SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1044 1549 srt2:(2020-2022)"

Sökning: L773:1044 1549 > (2020-2022)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Alsafadi, Hani N, et al. (författare)
  • Applications and Approaches for Three-Dimensional Precision-Cut Lung Slices. Disease Modeling and Drug Discovery
  • 2020
  • Ingår i: American Journal of Respiratory Cell and Molecular Biology. - 1044-1549. ; 62:6, s. 681-691
  • Forskningsöversikt (refereegranskat)abstract
    • Chronic lung diseases (CLDs), such as chronic obstructive pulmonary disease, interstitial lung disease, and lung cancer, are among the leading causes of morbidity globally and impose major health and financial burdens on patients and society. Effective treatments are scarce, and relevant human model systems to effectively study CLD pathomechanisms and thus discover and validate potential new targets and therapies are needed. Precision-cut lung slices (PCLS) from healthy and diseased human tissue represent one promising tool that can closely recapitulate the complexity of the lung's native environment, and recently, improved methodologies and accessibility to human tissue have led to an increased use of PCLS in CLD research. Here, we discuss approaches that use human PCLS to advance our understanding of CLD development, as well as drug discovery and validation for CLDs. PCLS enable investigators to study complex interactions among different cell types and the extracellular matrix in the native three-dimensional architecture of the lung. PCLS further allow for high-resolution (live) imaging of cellular functions in several dimensions. Importantly, PCLS can be derived from diseased lung tissue upon lung surgery or transplantation, thus allowing the study of CLDs in living human tissue. Moreover, CLDs can be modeled in PCLS derived from normal lung tissue to mimic the onset and progression of CLDs, complementing studies in end-stage diseased tissue. Altogether, PCLS are emerging as a remarkable tool to further bridge the gap between target identification and translation into clinical studies, and thus open novel avenues for future precision medicine approaches.
  •  
2.
  • Eriksson Ström, Jonas, et al. (författare)
  • Chronic obstructive pulmonary disease is associated with epigenome-wide differential methylation in BAL lung cells
  • 2022
  • Ingår i: American Journal of Respiratory Cell and Molecular Biology. - : American Thoracic Society. - 1044-1549 .- 1535-4989. ; 66:6, s. 638-647
  • Tidskriftsartikel (refereegranskat)abstract
    • DNA methylation patterns in chronic pulmonary obstructive disease (COPD) might offer new insights into disease pathogenesis. To assess methylation profiles in the main COPD target organ, we performed an epigenome-wide association study on BAL cells. Bronchoscopies were performed in 18 subjects with COPD and 15 control subjects (ex- and current smokers). DNA methylation was measured using the Illumina MethylationEPIC BeadChip Kit, covering more than 850,000 CpGs. Differentially methylated positions (DMPs) were examined for 1) enrichment in pathways and functional gene relationships using the Kyoto Encyclopedia of Genes and Genomes and Gene Ontology, 2) accelerated aging using Horvath's epigenetic clock, 3) correlation with gene expression, and 4) colocalization with genetic variation. We found 1,155 Bonferroni-significant (P < 6.74 × 10-8) DMPs associated with COPD, many with large effect sizes. Functional analysis identified biologically plausible pathways and gene relationships, including enrichment for transcription factor activity. Strong correlation was found between DNA methylation and chronological age but not between COPD and accelerated aging. For 79 unique DMPs, DNA methylation correlated significantly with gene expression in BAL cells. Thirty-nine percent of DMPs were colocalized with COPD-associated SNPs. To the best of our knowledge, this is the first epigenome-wide association study of COPD on BAL cells, and our analyses revealed many differential methylation sites. Integration with mRNA data showed a strong functional readout for relevant genes, identifying sites where DNA methylation might directly affect expression. Almost half of DMPs were colocated with SNPs identified in previous genome-wide association studies of COPD, suggesting joint genetic and epigenetic pathways related to disease.
  •  
3.
  • Hedström, Ulf, et al. (författare)
  • Impaired differentiation of chronic obstructive pulmonary disease bronchial epithelial cells grown on bronchial scaffolds
  • 2021
  • Ingår i: American Journal of Respiratory Cell and Molecular Biology. - 1044-1549. ; 65:2, s. 201-213
  • Tidskriftsartikel (refereegranskat)abstract
    • Chronic obstructive pulmonary disease (COPD) is characterized by airway inflammation, small airway remodeling, and emphysema. Airway remodeling in patients with COPD involves both the airway epithelium and the subepithelial extracellular matrix (ECM). However, it is currently unknown how epithelial remodeling in COPD airways depends on the relative influence from inherent defects in the epithelial cells and alterations in the ECM. To address this, we analyzed global gene expression in COPD human bronchial epithelial cells (HBEC) and normal HBEC after repopulation on decellularized bronchial scaffolds derived from patients with COPD or donors without COPD. COPD HBEC grown on bronchial scaffolds showed an impaired ability to initiate ciliated-cell differentiation, which was evident on all scaffolds regardless of their origin. In addition, although normal HBEC were less affected by the disease state of the bronchial scaffolds, COPD HBEC showed a gene expression pattern indicating increased proliferation and a retained basal-cell phenotype when grown on COPD bronchial scaffolds compared with normal bronchial scaffolds. By using mass spectrometry, we identified 13 matrisome proteins as being differentially abundant between COPD bronchial scaffolds and normal bronchial scaffolds. These observations are consistent with COPD pathology and suggest that both epithelial cells and the ECM contribute to epithelial-cell remodeling in COPD airways.
  •  
4.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy