SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1471 2121 srt2:(2000-2004)"

Sökning: L773:1471 2121 > (2000-2004)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aldonyte, Ruta, et al. (författare)
  • Concentration-dependent effects of native and polymerised alpha 1-antitrypsin on primary human monocytes, in vitro
  • 2004
  • Ingår i: BMC Cell Biology. - : Springer Science and Business Media LLC. - 1471-2121. ; 5
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: alpha1-antitrypsin (AAT) is one of the major serine proteinase inhibitors controlling proteinases in many biological pathways. There is increasing evidence that AAT is able to exert other than antiproteolytic effects. To further examine this question we compared how various doses of the native (inhibitory) and the polymerised (non- inhibitory) molecular form of AAT affect pro-inflammatory responses in human monocytes, in vitro. Human monocytes isolated from different donors were exposed to the native or polymerised form of AAT at concentrations of 0.01, 0.02, 0.05, 0.1, 0.5 and 1 mg/ml for 18 h, and analysed to determine the release of cytokines and to detect the activity of NF-kappaB. Results: We found that native and polymerised AAT at lower concentrations, such as 0.1 mg/ml, enhance expression of TNFalpha (10.9- and 4.8-fold, p < 0.001), IL-6 (22.8- and 23.4-fold, p < 0.001), IL-8 (2.4- and 5.5-fold, p < 0.001) and MCP-1 (8.3- and 7.7-fold, p < 0.001), respectively, compared to buffer exposed cells or cells treated with higher doses of AAT ( 0.5 and 1 mg/ml). In parallel to increased cytokine levels, low concentrations of either conformation of AAT (0.02-0.1 mg/ml) induced NF-kappaB p50 activation, while 1 mg/ml of either conformation of AAT suppressed the activity of NF-kappaB, compared to controls. Conclusions: The observations reported here provide further support for a central role of AAT in inflammation, both as a regulator of proteinase activity, and as a signalling molecule for the expression of pro-inflammatory molecules. This latter role is dependent on the concentration of AAT, rather than on its proteinase inhibitory activity.
  •  
2.
  • Fu, Huamei, 1979, et al. (författare)
  • The two neutrophil members of the formylpeptide receptor family activate the NADPH-oxidase through signals that differ in sensitivity to a gelsolin derived phosphoinositide-binding peptide
  • 2004
  • Ingår i: BMC cell biology. - : Springer Science and Business Media LLC. - 1471-2121. ; 5:1
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: The formylpeptide receptor family members FPR and FPRL1, expressed in myeloid phagocytes, belong to the G-protein coupled seven transmembrane receptor family (GPCRs). They share a high degree of sequence similarity, particularly in the cytoplasmic domains involved in intracellular signaling. The established model of cell activation through GPCRs states that the receptors isomerize from an inactive to an active state upon ligand binding, and this receptor transformation subsequently activates the signal transducing G-protein. Accordingly, the activation of human neutrophil FPR and FPRL1 induces identical, pertussis toxin-sensitive functional responses and a transient increase in intracellular calcium is followed by a secretory response leading to mobilization of receptors from intracellular stores, as well as a release of reactive oxygen metabolites. RESULTS: We report that a cell permeable ten amino acid peptide (PBP10) derived from the phosphatidylinositol 4,5-bisphosphate (PIP2) binding region of gelsolin (an uncapper of actin filaments) blocks granule mobilization as well as secretion of oxygen radicals. The inhibitory effect of PBP10 is, however, receptor specific and affects the FPRL1-, but not the FPR-, induced cellular response. The transient rise in intracellular calcium induced by the active receptors is not affected by PBP10, suggesting that the blockage occurs in a parallel, novel signaling pathway used by FPRL1 to induce oxygen radical production and secretion. Also the FPR can activate neutrophils through a PBP10-sensitive signaling pathway, but this signal is normally blocked by the cytoskeleton. CONCLUSIONS: This study demonstrates that the two very closely related chemoattractant receptors, FPR and FPRL1, use distinct signaling pathways in activation of human neutrophils. The PIP2-binding peptide PBP10 selectively inhibits FPRL1-mediated superoxide production and granule mobilization. Furthermore, the activity of this novel PBP10 sensitive pathway in neutrophils is modulated by the actin cytoskeleton network.
  •  
3.
  •  
4.
  •  
5.
  • Mingarro, Ismael, et al. (författare)
  • Different conformations of nascent polypeptides during translocation across the ER membrane
  • 2000
  • Ingår i: BMC Cell Biology. - : Springer Science and Business Media LLC. - 1471-2121. ; 1:3
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundIn eukaryotic cells, proteins are translocated across the ER membrane through a continuous ribosome-translocon channel. It is unclear to what extent proteins can fold already within the ribosome-translocon channel, and previous studies suggest that only a limited degree of folding (such as the formation of isolated α-helices) may be possible within the ribosome.ResultsWe have previously shown that the conformation of nascent polypeptide chains in transit through the ribosome-translocon complex can be probed by measuring the number of residues required to span the distance between the ribosomal P-site and the lumenally disposed active site of the oligosaccharyl transferase enzyme (J. Biol. Chem 271: 6241-6244).Using this approach, we now show that model segments composed of residues with strong helix-forming properties in water (Ala, Leu) have a more compact conformation in the ribosome-translocon channel than model segments composed of residues with weak helix-forming potential (Val, Pro).ConclusionsThe main conclusions from the work reported here are (i) that the propensity to form an extended or more compact (possibly α-helical) conformation in the ribosome-translocon channel does not depend on whether or not the model segment has stop-transfer function, but rather seems to reflect the helical propensities of the amino acids as measured in an aqueous environment, and (ii) that stop-transfer sequences may adopt a helical structure and integrate into the ER membrane at different times relative to the time of glycan addition to nearby upstream glycosylation acceptor sites.
  •  
6.
  •  
7.
  •  
8.
  • Bylund, Johan, 1975, et al. (författare)
  • Cytochalasin B triggers a novel pertussis toxin sensitive pathway in TNF-alpha primed neutrophils
  • 2004
  • Ingår i: BMC cell biology. - 1471-2121. ; 5
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Cytochalasin B does not directly activate the oxygen-radical-producing NADPH oxidase activity of neutrophils but transfers desensitized G-protein coupled receptors (GPCR) into an active signaling state by uncoupling GCPR from the cytoskeleton. The receptor uncoupling results in respiratory burst activity when signals generated by reactivated formyl peptide receptors trigger the NADPH-oxidase to produce superoxide anions. RESULTS: Tumor necrosis factor alpha (TNF-alpha) primes neutrophils for subsequent activation by cytochalasin B. Pretreatment with TNF-alpha induced mobilization of receptor-storing neutrophil organelles, suggesting that receptor up-regulation significantly contributes to the response, but the receptor mobilization was not sufficient for induction of the cytochalasin B sensitive state. The TNF-alpha primed state resembled that of the desensitized non-signaling state of agonist-occupied neutrophil formyl peptide receptors. The fact that the TNF-alpha primed, cytochalasin B-triggered activation process was pertussis toxin sensitive suggests that the activation process involves a GPCR. Based on desensitization experiments the unidentified receptor was found to be distinct from the C5a receptor as well as the formyl peptide receptor family members FPR and FPRL1. Based on the fact the occupied and desensitized receptors for interleukin-8 and platelet activating factor could not be reactivated by cytochalasin B, also these could be excluded as receptor candidates involved in the TNF-alpha primed state. CONCLUSIONS: The TNF-alpha-induced priming signals could possibly trigger a release of an endogenous GPCR-agonist, amplifying the response to the receptor-uncoupling effect of cytochalasin B. However, no such substance could be found, suggesting that TNF-alpha can transfer G-protein coupled receptors to a signaling state independently of agonist binding.
  •  
9.
  • Ibarrola, Nieves, et al. (författare)
  • Cloning of a novel signaling molecule, AMSH-2, that potentiates transforming growth factor beta signaling.
  • 2004
  • Ingår i: BMC Cell Biology. - 1471-2121. ; 5:1, s. 2-
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Transforming growth factor-betas (TGF-betas), bone morphogenetic proteins (BMPs) and activins are important regulators of developmental cell growth and differentiation. Signaling by these factors is mediated chiefly by the Smad family of latent transcription factors. RESULTS: There are a large number of uncharacterized cDNA clones that code for novel proteins with homology to known signaling molecules. We have identified a novel molecule from the HUGE database that is related to a previously known molecule, AMSH (associated molecule with the SH3 domain of STAM), an adapter shown to be involved in BMP signaling. Both of these molecules contain a coiled-coil domain located within the amino-terminus region and a JAB (Domain in Jun kinase activation domain binding protein and proteasomal subunits) domain at the carboxy-terminus. We show that this novel molecule, which we have designated AMSH-2, is widely expressed and its overexpression potentiates activation of TGF-beta-dependent promoters. Coimmunoprecipitation studies indicated that Smad7 and Smad2, but not Smad3 or 4, interact with AMSH-2. We show that overexpression of AMSH-2 decreases the inhibitory effect of Smad7 on TGF-beta signaling. Finally, we demonstrate that knocking down AMSH-2 expression by RNA interference decreases the activation of 3TP-lux reporter in response to TGF-beta. CONCLUSIONS: This report implicates AMSH and AMSH-2 as a novel family of molecules that positively regulate the TGF-beta signaling pathway. Our results suggest that this effect could be partially explained by AMSH-2 mediated decrease of the action of Smad7 on TGF-beta signaling pathway.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy