SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1365 2761 srt2:(2005-2009)"

Sökning: L773:1365 2761 > (2005-2009)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Jutfelt, Fredrik, 1975, et al. (författare)
  • Translocation of viable Aeromonas salmonicida across the intestine of rainbow trout, Oncorhynchus mykiss (Walbaum)
  • 2006
  • Ingår i: Journal of Fish Diseases. - : Wiley. - 0140-7775 .- 1365-2761. ; 29:5, s. 255-262
  • Tidskriftsartikel (refereegranskat)abstract
    • The pathogenic bacterium Aeromonas salmonicida is the causative agent of the destructive disease furunculosis in salmonids. Horizontal transmission in salmonids has been suggested to occur via the skin, gills and/or intestine. Previous reports are contradictory regarding the role of the intestine as a route of infection. The present study therefore investigates the possibility of bacterial translocation across intestinal epithelia using Ussing chamber technology, in vitro. Intestinal segments were exposed for 90 min to fluorescein isothiocyanate-labelled pathogenic A. salmonicida. Sampling from the serosal side of the Ussing chambers showed that bacteria were able to translocate across the intestinal epithelium in both the proximal and distal regions. Plating and subsequent colony counting showed that the bacteria were viable after translocation. During the 90 min exposure to A. salmonicida, the intestinal segments maintained high viability as measured by electrical parameters. The distal region responded to bacterial exposure by increasing the electrical resistance, indicating an increased mucus secretion. This study thus demonstrates translocation of live A. salmonicida through the intestinal epithelium of rainbow trout, suggesting that the intestine is a possible route of infection in salmonids.
  •  
2.
  • Kallert, D. M., et al. (författare)
  • The life cycle of Henneguya nuesslini Schuberg & Schroder, 1905 (Myxozoa) involves a triactinomyxon-type actinospore
  • 2005
  • Ingår i: Journal of Fish Diseases. - : Wiley. - 0140-7775 .- 1365-2761. ; 28:2, s. 71-79
  • Tidskriftsartikel (refereegranskat)abstract
    • The life cycle of the histozoic myxozoan parasite Henneguya nuesslini was investigated in two salmonid host species. Naive brown trout, Salmo trutta, and brook trout, Salvelinus fontinalis, were experimentally infected in two trials by triactinomyxon type actinospores from naturally infected Tubifex tubifex. In exposed common carp, Cyprinus carpio, no myxospore production was detected. The parasite formed cysts with mature myxospores in the connective tissue of the fish 102 days postexposure. The morphology of both actinosporean and myxosporean stages was described by light microscopy and a 1417-bp fragment of the 18S rDNA gene was sequenced. Sequence analysis confirmed the absolute congruence of the two developmental stages and assisted in determining species identity. Host range, tissue specificity and myxospore measurements provided sufficiently distinctive features to confirm species validity and were thus crucial for identification. The triactinomyxon spores had 16 secondary germ cells, unique dimensions, a very opaque sporoplasm matrix and three conspicuously protruding, pyriform polar capsules. This is the first record of a Henneguya sp. life cycle with a triactinomyxon-type actinospore, which suggests a close relationship with the Myxobolus group and a polyphyletic origin of the genus Henneguya.
  •  
3.
  • Sundh, Henrik, 1976, et al. (författare)
  • The effect of hyperoxygenation and reduced flow in fresh water and subsequent infectious pancreatic necrosis virus challenge in sea water, on the intestinal barrier integrity in Atlantic salmon, Salmo salar L
  • 2009
  • Ingår i: Journal of Fish Diseases. - 1365-2761. ; 32:8, s. 687-98
  • Tidskriftsartikel (refereegranskat)abstract
    • In high intensive fish production systems, hyperoxygenation and reduced flow are often used to save water and increase the holding capacity. This commonly used husbandry practice has been shown to be stressful to fish and increase mortality after infectious pancreatic necrosis virus (IPNV) challenge, but the cause and effect relationship is not known. Salmonids are particularly sensitive to stress during smoltification and the first weeks after seawater (SW) transfer. This work aimed at investigating the impact of hyperoxygenation combined with reduced flow in fresh water (FW), on the intestinal barrier in FW as well as during later life stages in SW. It further aims at investigating the role of the intestinal barrier during IPNV challenge and possible secondary infections. Hyperoxygenation in FW acted as a stressor as shown by significantly elevated plasma cortisol levels. This stressful husbandry condition tended to increase paracellular permeability (P(app)) as well as translocation of Aeromonas salmonicida in the posterior intestine of Atlantic salmon. After transfer to SW and subsequent IPNV challenge, intestinal permeability, as shown by P(app), and translocation rate of A. salmonicida increased in the anterior intestine, concomitant with further elevation in plasma cortisol levels. In the anterior intestine, four of five fish displayed alterations in intestinal appearance. In two of five fish, IPNV caused massive necrosis with significant loss of cell material and in a further two fish, IPNV caused increased infiltration of lymphocytes into the epithelium and granulocytes in the lamina propria. Hyperoxygenation and reduced flow in the FW stage may serve as stressors with impact mainly during later stages of development. Fish with an early history of hyperoxygenation showed a higher stress response concomitant with a disturbed intestinal barrier function, which may be a cause for the increased susceptibility to IPNV infection and increased susceptibility to secondary infections.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy