characteristics in central and northern Sweden, of (1) trees growing at lakeshore micro-sites (representing the source of sub-fossil material of supra-long chronologies), with (2) trees collected in dryer micro-sites several meters inland. Calibration trials reveal a predominating June-September temperature signal in N-Sweden and a weaker but significant May-September precipitation signal in C-Sweden. At the micro-site level, the temperature signal in N-Sweden is stronger in the lakeshore trees compared to the inland trees, whereas the precipitation signal in C-Sweden remains unchanged among the lakeshore and inland trees. Tree-rings at cambial ages > 40 years are also substantially wider in the lakeshore micro-site in C-Sweden, and juvenile rings are more variable (and wider) in the dryer micro-site in N-Sweden (compared to the adjacent micro-sites). By combining the data of the various micro-sites with relict samples spanning the past 1,000 years, we demonstrate that growth rate differences at the micro-site scale can affect the low frequency trends of millennial-length chronologies. For the supra-long chronologies from northern Fennoscandia, that are derived from sub-fossil lake material, it is recommended to combine these data with measurement series from only lakeshore trees.
  •  
4.
  •  
5.
  • Kännaste, Astrid, et al. (författare)
  • Odors of Norway spruce (Picea abies L.) seedlings : differences due to age and chemotype
  • 2013
  • Ingår i: Trees. - : Springer. - 0931-1890 .- 1432-2285. ; 27, s. 149-159
  • Tidskriftsartikel (refereegranskat)abstract
    • Small conifer seedlings (mini-seedlings) are less damaged by the large pine weevil Hylobius abietis (L.) (Coleoptera: Curculionidae) compared to conventional seedlings. Chemical difference between the seedling types is one possible explanation for this phenomenon. In the present paper, the emissions of volatile organic compounds (VOC) of 7- to 43-week-old Norway spruce [Picea abies (L.) Karst.] seedlings were analyzed. Collection and identification of the volatiles was made by solid phase micro-extraction and gas chromatography mass spectrometry (SPME–GC–MS). The enantiomers of α-pinene and limonene were separated in a two-dimensional GC (2D-GC). Most of the seedlings represented either a limonene- or a bornyl acetate-chemotype. Only minor changes in the volatile composition of the two types of seedlings were found during the first year. Age-related changes, however, were found in the volatiles released by wounded phloem where green leaf volatiles (GLVs) and borneol were the dominated VOC for young seedling. The attractive compound for the pine weevil, α-pinene, was first detected in the phloem emissions of 18- to 22-week-old seedlings. Different storage conditions of the seedlings during the winter/early spring-phase influenced the volatile composition in the phloem. High amount of GLVs was characteristic for the 43-week-old seedlings stored in naturally changing outdoor temperature, but not present in the seedlings winter-stored at a constant temperature of −4 °C. The possible role of these observed differences in odor emissions between seedlings of different age and physiological status for the feeding preferences of the large pine weevil is discussed.
  •  
6.
  • Nybom, Hilde, et al. (författare)
  • Assessment of fire blight tolerance in apple based on plant inoculations with Erwinia amylovora and DNA markers
  • 2012
  • Ingår i: Trees - Structure and Function. - : Springer Science and Business Media LLC. - 0931-1890 .- 1432-2285. ; 26, s. 199-213
  • Tidskriftsartikel (refereegranskat)abstract
    • Fire blight (Erwinia amylovora) causes serious damage to pome fruit orchards, and identification of germplasm with heritable disease resistance is therefore crucial. Two dominant SCAR (sequence characterised amplified region) marker alleles (AE10-375 and GE-8019), flanking a previously identified QTL (quantitative trait locus) for resistance to fire blight on ‘Fiesta’ linkage group 7 in apple cultivars related to ‘Cox’s Orange Pippin’, were screened on 205 apple cultivars. Both marker alleles were present in 22% of the cultivars, indicating presence of the QTL allele for tolerance, and both were lacking in 25%, indicating homozygosity for absence of the QTL tolerance allele. However, 33% had only the marker allele AE10-375, while 20% had only GE-8019, suggesting that some cultivars with the dominant alleles for both of the flanking markers can carry these on separate chromosomes and may lack the QTL allele for tolerance. In 2009 and 2010, terminal shoots of greenhouse-grown grafted trees of 21 cultivars (only 20 in 2010) were inoculated with Erwinia amylovora. ‘Idared’ (susceptible) and ‘Enterprise’ (tolerant) were included as controls. Disease severity for each cultivar was expressed as percentage of necrosis in relation to entire length of shoot, and the ranking of cultivars in 2009 and 2010 was compared with a Spearman rank correlation test,P<0.01. A relationship between presence of both flanking marker alleles for tolerance and level of fire blight tolerance was confirmed with a Mann–Whitney U-test,P<0.01 in 2009, andP<0.05 in 2010. A PCO (principal coordinate) analysis based on band profiles obtained with 12 SSR (simple sequence repeat) loci produced three loose clusters, two of which contained known offspring of ‘Cox’s Orange Pippin’, and one with cultivars that were either unrelated or had an unknown origin. Cases where DNA markers did not predict level of fire blight damage as expected, were, however, as common among descendants of ‘Cox’s Orange Pippin’ as among apparently unrelated cultivars. Obviously the ‘Fiesta’ LG 7 QTL has some predictive value, both for known ‘Cox’ relatives and others, but more efficient markers would be desirable for marker-assisted selection.
  •  
7.
  • Nybom, Hilde, et al. (författare)
  • European pome fruit genetic resources evaluated for disease resistance
  • 2012
  • Ingår i: Trees - Structure and Function. - : Springer Science and Business Media LLC. - 0931-1890 .- 1432-2285. ; 26, s. 179-189
  • Forskningsöversikt (refereegranskat)abstract
    • Pome fruit genetic resources collections constitute a highly valuable resource not only for fruit breeding but also for direct use by nurseries, growers, and home gardeners. In order to use these resources efficiently and sustainably, reliable evaluation data on fruit and tree characteristics must be generated. Here we focus on pome fruit genetic resources evaluated phenotypically and genotypically for susceptibility to apple scab (Venturiainaequalis), powdery mildew (Podosphaeraleucotricha), fire blight (Erwiniaamylovora), pear rust (Gymnosporangiumsabinae) and storage diseases (e.g.,Penicilliumexpansum). Examples are presented of several ongoing projects throughout Europe, with the aim to evaluate fruit genetic resources for disease susceptibility and potential use in breeding and for commercial use. The COST action 864 has fostered international cooperation in the evaluation of pome fruit genetic resources, and some of these evaluations therefore involve research groups from several of the participating countries.
  •  
8.
  • Ormarsson, Sigurdur, et al. (författare)
  • Numerical study of how creep and progressive stiffening affect the growth stress formation in trees
  • 2010
  • Ingår i: Trees. - : Springer Science and Business Media LLC. - 1432-2285 .- 0931-1890. ; 24:1, s. 105-115
  • Tidskriftsartikel (refereegranskat)abstract
    • It is not fully understood how much growth stresses affect the final quality of solid timber products in terms of, e.g. shape stability. It is, for example, difficult to predict the internal growth stress field within the tree stem. Growth stresses are progressively generated during the tree growth and they are highly influenced by climate, biologic and material-related factors. To increase the knowledge of the stress formation, a finite element model was created to study how the growth stresses develop during the tree growth. The model is an axisymmetric general plane strain model where material for all new annual rings is progressively added to the tree during the analysis. The material model used is based on the theory of small strains (where strains refer to the undeformed configuration which is good approximation for strains less than 4%) where so-called biological maturation strains (growth-related strains that form in the wood fibres during their maturation) are used as a driver for the stress generation. It is formulated as an incremental material model that takes into account elastic strain, maturation strain, viscoelastic strain and progressive stiffening of the wood material. The results clearly show how the growth stresses are progressively generated during the tree growth. The inner core becomes more and more compressed, whereas the outer sapwood is subjected to slightly increased tension. The parametric study shows that the growth stresses are highly influenced by the creep behaviour and evolution of parameters such as modulus of elasticity, micro-fibril angle and maturation strain.
  •  
9.
  • Ormarsson, Sigurdur, et al. (författare)
  • Numerical study of how creep and stiffness evolution affect the growth stress formation in trees
  • 2010
  • Ingår i: Trees. - : Springer Science and Business Media LLC. - 0931-1890 .- 1432-2285. ; 24:1, s. 105-115
  • Tidskriftsartikel (refereegranskat)abstract
    • It is not fully understood how much growth stresses affect the final quality of solid timber products in terms of e.g. shape stability. It is for example difficult to predict the internal growth stress field within the tree stem. Growth stresses are progressively generated during the tree growth and they are highly influenced by climate, biologic and material related factors. To increase the knowledge of the stress formation a finite element model was created to study how the growth stresses develop during the tree growth. The model is an axisymmetric general plane strain model where material for all new annual rings is progressively added to the tree during the analysis. The material model used is based on the theory of small strains (where strains refer to the undeformed configuration which is good approximation for strains less than 4%) where so-called biological maturation strains (growth-related strains that form in the wood fibres during their maturation) are used as a driver for the stress generation. It is formulated as an incremental material model that takes into account elastic strain, maturation strain, viscoelastic strain and progressive stiffening of the wood material. The results clearly show how the growth stresses are progressively generated during the tree growth. The inner core becomes more and more compressed whereas the outer sapwood is subjected to slightly increased tension. The parametric study shows that the growth stresses are highly influenced by the creep behaviour and evolution of parameters such as modulus of elasticity, micro fibril angle and maturation strain.
  •  
10.
  •  
11.
  • Wagner, Leopold, et al. (författare)
  • Key parameters controlling stiffness variability within trees : a multiscale experimental–numerical approach
  • 2012
  • Ingår i: Trees. - : Springer Science and Business Media LLC. - 0931-1890 .- 1432-2285. ; 27:1, s. 321-336
  • Tidskriftsartikel (refereegranskat)abstract
    • Microstructural properties of wood vary considerably within a tree. Knowledge of these properties and a better understanding of their relationship to the macroscopic mechanical performance of wood are crucial to optimize the yield and economic value of forest stocks. This holds particularly for the end-use requirements in engineering applications. In this study the microstructure–stiffness relationships of Scots pine are examined with a focus on the effects of the microstructural variability on the elastic properties of wood at different length scales. For this purpose, we have augmented microstructural data acquired using SilviScan-3™ (namely wood density, cell dimensions, earlywood and latewood proportion, microfibril angle) with local measurements of these quantities and of the chemical composition derived from wide-angle X-ray scattering, light microscopy, and thermogravimetric analysis, respectively. The stiffness properties were determined by means of ultrasonic tests at the clear wood scale and by means of nanoindentation at the cell wall scale. In addition, micro-mechanical modeling was applied to assess the causal relations between structural and mechanical properties and to complement the experimental investigations. Typical variability profiles of microstructural and mechanical properties are shown from pith to bark, across a single growth ring and from earlywood to latewood. The clear increase of the longitudinal stiffness as well as the rather constant transverse stiffness from pith to bark could be explained by the variation in microfibril angle and wood density over the entire radial distance. The dependence of local cell wall stiffness on the local microfibril angle was also demonstrated. However, the local properties did not necessarily follow the trends observed at the macroscopic scale and exhibited only a weak relationship with the macroscopic mechanical properties. While the relationship between silvicultural practice and wood microstructure remains to be modeled using statistical techniques, the influence of microstructural properties on the macroscopic mechanical behavior of wood can now be described by a physical model. The knowledge gained by these investigations and the availability of a new micromechanical model, which allows transferring these findings to non-tested material, will be valuable for wood quality assessment and optimization in timber engineering.
  •  
12.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-12 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy