SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1350 9047 srt2:(2005-2009)"

Sökning: L773:1350 9047 > (2005-2009)

  • Resultat 1-40 av 40
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Araujo, I. M., et al. (författare)
  • Changes in calcium dynamics following the reversal of the sodium-calcium exchanger have a key role in AMPA receptor-mediated neurodegeneration via calpain activation in hippocampal neurons
  • 2007
  • Ingår i: Cell Death and Differentiation. - : Springer Science and Business Media LLC. - 1350-9047 .- 1476-5403. ; 14:9, s. 1635-1646
  • Tidskriftsartikel (refereegranskat)abstract
    • Proteolytic cleavage of the Na+/Ca2+ exchanger (NCX) by calpains impairs calcium homeostasis, leading to a delayed calcium overload and excitotoxic cell death. However, it is not known whether reversal of the exchanger contributes to activate calpains and trigger neuronal death. We investigated the role of the reversal of the NCX in Ca2+ dynamics, calpain activation and cell viability, in alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptor-stimulated hippocampal neurons. Selective overactivation of AMPA receptors caused the reversal of the NCX, which accounted for approximately 30% of the rise in intracellular free calcium concentration ([Ca2+](i)). The NCX reverse-mode inhibitor, 2-[2-[4-(4-nitrobenzyloxy) phenyl]ethyl] isothiourea (KB-R7943), partially inhibited the initial increase in [Ca2+](i), and prevented a delayed increase in [Ca2+](i). In parallel, overactivation of AMPA receptors strongly activated calpains and led to the proteolysis of NCX3. KB-R7943 prevented calpain activation, cleavage of NCX3 and was neuroprotective. Silencing of NCX3 reduced Ca2+ uptake, calpain activation and was neuroprotective. Our data show for the first time that NCX reversal is an early event following AMPA receptor stimulation and is linked to the activation of calpains. Since calpain activation subsequently inactivates NCX, causing a secondary Ca2+ entry, NCX may be viewed as a new suicide substrate operating in a Ca2+-dependent loop that triggers cell death and as a target for neuroprotection.
  •  
4.
  •  
5.
  • Elinder, Fredrik, et al. (författare)
  • Opening of plasma membrane voltage-dependent anion channels (VDAC) precedes caspase activation in neuronal apoptosis induced by toxic stimuli
  • 2005
  • Ingår i: Cell Death and Differentiation. - : Springer Science and Business Media LLC. - 1350-9047 .- 1476-5403. ; 12:8, s. 1134-1140
  • Tidskriftsartikel (refereegranskat)abstract
    • Apoptotic cell death is an essential process in the development of the central nervous system and in the pathogenesis of its degenerative diseases. Efflux of K+ and Cl- ions leads to the shrinkage of the apoptotic cell and facilitates the activation of caspases. Here, we present electrophysiological and immunocytochemical evidences for the activation of a voltage-dependent anion channel (VDAC) in the plasma membrane of neurons undergoing apoptosis. Anti-VDAC antibodies blocked the channel and inhibited the apoptotic process. In nonapoptotic cells, plasma membrane VDAC1 protein can function as a NADH (-ferricyanide) reductase. Opening of VDAC channels in apoptotic cells was associated with an increase in this activity, which was partly blocked by VDAC antibodies. Hence, it appears that there might be a dual role for this protein in the plasma membrane: (1) maintenance of redox homeostasis in normal cells and (2) promotion of anion efflux in apoptotic cells.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  • Galluzzi, L, et al. (författare)
  • Guidelines for the use and interpretation of assays for monitoring cell death in higher eukaryotes.
  • 2009
  • Ingår i: Cell death and differentiation. - : Springer Science and Business Media LLC. - 1476-5403 .- 1350-9047. ; 16:8, s. 1093-107
  • Forskningsöversikt (refereegranskat)abstract
    • Cell death is essential for a plethora of physiological processes, and its deregulation characterizes numerous human diseases. Thus, the in-depth investigation of cell death and its mechanisms constitutes a formidable challenge for fundamental and applied biomedical research, and has tremendous implications for the development of novel therapeutic strategies. It is, therefore, of utmost importance to standardize the experimental procedures that identify dying and dead cells in cell cultures and/or in tissues, from model organisms and/or humans, in healthy and/or pathological scenarios. Thus far, dozens of methods have been proposed to quantify cell death-related parameters. However, no guidelines exist regarding their use and interpretation, and nobody has thoroughly annotated the experimental settings for which each of these techniques is most appropriate. Here, we provide a nonexhaustive comparison of methods to detect cell death with apoptotic or nonapoptotic morphologies, their advantages and pitfalls. These guidelines are intended for investigators who study cell death, as well as for reviewers who need to constructively critique scientific reports that deal with cellular demise. Given the difficulties in determining the exact number of cells that have passed the point-of-no-return of the signaling cascades leading to cell death, we emphasize the importance of performing multiple, methodologically unrelated assays to quantify dying and dead cells.
  •  
10.
  •  
11.
  •  
12.
  •  
13.
  •  
14.
  •  
15.
  •  
16.
  • Lindholm, Dan, et al. (författare)
  • ER stress and neurodegenerative diseases
  • 2006
  • Ingår i: Cell Death and Differentiation. - Uppsala Univ, Biomed Ctr, Neurobiol Unit, Dept Neurosci, S-75123 Uppsala, Sweden. Biomedicum, Minerva Med Res Inst, Helsinki, Finland. : NATURE PUBLISHING GROUP. - 1350-9047 .- 1476-5403. ; 13:3, s. 385-392
  • Forskningsöversikt (refereegranskat)abstract
    • Endoplasmic reticulum ( ER) stress is caused by disturbances in the structure and function of the ER with the accumulation of misfolded proteins and alterations in the calcium homeostasis. The ER response is characterized by changes in specific proteins, causing translational attenuation, induction of ER chaperones and degradation of misfolded proteins. In case of prolonged or aggravated ER stress, cellular signals leading to cell death are activated. ER stress has been suggested to be involved in some human neuronal diseases, such as Parkinson's disease, Alzheimer's and prion disease, as well as other disorders. The exact contributions to and casual effects of ER stress in the various disease processes, however, are not known. Here we will discuss the possible role of ER stress in neurodegenerative diseases, and highlight current knowledge in this field that may reveal novel insight into disease mechanisms and help to design better therapies for these disorders.
  •  
17.
  • Liu, Tao, et al. (författare)
  • Hypoxia induces p53-dependent transactivation and Fas/CD95-dependent apoptosis
  • 2007
  • Ingår i: Cell Death and Differentiation. - : Springer Science and Business Media LLC. - 1350-9047 .- 1476-5403. ; 14:3, s. 411-421
  • Tidskriftsartikel (refereegranskat)abstract
    • p53 triggers apoptosis in response to cellular stress. We analyzed p53-dependent gene and protein expression in response to hypoxia using wild-type p53-carrying or p53 null HCT116 colon carcinoma cells. Hypoxia induced p53 protein levels and p53-dependent apoptosis in these cells. cDNA microarray analysis revealed that only a limited number of genes were regulated by p53 upon hypoxia. Most classical p53 target genes were not upregulated. However, we found that Fas/CD95 was significantly induced in response to hypoxia in a p53-dependent manner, along with several novel p53 target genes including ANXA1, DDIT3/ GADD153 (CHOP), SEL1L and SMURF1. Disruption of Fas/CD95 signalling using anti-Fas-blocking antibody or a caspase 8 inhibitor abrogated p53-induced apoptosis in response to hypoxia. We conclude that hypoxia triggers a p53-dependent gene expression pattern distinct from that induced by other stress agents and that Fas/CD95 is a critical regulator of p53-dependent apoptosis upon hypoxia.
  •  
18.
  •  
19.
  •  
20.
  •  
21.
  •  
22.
  •  
23.
  • Panaretakis, T, et al. (författare)
  • Second Cell Death Network symposium: the vital cell death
  • 2009
  • Ingår i: Cell death and differentiation. - : Springer Science and Business Media LLC. - 1476-5403 .- 1350-9047. ; 16:9, s. 1300-1302
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)
  •  
24.
  •  
25.
  • Parasassi, T., et al. (författare)
  • Differentiation of normal and cancer cells induced by sulfhydryl reduction : biochemical and molecular mechanisms
  • 2005
  • Ingår i: Cell Death and Differentiation. - : Springer Science and Business Media LLC. - 1350-9047 .- 1476-5403. ; 12:10, s. 1285-1296
  • Tidskriftsartikel (refereegranskat)abstract
    • We examined the morphological, biochemical and molecular outcome of a nonspecific sulfhydryl reduction in cells, obtained by supplementation of N-acetyl-L-cysteine (NAC) in a 0.1-10 mM concentration range. In human normal primary keratinocytes and in colon and ovary carcinoma cells we obtained evidences for: (i) a dose-dependent inhibition of proliferation without toxicity or apoptosis; (ii) a transition from a proliferative mesenchymal morphology to cell-specific differentiated structures; (iii) a noticeable increase in cell-cell and cell-substratum junctions; (iv) a relocation of the oncogenic beta-catenin at the cell-cell junctions; (v) inhibition of microtubules aggregation; (vi) upregulation of differentiation-related genes including p53, heat shock protein 27 gene, N-myc downstream-regulated gene 1, E-cadherin, and down-regulation of cyclooxygenase-2; (vii) inhibition of c-Src tyrosine kinase. In conclusion, a thiol reduction devoid of toxicity as that operated by NAC apparently leads to terminal differentiation of normal and cancer cells through a pleiade of converging mechanisms, many of which are targets of the recently developed differentiation therapy.
  •  
26.
  •  
27.
  •  
28.
  •  
29.
  •  
30.
  •  
31.
  • Vakifahmetoglu, H, et al. (författare)
  • Death through a tragedy: mitotic catastrophe
  • 2008
  • Ingår i: Cell death and differentiation. - : Springer Science and Business Media LLC. - 1350-9047 .- 1476-5403. ; 15:7, s. 1153-1162
  • Tidskriftsartikel (refereegranskat)
  •  
32.
  •  
33.
  •  
34.
  •  
35.
  •  
36.
  •  
37.
  •  
38.
  • Zhu, Changlian, 1964, et al. (författare)
  • Apoptosis-inducing factor is a major contributor to neuronal loss induced by neonatal cerebral hypoxia-ischemia
  • 2007
  • Ingår i: Cell Death Differ. - : Springer Science and Business Media LLC. - 1350-9047 .- 1476-5403. ; 14:4, s. 775-84
  • Tidskriftsartikel (refereegranskat)abstract
    • Nine-day-old harlequin (Hq) mice carrying the hypomorphic apoptosis-inducing factor (AIF)(Hq) mutation expressed 60% less AIF, 18% less respiratory chain complex I and 30% less catalase than their wild-type (Wt) littermates. Compared with Wt, the infarct volume after hypoxia-ischemia (HI) was reduced by 53 and 43% in male (YX(Hq)) and female (X(Hq)X(Hq)) mice, respectively (P<0.001). The Hq mutation did not inhibit HI-induced mitochondrial release of cytochrome c or activation of calpain and caspase-3. The broad-spectrum caspase inhibitor quinoline-Val-Asp(OMe)-CH(2)-PH (Q-VD-OPh) decreased the activation of all detectable caspases after HI, both in Wt and Hq mice. Q-VD-OPh reduced the infarct volume equally in Hq and in Wt mice, and the combination of Hq mutation and Q-VD-OPh treatment showed an additive neuroprotective effect. Oxidative stress leading to nitrosylation and lipid peroxidation was more pronounced in ischemic brain areas from Hq than Wt mice. The antioxidant edaravone decreased oxidative stress in damaged brains, more pronounced in the Hq mice, and further reduced brain injury in Hq but not in Wt mice. Thus, two distinct strategies can enhance the neuroprotection conferred by the Hq mutation, antioxidants, presumably compensating for a defect in AIF-dependent redox detoxification, and caspase inhibitors, presumably interrupting a parallel pathway leading to cellular demise.
  •  
39.
  •  
40.
  • Zuchner, T, et al. (författare)
  • Mutant huntingtin can paradoxically protect neurons from death
  • 2008
  • Ingår i: Cell Death and Differentiation. - : Springer Science and Business Media LLC. - 1350-9047 .- 1476-5403. ; 15:3, s. 435-442
  • Forskningsöversikt (refereegranskat)abstract
    • Huntington's disease (HD) is a progressive neurodegenerative disorder caused by a mutation in the gene huntingtin and characterized by motor, cognitive and psychiatric symptoms. Huntingtin contains a CAG repeat in exon 1. An expansion of this CAG repeat above 35 results in misfolding of Huntingtin, giving rise to protein aggregates and neuronal cell death. There are several transgenic HD mouse models that reproduce most of the features of the human disorder, for example protein inclusions, some neurodegeneration as well as motor and cognitive symptoms. At the same time, a subgroup of the HD transgenic mouse models exhibit dramatically reduced susceptibility to excitotoxicity. The mechanism behind this is unknown. Here, we review the literature regarding this phenomenon, attempt to explain what protein domains are crucial for this phenomenon and point toward a putative mechanism. We suggest, that the C-terminal domain of exon 1 Huntingtin, namely the proline rich domain, is responsible for mediating a neuroprotective effect against excitotoxicity. Furthermore, we point out the possible importance of this mechanism for future therapies in neurological disorders that have been suggested to be associated with excitotoxicity, for example Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-40 av 40

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy