SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1421 9778 srt2:(2001-2004)"

Sökning: L773:1421 9778 > (2001-2004)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hafizi, Sassan, et al. (författare)
  • Profibrotic effects of endothelin-1 via the ETA receptor in cultured human cardiac fibroblasts
  • 2004
  • Ingår i: Cellular Physiology and Biochemistry. - : S. Karger AG. - 1015-8987 .- 1421-9778. ; 14:4-6, s. 285-292
  • Tidskriftsartikel (refereegranskat)abstract
    • Background/Aims: Endothelin-1 (ET-1) has been implicated in pathologic remodelling and tissue repair processes in the heart. We investigated the effects of ET-1 on growth and collagen synthesis responses in cardiac fibroblasts isolated from human hearts. We also studied the receptor subtype(s) mediating such responses and the factors regulating their expression. Methods: Fibroblasts were isolated from cardiac transplant recipient hearts and characterised by immunocytochemistry. Serum-starved cells were exposed to ET-1 and incorporation of [H-3]proline and thymidine were measured as indexes of collagen and DNA synthesis respectively. Blocking experiments utilised the selective ETA receptor antagonist BQ123 and the ETB antagonist BQ788. Results: ET-1 elicited a potent collagen synthesis response in cardiac fibroblasts, with a maximum 29+/-5% increase that was abolished by BQ123. Cardiac fibroblasts responded to ET-1 with a concentration-dependent decrease to those of TGF-beta. Radioligand binding studies revealed the presence of high-affinity ET-1 binding sites on these cells, which were upregulated by treatment with the growth factors PDGF and EGF but downregulated by TGF-beta. Conclusions: These results therefore implicate ET-1 as a trophic agent in the human heart with the ability to influence the development of cardiac fibrosis. Copyright (C) 2004 S. Karger AG, Basel.
  •  
2.
  •  
3.
  • Minuth, W, et al. (författare)
  • Generation of renal tubules at the interface of an artificial interstitium
  • 2004
  • Ingår i: Cellular Physiology and Biochemistry. - : S. Karger AG. - 1015-8987 .- 1421-9778. ; 14:4-6, s. 387-394
  • Tidskriftsartikel (refereegranskat)abstract
    • During kidney development a multitude of tubular portions is formed. Little knowledge is available by which cellbiological mechanism a cluster of embryonic cells is able to generate the threedimensional structure of a tubule. However, this know-how is most important in tissue engineering approaches such as the generation of an artificial kidney module or for the therapy of renal diseases using stem cells. To obtain cellbiological insights in parenchyme development we elaborate a new technique to generate under in vitro conditions renal tubules derived from the embryonic cortex of neonatal rabbits. The aim of the experiments is to establish a specific extracellular environment allowing optimal threedimensional development of renal tubules under serum-free culture conditions. In the present paper we demonstrate features of the renal stem cell niche and show their isolation as intact microcompartiments for advanced tissue culture. Perfusion culture in containers exhibiting a big dead fluid volume results in the development of a flat collecting duct (CD) epithelium at the surface of the tissue explant. In contrast, by fine-tuning the dead fluid volume within a perfusion culture container by an artificial interstitium made of a polyester fleece shows the generation of tubules. It is an up to date unknown morphogenetic information which tells the cells to form tubular structures. Copyright (C) 2004 S. Karger AG, Basel.
  •  
4.
  • Nasizadeh, Sima, et al. (författare)
  • Proteasomal degradation of a trypanosomal ornithine decarboxylase
  • 2003
  • Ingår i: Cellular Physiology and Biochemistry. - : S. Karger AG. - 1015-8987 .- 1421-9778. ; 13:5, s. 321-328
  • Tidskriftsartikel (refereegranskat)abstract
    • Mammalian ornithine decarboxylase (ODC), which catalyses the first step in polyamine biosynthesis, has a very fast turnover. It is degraded by the 26S proteasome in an ubiquitin-independent process and the degradation is stimulated by polyamines in a feedback control of the enzyme. Interestingly, there is a major difference in the metabolic stability between ODCs from various trypanosomatids. Trypanosoma brucei and Leishmania donovani both contain stable ODCs, whereas Crithidia fasciculata has an ODC with a rapid turnover. In spite of the difference in stability there is a high degree of sequence homology between C. fasciculata ODC and L. donovani ODC. In the present study we demonstrate that C. fasciculata ODC is rapidly degraded also in mammalian systems like CHO cells and rabbit reticulocyte lysate, suggesting that the degradation signals of the enzyme are recognised by the mammalian systems. L. donovani ODC, on the other hand, is degraded very slowly in the same systems. The degradation of C. fasciculata ODC in the mammalian systems is markedly reduced by inhibition of the 26S proteasome. However, unlike mammalian ODC, C. fasciculata ODC is not downregulated by polyamines. Thus, the turnover of C. fasciculata ODC and L. donovani ODC in the mammalian systems reflects the degradation of the enzyme in the parasites, making such systems potentially useful as complements to parasitic knockout models for further analysis of the mechanisms involved in the rapid degradation of C. fasciculata ODC. Copyright (C) 2003 S. Karger AG, Basel.
  •  
5.
  • Wagner, C A, et al. (författare)
  • Effects of the serine/threonine kinase SGK1 on the epithelial Na(+) channel (ENaC) and CFTR : implications for cystic fibrosis.
  • 2001
  • Ingår i: Cellular Physiology and Biochemistry. - 1015-8987 .- 1421-9778. ; 11:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Cystic fibrosis (CF) is characterized by impaired Cl(-) secretion and increased Na(+) reabsorption in several tissues including respiratory epithelium. Many CFTR mutations have been identified over the past years. However, only a poor correlation between the genotype and lung phenotype was found suggesting additional factors influencing the phenotype and course of the disease. The serine/threonine kinase SGK1 has recently been shown to stimulate the activity of the epithelial Na(+) channel ENaC. A variety of stimuli such as aldosterone, cell shrinkage, insulin or TGF-beta1 stimulate transcription and activate the SGK1 kinase. Here we further examined the effects of SGK1 on ENaC and CFTR which have mutual interactions and we analyzed sgk1 mRNA abundance in lung tissue from CF patients. Coexpression of CFTR and h-SGK1 in Xenopus oocytes increased ENaC currents as previously described. In addition CFTR mediated currents were also stimulated. h-SGK1 accelerated the expression of the amiloride sensitive Na(+)- current in Xenopus oocytes paralleled by increased ENaC-protein abundance in the oocyte membrane, an effect which was reversed by a h-SGK1(K127R) mutation lacking the ATP-binding site. The cation selectivity or Na(+) affinity were not affected. However, coexpression of h-SGK1 with ENaC altered the sensitivity of the Na(+)-channel to the inhibitors amiloride and triamterene. The inhibitory effect of CFTR expression on ENaC current was not affected by coexpression of h-SGK1 in Xenopus oocytes. Lung tissue from CF patients strongly expressed the serine/threonine kinase h-sgk1 which was not the case for non-CF lung tissue. Loss of CFTR function itself in a CF lung epithelial cell line did not increase SGK1 expression. In summary, enhanced expression of h-SGK1 in epithelial cells of CF-lung tissue may be a novel pathophysiological factor contributing to increased Na(+) channel activity and thus to increased Na(+) transport in CF.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy