SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1479 6813 srt2:(2020-2023)"

Sökning: L773:1479 6813 > (2020-2023)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Elebring, Erik, 1990, et al. (författare)
  • βHB inhibits glucose-induced GLP-1 secretion in GLUTag and human jejunal enteroids
  • 2023
  • Ingår i: Journal of molecular endocrinology. - 1479-6813. ; 70:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Ingestion of nutrients stimulates incretin secretion from enteroendocrine cells (EECs) of the epithelial layer of the gut. Glucagon-like peptide-1 (GLP-1) is one of these incretins that stimulate postprandial insulin release and signal satiety to the brain. Understanding the regulation of incretin secretion might open up new therapeutic options for obesity and type-2 diabetes mellitus. To investigate the inhibitory effect of the ketone body β-hydroxybutyrate (βHB) on glucose-induced GLP-1 secretion from EECs, in vitro cultures of murine GLUTag cells and differentiated human jejunal enteroid monolayers were stimulated with glucose to induce GLP-1 secretion. The effect of βHB on GLP-1 secretion was studied using ELISA and ECLIA methods. GLUTag cells stimulated with glucose and βHB were analysed using global proteomics focusing on cellular signalling pathways and the results were verified by Western blot. Results demonstrated βHB had a significant inhibitory effect on glucose-induced GLP-1 secretion at a dose of 100 mM in GLUTag cells. In differentiated human jejunal enteroid monolayers, glucose-induced secretion of GLP-1 was inhibited at a much lower dose of 10 mM βHB. The addition of βHB to GLUTag cells resulted in decreased phosphorylation of kinase AKT and transcription factor STAT3 and also influenced the expressions of signalling molecule IRS-2, kinase DGKε and receptor FFAR3. In conclusion, βHB displays an inhibitory effect on glucose-induced GLP-1 secretion in vitro in GLUTag cells and in differentiated human jejunal enteroid monolayers. This effect may be mediated through multiple downstream mediators of G-protein coupled receptor activation, such as PI3K signalling.
  •  
2.
  • Shi, Ruifeng, et al. (författare)
  • CLEC11A improves insulin secretion and promotes cell proliferation in human beta-cells
  • 2023
  • Ingår i: Journal of Molecular Endocrinology. - : Bioscientifica. - 0952-5041 .- 1479-6813. ; 71:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Beta-cell dysfunction is a hallmark of disease progression in patients with diabetes. Research has been focused on maintaining and restoring beta-cell function during diabetes development. The aims of this study were to explore th e expression of C-type lectin domain containing 11A (CLEC11A), a secreted sulphated glycoprotein, in human islets and to evaluate the effects of CLEC11A on beta-cell funct ion and proliferation in vitro. To test these hypotheses, human islets and human EndoC-beta H1 cell line were used in this study. We identified that CLEC11A was expressed in beta-cells and alpha-cells in human islets but not in EndoC-beta H1 cells, whereas the receptor of CLEC11A called integrin subunit alpha 11 was found in both human islets and En doC-beta H1 cells. Long-term treatment with exogenous recombinant human CLEC11A (rhCLEC11A) accentuated glucose-stimulated insulin secretion, insulin content, and proliferation from human islets and EndoC-beta H1 cells, which was partially due to the accentuated expression levels of transcription factors MAFA and PDX1. However, the impaired beta-cell function and reduced mRNA expression of INS and MAFA in EndoC-beta H1 cells that were caused by chronic palmitate exposure could only be partially improved by the introduction of rhCLEC11A. Based on these results, we conclude that rhCLEC11A promotes insulin secretion, insulin content, and proliferation in human beta-cells, which are associated with the accentuated expression levels of transcription factors MAFA and PDX1. CLEC11A, therefore, may provide a novel therapeutic target for maintaining beta-cell function in patients with diabetes.
  •  
3.
  • Warner, M, et al. (författare)
  • 25 years of ERβ: a personal journey
  • 2022
  • Ingår i: Journal of molecular endocrinology. - 1479-6813. ; 68:1, s. R1-R9
  • Tidskriftsartikel (refereegranskat)
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy