SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1552 4973 OR L773:1552 4981 srt2:(2020-2022)"

Sökning: L773:1552 4973 OR L773:1552 4981 > (2020-2022)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Apelgren, Peter, et al. (författare)
  • Long-term in vivo integrity and safety of3D-bioprinted cartilaginous constructs
  • 2021
  • Ingår i: Journal of Biomedical Materials Research Part B-Applied Biomaterials. - : Wiley. - 1552-4973 .- 1552-4981. ; 109:1, s. 126-136
  • Tidskriftsartikel (refereegranskat)abstract
    • Long-term stability and biological safety are crucial for translation of 3D-bioprinting technology into clinical applications. Here, we addressed the long-term safety and stability issues associated with 3D-bioprinted constructs comprising a cellulose scaffold and human cells (chondrocytes and stem cells) over a period of 10 months in nude mice. Our findings showed that increasing unconfined compression strength over time significantly improved the mechanical stability of the cell-containing constructs relative to cell-free scaffolds. Additionally, the cell-free constructs exhibited a mean compressive stress and stiffness (compressive modulus) of 0.04 +/- 0.05 MPa and 0.14 +/- 0.18 MPa, respectively, whereas these values for the cell-containing constructs were 0.11 +/- 0.08 MPa (p= .019) and 0.53 +/- 0.59 MPa (p= .012), respectively. Moreover, histomorphologic analysis revealed that cartilage formed from the cell-containing constructs harbored an abundance of proliferating chondrocytes in clusters, and after 10 months, resembled native cartilage. Furthermore, extension of the experiment over the complete lifecycle of the animal model revealed no signs of ossification, fibrosis, necrosis, or implant-related tumor development in the 3D-bioprinted constructs. These findings confirm the in vivo biological safety and mechanical stability of 3D-bioprinted cartilaginous tissues and support their potential translation into clinical applications.
  •  
2.
  • Bang, Le T., et al. (författare)
  • Synthesis and assessment of metallic ion migration through a novel calcium carbonate coating for biomedical implants
  • 2020
  • Ingår i: Journal of Biomedical Materials Research. Part B - Applied biomaterials. - : Wiley. - 1552-4973 .- 1552-4981. ; 108:2, s. 429-438
  • Tidskriftsartikel (refereegranskat)abstract
    • Titanium (Ti) implants are commonly regarded as well accepted by the body. However, metal ion release is still a cause for concern. A small decrease in pH, which can be caused by inflammation, may produce a large increase in the corrosion rate of Ti implants. Coating the alloy with a buffer layer could have a significant protective effect. In this study, a calcium carbonate coating was developed on commercially pure Ti and a Ti-6Al-4V alloy through a hydrothermal treatment of previously NaOH-treated surfaces in calcium-citric acid chelate complexes. The results showed that a superstructured calcite coating layer formed on the Ti substrate after treatment at 170 degrees C for 3 hr. The coating was approx. 1 mu m thick and covered the substrate surface uniformly. When prolonging the hydrothermal treatment from 5 hr to 24 hr, the rhombohedral structure of calcite was observed in addition to the superstructure of calcite. Dissolution test results showed no significant differences in solution pH between the coated- and un-coated samples. However, the CaCO3 coating reduced by approx. 2-5 times the Ti and V ion release from the substrate as compared to the uncoated material, at pH 4. CaCO3 and hydroxyapatite (HA) coatings gave nonsignificant effects at neutral pH although the HA coating showed a trend for better results at the longer time points. The reduction in metal ion release from the substrate and the buffering ability of the CaCO3 coating encourage further studies on this coating for clinical applications.
  •  
3.
  • Ichioka, Yuki, et al. (författare)
  • Mechanical removal of biofilm on titanium discs: An in vitro study
  • 2022
  • Ingår i: Journal of Biomedical Materials Research Part B-Applied Biomaterials. - : Wiley. - 1552-4973 .- 1552-4981. ; 110:5, s. 1044-1055
  • Tidskriftsartikel (refereegranskat)abstract
    • The objective of this in vitro study was to evaluate surface cleanness and cytocompatibility following mechanical instrumentation of biofilm-contaminated titanium surfaces. Titanium discs (non-modified [Ti(s)] and shot-blasted surfaces [Ti(r)]) contaminated with Streptococcus gordonii were instrumented using four different techniques: (i) gauze soaked in saline (GS), (ii) ultra-sonic device (US), (iii) rotating nickel-titanium brush (TiB), or (iv) air-polishing device (AP). Non-contaminated, untreated titanium disks were used as controls (C). Residual deposits and cytocompatibility for osteoblast-like cells were evaluated using scanning electron microscopy, immunofluorescence, and reverse transcriptase polymerase chain reaction. While the number of residual bacteria on Ti(s) discs was close to 0 in all treatment groups, significantly higher mean numbers of residual bacteria were observed on Ti(r) discs for GS (152.7 +/- 75.7) and TiB (33.5 +/- 22.2) than for US (0) and AP (0). Instrumentation with US resulted in deposition of foreign material (mean area% of foreign material: 3.0 +/- 3.6% and 10.8 +/- 9.6% for Ti(s) and Ti(r) discs, respectively). AP was the most effective decontamination procedure in reducing bacteria without depositing residual foreign material on Ti(r) discs. TiB and AP were superior methods in restoring cytocompatibility, although no method of mechanical decontamination resulted in pristine levels of cytocompatibility.
  •  
4.
  • Pihl, Maria, 1978, et al. (författare)
  • Osseointegration and antibacterial effect of an antimicrobial peptide releasing mesoporous titania implant
  • 2021
  • Ingår i: Journal of Biomedical Materials Research - Part B Applied Biomaterials. - : Wiley. - 1552-4981 .- 1552-4973. ; 109:11, s. 1787-1795
  • Tidskriftsartikel (refereegranskat)abstract
    • Medical devices such as orthopedic and dental implants may get infected by bacteria, which results in treatment using antibiotics. Since antibiotic resistance is increasing in society there is a need of finding alternative strategies for infection control. One potential strategy is the use of antimicrobial peptides, AMPs. In this study, we investigated the antibiofilm effect of the AMP, RRP9W4N, using a local drug-delivery system based on mesoporous titania covered titanium implants. Biofilm formation was studied in vitro using a safranine biofilm assay and LIVE/DEAD staining. Moreover, we investigated what effect the AMP had on osseointegration of commercially available titanium implants in vivo, using a rabbit tibia model. The results showed a sustained release of AMP with equal or even better antibiofilm properties than the traditionally used antibiotic Cloxacillin. In addition, no negative effects on osseointegration in vivo was observed. These combined results demonstrate the potential of using mesoporous titania as an AMP delivery system and the potential use of the AMP RRP9W4N for infection control of osseointegrating implants.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy