SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1754 8403 OR L773:1754 8411 srt2:(2020-2023)"

Sökning: L773:1754 8403 OR L773:1754 8411 > (2020-2023)

  • Resultat 1-13 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Auer, JMT, et al. (författare)
  • Of numbers and movement - understanding transcription factor pathogenesis by advanced microscopy
  • 2020
  • Ingår i: Disease models & mechanisms. - : The Company of Biologists. - 1754-8411 .- 1754-8403. ; 13:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Transcription factors (TFs) are life-sustaining and, therefore, the subject of intensive research. By regulating gene expression, TFs control a plethora of developmental and physiological processes, and their abnormal function commonly leads to various developmental defects and diseases in humans. Normal TF function often depends on gene dosage, which can be altered by copy-number variation or loss-of-function mutations. This explains why TF haploinsufficiency (HI) can lead to disease. Since aberrant TF numbers frequently result in pathogenic abnormalities of gene expression, quantitative analyses of TFs are a priority in the field. In vitro single-molecule methodologies have significantly aided the identification of links between TF gene dosage and transcriptional outcomes. Additionally, advances in quantitative microscopy have contributed mechanistic insights into normal and aberrant TF function. However, to understand TF biology, TF-chromatin interactions must be characterised in vivo, in a tissue-specific manner and in the context of both normal and altered TF numbers. Here, we summarise the advanced microscopy methodologies most frequently used to link TF abundance to function and dissect the molecular mechanisms underlying TF HIs. Increased application of advanced single-molecule and super-resolution microscopy modalities will improve our understanding of how TF HIs drive disease.
  •  
2.
  • Chatei, B, et al. (författare)
  • Impaired aerobic capacity and premature fatigue preceding muscle weakness in the skeletal muscle Tfam-knockout mouse model
  • 2021
  • Ingår i: Disease models & mechanisms. - : The Company of Biologists. - 1754-8411 .- 1754-8403. ; 14:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Mitochondrial diseases are genetic disorders that lead to impaired mitochondrial function, resulting in exercise intolerance and muscle weakness. In patients, muscle fatigue due to defects in mitochondrial oxidative capacities commonly precedes muscle weakness. In mice, deletion of the fast-twitch skeletal muscle-specific Tfam gene (Tfam KO) leads to a deficit in respiratory chain activity, severe muscle weakness and early death. Here, we performed a time-course study of mitochondrial and muscular dysfunctions in 11- and 14-week-old Tfam KO mice, i.e. before and when mice are about to enter the terminal stage, respectively. Although force in the unfatigued state was reduced in Tfam KO mice compared to control littermates (wild type) only at 14 weeks, during repeated submaximal contractions fatigue was faster at both ages. During fatiguing stimulation, total phosphocreatine breakdown was larger in Tfam KO muscle than in wild-type muscle at both ages, whereas phosphocreatine consumption was faster only at 14 weeks. In conclusion, the Tfam KO mouse model represents a reliable model of lethal mitochondrial myopathy in which impaired mitochondrial energy production and premature fatigue occur before muscle weakness and early death.
  •  
3.
  • Dahl-Halvarsson, Martin, et al. (författare)
  • Impaired muscle morphology in a Drosophila model of myosin storage myopathy was supressed by overexpression of an E3 ubiquitin ligase
  • 2020
  • Ingår i: Disease Models & Mechanisms. - : The Company of Biologists. - 1754-8403 .- 1754-8411. ; 13:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Myosin is vital for body movement and heart contractility. Mutations in MYH7, encoding slow/beta-cardiac myosin heavy chain, are an important cause of hypertrophic and dilated cardiomyopathy, as well as skeletal muscle disease. A dominant missense mutation (R1845W) in MYH7 has been reported in several unrelated cases of myosin storage myopathy. We have developed a Drosophila model for a myosin storage myopathy in order to investigate the dose-dependent mechanisms underlying the pathological roles of the R1845W mutation. This study shows that a higher expression level of the mutated allele is concomitant with severe impairment of muscle function and progressively disrupted muscle morphology. The impaired muscle morphology associated with the mutant allele was suppressed by expression of Thin (herein referred to as Abba), an E3 ubiquitin ligase. This Drosophila model recapitulates pathological features seen in myopathy patients with the R1845W mutation and severe ultrastructural abnormalities, including extensive loss of thick filaments with selective A-band loss, and preservation of I-band and Z-disks were observed in indirect flight muscles of flies with exclusive expression of mutant myosin. Furthermore, the impaired muscle morphology associated with the mutant allele was suppressed by expression of Abba. These findings suggest that modification of the ubiquitin proteasome system may be beneficial in myosin storage myopathy by reducing the impact of MYH7 mutation in patients.
  •  
4.
  • Diaz, Oscar E., et al. (författare)
  • Perfluorooctanesulfonic acid modulates barrier function and systemic T-cell homeostasis during intestinal inflammation
  • 2021
  • Ingår i: DMM Disease Models and Mechanisms. - : The Company of Biologists. - 1754-8411 .- 1754-8403. ; 14:12, s. 1-11
  • Tidskriftsartikel (refereegranskat)abstract
    • The intestinal epithelium is continuously exposed to deleterious environmental factors that might cause aberrant immune responses leading to inflammatory disorders. However, what environmental factors might contribute to disease are poorly understood. Here, to overcome the lack of in vivo models suitable for screening of environmental factors, we used zebrafish reporters of intestinal inflammation. Using zebrafish, we interrogated the immunomodulatory effects of polyfluoroalkyl substances, which have been positively associated with ulcerative colitis incidence. Exposure to perfluorooctanesulfonic acid (PFOS) during 2,4,6-trinitro-benzene sulfonic acid (TNBS)-induced inflammation enhanced the expression of proinflammatory cytokines as well as neutrophil recruitment to the intestine of zebrafish larvae, which was validated in the TNBS-induced colitis mouse model. Moreover, PFOS exposure in mice undergoing colitis resulted in neutrophil-dependent increased intestinal permeability and enhanced PFOS translocation into the circulation. This was associated with a neutrophil-dependent expansion of systemic CD4+ T cells. Thus, our results indicate that PFOS worsens inflammation-induced intestinal damage with disruption of T-cell homeostasis beyond the gut and provides a novel in vivo toolbox to screen for pollutants affecting intestinal homeostasis.
  •  
5.
  • Lemmetyinen, TT, et al. (författare)
  • Fibroblast-derived EGF ligand neuregulin 1 induces fetal-like reprogramming of the intestinal epithelium without supporting tumorigenic growth
  • 2023
  • Ingår i: Disease models & mechanisms. - : The Company of Biologists. - 1754-8411 .- 1754-8403. ; 16:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Growth factors secreted by stromal fibroblasts regulate the intestinal epithelium. Stroma-derived Epidermal growth factor (EGF) family ligands are implicated in epithelial regeneration and tumorigenesis, but their specific contributions and associated mechanisms remain unclear. Here, we use primary intestinal organoids modeling homeostatic, injured, and tumorigenic epithelium to assess how fibroblast-derived EGF family ligands Neuregulin-1 (NRG1) and Epiregulin (EREG) regulate the intestinal epithelium. NRG1 was expressed exclusively in the stroma, robustly increased crypt budding and protected intestinal epithelial organoids from radiation-induced damage. NRG1 also induced regenerative features in the epithelium including a fetal-like transcriptome, suppression of the Lgr5+ stem cell pool, and remodeling of the epithelial actin cytoskeleton. Intriguingly, unlike EGF and EREG, NRG1 failed to support the growth of pre-tumorigenic intestinal organoids lacking the tumor suppressor Apc, commonly mutated in human colorectal cancer (CRC). Interestingly, high expression of stromal NRG1 was associated with improved survival in CRC cohorts, suggesting a tumor suppressive function. Our results highlight the power of stromal NRG1 in transcriptional reprogramming and protection of the intestinal epithelium from radiation injury without promoting tumorigenesis.
  •  
6.
  • Lemmetyinen, TT, et al. (författare)
  • Fibroblast-derived EGF ligand neuregulin 1 induces fetal-like reprogramming of the intestinal epithelium without supporting tumorigenic growth
  • 2023
  • Ingår i: Disease models & mechanisms. - : The Company of Biologists. - 1754-8411 .- 1754-8403. ; 16:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Growth factors secreted by stromal fibroblasts regulate the intestinal epithelium. Stroma-derived Epidermal growth factor (EGF) family ligands are implicated in epithelial regeneration and tumorigenesis, but their specific contributions and associated mechanisms remain unclear. Here, we use primary intestinal organoids modeling homeostatic, injured, and tumorigenic epithelium to assess how fibroblast-derived EGF family ligands Neuregulin-1 (NRG1) and Epiregulin (EREG) regulate the intestinal epithelium. NRG1 was expressed exclusively in the stroma, robustly increased crypt budding and protected intestinal epithelial organoids from radiation-induced damage. NRG1 also induced regenerative features in the epithelium including a fetal-like transcriptome, suppression of the Lgr5+ stem cell pool, and remodeling of the epithelial actin cytoskeleton. Intriguingly, unlike EGF and EREG, NRG1 failed to support the growth of pre-tumorigenic intestinal organoids lacking the tumor suppressor Apc, commonly mutated in human colorectal cancer (CRC). Interestingly, high expression of stromal NRG1 was associated with improved survival in CRC cohorts, suggesting a tumor suppressive function. Our results highlight the power of stromal NRG1 in transcriptional reprogramming and protection of the intestinal epithelium from radiation injury without promoting tumorigenesis.
  •  
7.
  • Pfeifer, Kathrin, et al. (författare)
  • Patient-associated mutations in Drosophila Alk perturb neuronal differentiation and promote survival.
  • 2022
  • Ingår i: Disease models & mechanisms. - : The Company of Biologists. - 1754-8411 .- 1754-8403. ; 15:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Activating anaplastic lymphoma kinase (ALK) receptor tyrosine kinase (RTK) mutations occur in pediatric neuroblastoma and are associated with poor prognosis. To study ALK-activating mutations in a genetically controllable system, we employed CRIPSR/Cas9, incorporating orthologs of the human oncogenic mutations ALKF1174L and ALKY1278S in the Drosophila Alk locus. AlkF1251L and AlkY1355S mutant Drosophila exhibited enhanced Alk signaling phenotypes, but unexpectedly depended on the Jelly belly (Jeb) ligand for activation. Both AlkF1251L and AlkY1355S mutant larval brains displayed hyperplasia, represented by increased numbers of Alk-positive neurons. Despite this hyperplasic phenotype, no brain tumors were observed in mutant animals. We showed that hyperplasia in Alk mutants was not caused by significantly increased rates of proliferation, but rather by decreased levels of apoptosis in the larval brain. Using single-cell RNA sequencing, we identified perturbations during temporal fate specification in AlkY1355S mutant mushroom body lineages. These findings shed light on the role of Alk in neurodevelopmental processes and highlight the potential of Alk-activating mutations to perturb specification and promote survival in neuronal lineages. This article has an associated First Person interview with the first author of the paper.
  •  
8.
  • Schoultz, Elfin, et al. (författare)
  • First person - Elin Schoultz and Ellen Johansson
  • 2022
  • Ingår i: Disease Models and Mechanisms. - : The Company of Biologists Ltd. - 1754-8403 .- 1754-8411. ; 15:2
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • First Person is a series of interviews with the first authors of a selection of papers published in Disease Models & Mechanisms, helping early-career researchers promote themselves alongside their papers. Elin Schoultz and Ellen Johansson are co-first authors on Tissue architecture delineates field cancerization in BrafV600Einduced tumor development, published in DMM. Elin is an MD, PhD student in the lab of Mikael Nilsson at Sahlgrenska Centre for Cancer Research, Gothenburg University, Gothenburg. She has a great interest in the thyroid gland in particular, and the mechanisms of tumor development, progression and treatment associated with epithelial carcinomas in general. Ellen is an MD, resident physician in oto-rhino-laryngology and postdoctoral researcher in the lab of Karin Roberg at Department of Biomedical and Clinical Sciences, Division of Cell Biology, Linkoping University, Linkoping, with broad interest the thyroid gland, tumors of the head and neck region, and the molecular mechanisms that are important for tumor initiation, development, and treatment.
  •  
9.
  • Schoultz, Elin, et al. (författare)
  • Tissue architecture delineates field cancerization in brafv600e-induced tumor development
  • 2022
  • Ingår i: DMM Disease Models and Mechanisms. - 1754-8403 .- 1754-8411. ; 15:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Cancer cells hijack developmental growth mechanisms but whether tissue morphogenesis and architecture modify tumorigenesis is unknown. Here, we characterized a new mouse model of sporadic thyroid carcinogenesis based on inducible expression of BRAF carrying a Val600 Glu (V600E) point mutation (BRAFV600E) from the thyroglobulin promoter (TgCreERT2). Spontaneous activation of this Braf-mutant allele due to leaky activity of the Cre recombinase revealed that intrinsic properties of thyroid follicles determined BRAF-mutant cell fate. Papillary thyroid carcinomas developed multicentrically within a normal microenvironment. Each tumor originated from a single follicle that provided a confined space for growth of a distinct tumor phenotype. Lineage tracing revealed oligoclonal tumor development in infancy and early selection of BRAFV600E kinase inhibitor-resistant clones. Somatic mutations were few, non-recurrent and limited to advanced tumors. Female mice developed larger tumors than males, reproducing the gender difference of human thyroid cancer. These data indicate that BRAFV600E-induced tumorigenesis is spatiotemporally regulated depending on the maturity and heterogeneity of follicles. Moreover, thyroid tissue organization seems to determine whether a BRAFmutant lineage becomes a cancerized lineage. The TgCreERT2; BrafCA/+ sporadic thyroid cancer mouse model provides a new tool to evaluate drug therapy at different stages of tumor evolution.
  •  
10.
  • Wu, Dan, et al. (författare)
  • The infantile myofibromatosis NOTCH3 L1519P mutation leads to hyperactivated ligand-independent Notch signaling and increased PDGFRB expression
  • 2021
  • Ingår i: Disease Models and Mechanisms. - : COMPANY BIOLOGISTS LTD. - 1754-8403 .- 1754-8411. ; 14:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Infantile myofibromatosis (IMF) is a benign tumor form characterized by the development of nonmetastatic tumors in skin, bone, muscle and sometimes viscera. Autosomal-dominant forms of IMF are caused by mutations in the PDGFRB gene, but a family carrying a L1519P mutation in the NOTCH3 gene has also recently been identified. In this study, we address the molecular consequences of the NOTCH3L1519P mutation and the relationship between Notch and PDGFRB signaling in IMF. The NOTCH3L1519P receptor generates enhanced downstream signaling in a ligand-independent manner. Despite the enhanced signaling, the NOTCH3L1519P receptor is absent from the cell surface and instead accumulates in the endoplasmic reticulum. Furthermore, the localization of the NOTCH3L1519P receptor in the bipartite, heterodimeric state is altered, combined with avid secretion of the mutated extracellular domain from the cell. Chloroquine treatment strongly reduces the amount of secreted NOTCH3L1519P extracellular domain and decreases signaling. Finally, NOTCH3L1519P upregulates PDGFRB expression in fibroblasts, supporting a functional link between Notch and PDGF dysregulation in IMF. Collectively, our data define a NOTCH3-PDGFRB axis in IMF, in which an IMF-mutated NOTCH3 receptor elevates PDGFRB expression. The functional characterization of a ligand-independent gain-of-function NOTCH3 mutation is important for Notch therapy considerations for IMF, including strategies aimed at altering lysosome function.
  •  
11.
  •  
12.
  •  
13.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-13 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy