SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1867 1381 OR L773:1867 8548 srt2:(2020-2024)"

Sökning: L773:1867 1381 OR L773:1867 8548 > (2020-2024)

  • Resultat 1-50 av 52
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cai, Jing, et al. (författare)
  • Characterization of offline analysis of particulate matter with FIGAERO-CIMS
  • 2023
  • Ingår i: Atmospheric Measurement Techniques (AMT). - : Copernicus GmbH. - 1867-8610 .- 1867-8548 .- 1867-1381. ; 16:5, s. 1147-1165
  • Tidskriftsartikel (refereegranskat)abstract
    • Measurements of the molecular composition of organic aerosol (OA) constituents improve our understanding of sources, formation processes, and physicochemical properties of OA. One instrument providing such data at a time resolution of minutes to hours is the chemical ionization time-of-flight mass spectrometer with filter inlet for gases and aerosols (FIGAERO-CIMS). The technique collects particles on a filter, which are subsequently desorbed, and the evaporated molecules are ionized and analyzed in the mass spectrometer. However, long-term measurements using this technique and/or field deployments at several sites simultaneously require substantial human and financial resources. The analysis of filter samples collected outside the instrument (offline) may provide a more cost-efficient alternative and makes this technology available for the large number of particle filter samples collected routinely at many different sites globally. Filter-based offline use of the FIGAERO-CIMS limits this method, albeit to particle-phase analyses, which is likely at a reduced time resolution compared to online deployments. Here we present the application and assessment of offline FIGAERO-CIMS, using Teflon and quartz fiber filter samples that were collected in autumn 2018 in urban Beijing. We demonstrate the feasibility of the offline application with a “sandwich” sample preparation for the over 900 identified organic compounds with (1) high signal-to-noise ratios, (2) high repeatability, and (3) linear signal response to the filter loadings. Comparable overall signals were observed between the quartz fiber and Teflon filters for 12 and 24h samples but with larger signals for semi-volatile compounds for the quartz fiber filters, likely due to adsorption artifacts. We also compare desorption profile (thermogram) shapes for the two filter materials. Thermograms are used to derive volatility qualitatively based on the desorption temperature at which the maximum signal intensity of a compound is observed (Tmax). While we find that Tmax can be determined with high repeatability (±5.7∘C) from the duplicate tests for one filter type, we observe considerable differences in Tmax between the quartz and Teflon filters, warranting further investigation into the thermal desorption characteristics of different filter types. Overall, this study provides a basis for expanding OA molecular characterization by FIGAERO-CIMS to situations where and when deployment of the instrument itself is not possible.
  •  
2.
  • Amell Tosas, Adrià, 1995, et al. (författare)
  • Ice water path retrievals from Meteosat-9 using quantile regression neural networks
  • 2022
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 15:19, s. 5701-5717
  • Tidskriftsartikel (refereegranskat)abstract
    • The relationship between geostationary radiances and ice water path (IWP) is complex, and traditional retrieval approaches are not optimal. This work applies machine learning to improve the IWP retrieval from Meteosat-9 observations, with a focus on low latitudes, training the models against retrievals based on CloudSat. Advantages of machine learning include avoiding explicit physical assumptions on the data, an efficient use of information from all channels, and easily leveraging spatial information. Thermal infrared (IR) retrievals are used as input to achieve a performance independent of the solar angle. They are compared with retrievals including solar reflectances as well as a subset of IR channels for compatibility with historical sensors. The retrievals are accomplished with quantile regression neural networks. This network type provides case-specific uncertainty estimates, compatible with non-Gaussian errors, and is flexible enough to be applied to different network architectures. Spatial information is incorporated into the network through a convolutional neural network (CNN) architecture. This choice outperforms architectures that only work pixelwise. In fact, the CNN shows a good retrieval performance by using only IR channels. This makes it possible to compute diurnal cycles, a problem that CloudSat cannot resolve due to its limited temporal and spatial sampling. These retrievals compare favourably with IWP retrievals in CLAAS, a dataset based on a traditional approach. These results highlight the possibilities to overcome limitations from physics-based approaches using machine learning while providing efficient, probabilistic IWP retrieval methods. Moreover, they suggest this first work can be extended to higher latitudes as well as that geostationary data can be considered as a complement to the upcoming Ice Cloud Imager mission, for example, to bridge the gap in temporal sampling with respect to space-based radars.
  •  
3.
  • Amell Tosas, Adrià, 1995, et al. (författare)
  • The Chalmers Cloud Ice Climatology: Retrieval implementation and validation
  • 2024
  • Ingår i: Atmospheric Measurement Techniques. - 1867-1381 .- 1867-8548. ; 17:14, s. 4337-4368
  • Tidskriftsartikel (refereegranskat)abstract
    • Ice clouds are a crucial component of the Earth's weather system, and their representation remains a principal challenge for current weather and climate models. Several past and future satellite missions were explicitly designed to provide observations offering new insights into cloud processes, but these specialized cloud sensors are limited in their spatial and temporal coverage. Geostationary satellites have been observing clouds for several decades and can ideally complement the sparse measurements from specialized cloud sensors. However, the geostationary observations that are continuously and globally available over the full observation record are restricted to a small number of wavelengths, which limits the information they can provide on clouds. The Chalmers Cloud Ice Climatology (CCIC) addresses this challenge by applying novel machine-learning techniques to retrieve ice cloud properties from globally gridded, single-channel geostationary observations that are readily available from 1980 onwards. CCIC aims to offer a novel perspective on the record of geostationary IR observations by providing spatially and temporally continuous retrievals of the vertically-integrated and vertically-resolved concentrations of frozen hydrometeors, typically referred to as ice water path (IWP) and ice water content (IWC). In addition to that, CCIC provides 2D and 3D cloud masks and a 3D cloud classification. A fully convolutional quantile regression neural network constitutes the core of the CCIC retrieval, providing probabilistic estimates of IWP and IWC. The network is trained against CloudSat retrievals using 3.5 years of global collocations. Assessment of the retrieval accuracy on a held-out test set demonstrates considerable skill in reproducing the reference IWP and IWC estimates. In addition, CCIC is extensively validated against both in-situ and remote sensing measurements from two flight campaigns and a ground-based radar. The results of this independent validation confirm the ability of CCIC to retrieve IWP and, to first order, even IWC. CCIC thus ideally complements temporally and spatially more limited measurements from dedicated cloud sensors by providing spatially and temporally continuous estimates of ice cloud properties. The CCIC network and its associated software are made accessible to the scientific community.
  •  
4.
  • Barlakas, Vasileios, 1986, et al. (författare)
  • Introducing hydrometeor orientation into all-sky microwave and submillimeter assimilation
  • 2021
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 14:5, s. 3427-3447
  • Forskningsöversikt (refereegranskat)abstract
    • Numerical weather prediction systems still employ many simplifications when assimilating microwave radiances under all-sky conditions (clear sky, cloudy, and precipitation). For example, the orientation of ice hydrometeors is ignored, along with the polarization that this causes. We present a simple approach for approximating hydrometeor orientation, requiring minor adaption of software and no additional calculation burden. The approach is introduced in the RTTOV (Radiative Transfer for TOVS) forward operator and tested in the Integrated Forecast System (IFS) of the European Centre for Medium-Range Weather Forecasts (ECMWF). For the first time within a data assimilation (DA) context, this represents the ice-induced brightness temperature differences between vertical (V) and horizontal (H) polarization-the polarization difference (PD). The discrepancies in PD between observations and simulations decrease by an order of magnitude at 166.5 GHz, with maximum reductions of 10-15 K. The error distributions, which were previously highly skewed and therefore problematic for DA, are now roughly symmetrical. The approach is based on rescaling the extinction in V and H channels, which is quantified by the polarization ratio. Using dual-polarization observations from the Global Precipitation Mission microwave imager (GMI), suitable values for were found to be 1.5 and 1.4 at 89.0 and 166.5 GHz, respectively. The scheme was used for all the conical scanners assimilated at ECMWF, with a broadly neutral impact on the forecast but with an increased physical consistency between instruments that employ different polarizations. This opens the way towards representing hydrometeor orientation for cross-track sounders and at frequencies above 183.0 GHz where the polarization can be even stronger.
  •  
5.
  • Baron, P., et al. (författare)
  • Potential for the measurement of mesosphere and lower thermosphere (MLT) wind, temperature, density and geomagnetic field with Superconducting Submillimeter-Wave Limb-Emission Sounder 2 (SMILES-2)
  • 2020
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 13:1, s. 219-237
  • Tidskriftsartikel (refereegranskat)abstract
    • Submillimeter-Wave Limb-Emission Sounder 2 (SMILES-2) is a satellite mission proposed in Japan to probe the middle and upper atmosphere (20-160 km). The main instrument is composed of 4K cooled radiometers operating near 0.7 and 2 THz. It could measure the diurnal changes of the horizontal wind above 30 km, temperature above 20 km, ground-state atomic oxygen above 90 km and atmospheric density near the mesopause, as well as abundance of about 15 chemical species. In this study we have conducted simulations to assess the wind, temperature and density retrieval performance in the mesosphere and lower thermosphere (60- 110 km) using the radiometer at 760 GHz. It contains lines of water vapor (H2O), molecular oxygen (O2) and nitric oxide (NO) that are the strongest signals measured with SMILES-2 at these altitudes. The Zeeman effect on the O2 line due to the geomagnetic field (B) is considered; otherwise, the retrieval errors would be underestimated by a factor of 2 above 90 km. The optimal configuration for the radiometer's polarization is found to be vertical linear. Considering a retrieval vertical resolution of 2.5 km, the line-of-sight wind is retrieved with a precision of 2-5ms-1 up to 90 km and 30ms-1 at 110 km. Temperature and atmospheric density are retrieved with a precision better than 5K and 7% up to 90 km (30K and 20% at 110 km). Errors induced by uncertainties on the vector B are mitigated by retrieving it. The retrieval of B is described as a side-product of the mission. At high latitudes, precisions of 30-100 nT on the vertical component and 100-300 nT on the horizontal one could be obtained at 85 and 105 km (vertical resolution of 20 km). SMILES-2 could therefore provide the first measurements of B close to the electrojets' altitude, and the precision is enough to measure variations induced by solar storms in the auroral regions.
  •  
6.
  • Beecken, Jörg, 1982, et al. (författare)
  • Performance assessment of state-of-the-art and novel methods for remote compliance monitoring of sulfur emissions from shipping
  • 2023
  • Ingår i: Atmospheric Measurement Techniques. - 1867-1381 .- 1867-8548. ; 16:23, s. 5883-5895
  • Tidskriftsartikel (refereegranskat)abstract
    • The fuel sulfur content (FSC) of ocean-going and inland vessels was measured simultaneously by eight different state-of-the-art and novel monitoring systems during a 6-week campaign at the Elbe River, at a distance of about 10 km to the port of Hamburg, Germany. Both stationary and airborne systems on unoccupied aerial vehicles (UAVs) were operated by four participating partners in a side-by-side measurement setup to measure the emission factors of the same emission sources. A novel laser spectrometer, with significantly better-precision specifications as compared with the other instruments, was used for the first time for emission monitoring regarding the International Convention for the Prevention of Pollution from Ships (MARPOL) Annex VI regulations. The comparison took place in the North Sea sulfur emission control area (SECA), where the allowed FSC is limited to 0.10 %Sm/m. The unit %Sm/m relates to the percentage of mass sulfur per mass combusted fuel. In total, 966 plumes that originated from 436 different vessels were analysed in this study. At the same time, fuel samples obtained from 34 different vessels and bunker delivery notes (BDNs) from five frequently monitored vessels were used as a reference to assess the uncertainties of the different systems. Seven of the eight measurement systems tended to underestimate the FSC found from fuel samples and BDNs. A possible relation between underestimation and high relative humidities (above 80 %) was observed. The lowest systematic deviations were observed for the airborne systems and the novel laser spectrometer. The two UAV-borne systems showed total uncertainties of 0.07 %Sm/m and 0.09 %Sm/m (confidence level: 95 %). The novel laser spectrometer showed the lowest total uncertainty of 0.05 %Sm/m compared with other stationary sniffer systems, whose total uncertainties range from 0.08 %Sm/m to 0.09 %Sm/m. It was concluded that non-compliant vessels, with an actual FSC of the combusted fuel above 0.15 %Sm/m to 0.19 %Sm/m, can be detected by the compared systems with 95 % confidence.
  •  
7.
  • Blumenstock, T., et al. (författare)
  • Characterization and potential for reducing optical resonances in Fourier transform infrared spectrometers of the Network for the Detection of Atmospheric Composition Change (NDACC)
  • 2021
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 14:2, s. 1239-1252
  • Tidskriftsartikel (refereegranskat)abstract
    • Although optical components in Fourier transform infrared (FTIR) spectrometers are preferably wedged, in practice, infrared spectra typically suffer from the effects of optical resonances ("channeling") affecting the retrieval of weakly absorbing gases. This study investigates the level of channeling of each FTIR spectrometer within the Network for the Detection of Atmospheric Composition Change (NDACC). Dedicated spectra were recorded by more than 20 NDACC FTIR spectrometers using a laboratory mid-infrared source and two detectors. In the indium antimonide (InSb) detector domain (1900-5000 cm-1), we found that the amplitude of the most pronounced channeling frequency amounts to 0.1 ‰ to 2.0 ‰ of the spectral background level, with a mean of (0:68±0:48) ‰ and a median of 0.60 ‰. In the mercury cadmium telluride (HgCdTe) detector domain (700-1300 cm-1), we find even stronger effects, with the largest amplitude ranging from 0.3 ‰ to 21 ‰ with a mean of (2:45±4:50) ‰ and a median of 1.2 ‰. For both detectors, the leading channeling frequencies are 0.9 and 0.11 or 0.23 cm-1 in most spectrometers. The observed spectral frequencies of 0.11 and 0.23 cm-1 correspond to the optical thickness of the beam splitter substrate. The 0.9 cm-1 channeling is caused by the air gap in between the beam splitter and compensator plate. Since the air gap is a significant source of channeling and the corresponding amplitude differs strongly between spectrometers, we propose new beam splitters with the wedge of the air gap increased to at least 0.8. We tested the insertion of spacers in a beam splitter's air gap to demonstrate that increasing the wedge of the air gap decreases the 0.9 cm-1 channeling amplitude significantly. A wedge of the air gap of 0.8 reduces the channeling amplitude by about 50 %, while a wedge of about 2 removes the 0.9 cm-1 channeling completely. This study shows the potential for reducing channeling in the FTIR spectrometers operated by the NDACC, thereby increasing the quality of recorded spectra across the network.
  •  
8.
  • Brath, Manfred, et al. (författare)
  • Microwave and submillimeter wave scattering of oriented ice particles
  • 2020
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 13:5, s. 2309-2333
  • Tidskriftsartikel (refereegranskat)abstract
    • Microwave (1-300GHz) dual-polarization measurements above 100GHz are so far sparse, but they consistently show polarized scattering signals of ice clouds. Existing scattering databases of realistically shaped ice crystals for microwaves and submillimeter waves (> 300GHz) typically assume total random orientation, which cannot explain the polarized signals. Conceptual models show that the polarization signals are caused by oriented ice particles. Only a few works that consider oriented ice crystals exist, but they are limited to microwaves only. Assuming azimuthally randomly oriented ice particles with a fixed but arbitrary tilt angle, we produced scattering data for two particle habits (51 hexagonal plates and 18 plate aggregates), 35 frequencies between 1 and 864GHz, and 3 temperatures (190, 230 and 270K). In general, the scattering data of azimuthally randomly oriented particles depend on the incidence angle and two scattering angles, in contrast to total random orientation, which depends on a single angle. The additional tilt angle further increases the complexity. The simulations are based on the discrete dipole approximation in combination with a self-developed orientation averaging approach. The scattering data are publicly available from Zenodo (https://doi.org/10.5281/zenodo.3463003). This effort is also an essential part of preparing for the upcoming Ice Cloud Imager (ICI) that will perform polarized observations at 243 and 664GHz. Using our scattering data radiative transfer simulations with two liquid hydrometeor species and four frozen hydrometeor species of polarized Global Precipitation Measurement (GPM) Microwave Imager (GMI) observations at 166GHz were conducted. The simulations recreate the observed polarization patterns. For slightly fluttering snow and ice particles, the simulations show polarization differences up to 11K using plate aggregates for snow, hexagonal plates for cloud ice and totally randomly oriented particles for the remaining species. Simulations using strongly fluttering hexagonal plates for snow and ice show similar polarization signals. Orientation, shape and the hydrometeor composition affect the polarization. Ignoring orientation can cause a negative bias for vertically polarized observations and a positive bias for horizontally polarized observations.
  •  
9.
  • Campmier, Mark Joseph, et al. (författare)
  • Seasonally optimized calibrations improve low-cost sensor performance: long-term field evaluation of PurpleAir sensors in urban and rural India
  • 2023
  • Ingår i: Atmospheric Measurement Techniques. - 1867-1381 .- 1867-8548. ; 16:19, s. 4357-4374
  • Tidskriftsartikel (refereegranskat)abstract
    • Lower-cost air pollution sensors can fill critical air quality data gaps in India, which experiences very high fine particulate matter (PM2.5) air pollution but has sparse regulatory air monitoring. Challenges for low-cost PM2.5 sensors in India include high-aerosol mass concentrations and pronounced regional and seasonal gradients in aerosol composition. Here, we report on a detailed long-time performance evaluation of a popular sensor, the Purple Air PA-II, at multiple sites in India. We established three distinct sites in India across land use categories and population density extremes (in urban Delhi and rural Hamirpur in north India and urban Bengaluru in south India), where we collocated the PA-II model with reference beta attenuation monitors. We evaluated the performance of uncalibrated sensor data, and then developed, optimized, and evaluated calibration models using a comprehensive feature selection process with a view to reproducibility in the Indian context. We assessed the seasonal and spatial transferability of sensor calibration schemes, which is especially important in India because of the paucity of reference instrumentation. Without calibration, the PA-II was moderately correlated with the reference signal (R2Combining double low line 0.55-0.74) but was inaccurate (NRMSE ≥ 40 %). Relative to uncalibrated data, parsimonious annual calibration models improved the PurpleAir (PA) model performance at all sites (cross-validated NRMSE 20 %-30 %; R2Combining double low line 0.82-0.95), and greatly reduced seasonal and diurnal biases. Because aerosol properties and meteorology vary regionally, the form of these long-term models differed among our sites, suggesting that local calibrations are desirable when possible. Using a moving-window calibration, we found that using seasonally specific information improves performance relative to a static annual calibration model, while a short-term calibration model generally does not transfer reliably to other seasons. Overall, we find that the PA-II model can provide reliable PM2.5 data with better than ±25 % precision and accuracy when paired with a rigorous calibration scheme that accounts for seasonality and local aerosol composition.
  •  
10.
  • Chen, Qiuyu, et al. (författare)
  • Satellite observations of gravity wave momentum flux in the mesosphere and lower thermosphere (MLT) : feasibility and requirements
  • 2022
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 15:23, s. 7071-7103
  • Tidskriftsartikel (refereegranskat)abstract
    • In the recent decade it became evident that we need to revise our picture of how gravity waves (GWs) reach the mesosphere and lower thermosphere (MLT). This has consequences for our understanding not just of the properties of the GWs themselves, but in particular of the global circulation in the MLT. Information on spectral distribution, direction, and zonal mean GW momentum flux is required to test the theoretical and modeling findings. In this study, we propose a constellation of two CubeSats for observing mesoscale GWs in the MLT region by means of temperature limb sounding in order to derive such constraints. Each CubeSat deploys a highly miniaturized spatial heterodyne interferometer (SHI) for the measurement of global oxygen atmospheric band emissions. From these emissions, the 3-D temperature structure can be inferred. We propose obtaining four independent observation tracks by splitting the interferograms in the center and thus gaining two observation tracks for each satellite. We present a feasibility study of this concept based on self-consistent, high-resolution global model data. This yields a full chain of end-to-end (E2E) simulations incorporating (1) orbit simulation, (2) airglow forward modeling, (3) tomographic temperature retrieval, (4) 3-D wave analysis, and (5) GW momentum flux (GWMF) calculation. The simulation performance is evaluated by comparing the retrieved zonal mean GWMF with that computed directly from the model wind data. A major question to be considered in our assessment is the minimum number of tracks required for the derivation of 3-D GW parameters. The main result from our simulations is that the GW polarization relations are still valid in the MLT region and can thus be employed for inferring GWMF from the 3-D temperature distributions. Based on the E2E simulations for gaining zonal mean climatologies of GW momentum flux, we demonstrate that our approach is robust and stable, given a four-track observation geometry and the expected instrument noise under nominal operation conditions. Using phase speed and direction spectra we show also that the properties of individual wave events are recovered when employing four tracks. Finally, we discuss the potential of the proposed observations to address current topics in the GW research. We outline for which investigations ancillary data are required to answer science questions.
  •  
11.
  • Dalin, Peter, et al. (författare)
  • A novel infrared imager for studies of hydroxyl and oxygen nightglow emissions in the mesopause above northern Scandinavia
  • 2024
  • Ingår i: Atmospheric Measurement Techniques. - 1867-1381 .- 1867-8548. ; 17:5, s. 1561-1576
  • Tidskriftsartikel (refereegranskat)abstract
    • The paper describes technical characteristics and presents the first scientific results of a novel infrared imaging system (imager) for studies of nightglow emissions coming from the hydroxyl (OH) and molecular oxygen (O2) layers in the mesopause region (80–100 km) above northern Scandinavia. The OH imager was put into operation in November 2022 at the Swedish Institute of Space Physics in Kiruna (67.86° N, 20.42° E; 400 m altitude). The OH imager records selected emission lines in the OH(3-1) band near 1500 nm to obtain intensity and temperature maps at around 87 km altitude. In addition, the OH imager registers infrared emissions coming from the O2 IR A-band airglow at 1268.7 nm in order to obtain O2 intensity maps at a slightly higher altitude, around 94 km. This technique allows the tracing of wave disturbances in both horizontal and vertical domains in the mesopause region. Validation and comparison of the OH(3-1) rotational temperature with collocated lidar and Aura Microwave Limb Sounder (MLS) satellite temperatures are performed. The first scientific results obtained from the OH imager for the first winter season (2022–2023) are discussed.
  •  
12.
  • Ekelund, Robin Nils, 1989, et al. (författare)
  • Microwave single-scattering properties of non-spheroidal raindrops
  • 2020
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 13:12, s. 6933-6944
  • Tidskriftsartikel (refereegranskat)abstract
    • Falling raindrops undergo a change in morphology as they grow in size and the fall speed increases. This change can lead to significant effects in passive and active microwave remote sensing measurements, typically in the form of a polarization signal. Because previous studies generally only considered either passive or active measurements and a limited set of frequencies, there exist no general guidelines on how and when to consider such raindrop effects in scientific and meteorological remote sensing. In an attempt to provide an overview on this topic, this study considered passive and active remote sensing simultaneously and a wider set of frequencies than in previous studies. Single-scattering property (SSP) data of horizontally oriented raindrops were calculated using the T-matrix method at a large set of frequencies (34 in total). The shapes of the raindrops were calculated assuming an aerodynamic equilibrium model, resulting in drops with flattened bases. The SSP data are published in an open-access repository in order to promote the usage of realistic microphysical assumptions in the microwave remote sensing community. Furthermore, the SSPs were employed in radiative transfer simulations of passive and active microwave rain observations, in order to investigate the impact of raindrop shape upon observations and to provide general guidelines on usage of the published database. Several instances of noticeable raindrop shape-induced effects could be identified. For instance, it was found that the flattened base of equilibrium drops can lead to an enhancement in back-scattering at 94.1 GHz of 1.5 dBZ at 10mm h(-1), and passive simulations showed that shape-induced effects on measured brightness temperatures can be at least 1 K.
  •  
13.
  • Ekelund, Robin Nils, 1989, et al. (författare)
  • Using passive and active observations at microwave and sub-millimetre wavelengths to constrain ice particle models
  • 2020
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 13:2, s. 501-520
  • Tidskriftsartikel (refereegranskat)abstract
    • Satellite microwave remote sensing is an important tool for determining the distribution of atmospheric ice globally. The upcoming Ice Cloud Imager (ICI) will provide unprecedented measurements at sub-millimetre frequencies, employing channels up to 664 GHz. However, the utilization of such measurements requires detailed data on how individual ice particles scatter and absorb radiation, i.e. single scattering data. Several single scattering databases are currently available, with the one by Eriksson et al. (2018) specifically tailored to ICI. This study attempts to validate and constrain the large set of particle models available in this database to a smaller and more manageable set. A combined active and passive model framework is developed and employed, which converts CloudSat observations to simulated brightness temperatures (TBs) measured by the Global Precipitation Measurement (GPM) Microwave Imager (GMI) and ICI. Simulations covering about 1 month in the tropical Pacific Ocean are performed, assuming different microphysical settings realized as combinations of the particle model and particle size distribution (PSD). Firstly, it is found that when the CloudSat inversions and the passive forward model are considered separately, the assumed particle model and PSD have a considerable impact on both radar-retrieved ice water content (IWC) and simulated TBs. Conversely, when the combined active and passive framework is employed instead, the uncertainty due to the assumed particle model is significantly reduced. Furthermore, simulated TBs for almost all the tested microphysical combinations, from a statistical point of view, agree well with GMI measurements (166, 186.31, and 190.31 GHz), indicating the robustness of the simulations. However, it is difficult to identify a particle model that outperforms any other. One aggregate particle model, composed of columns, yields marginally better agreement with GMI compared to the other particles, mainly for the most severe cases of deep convection. Of the tested PSDs, the one by McFarquhar and Heymsfield (1997) is found to give the best overall agreement with GMI and also yields radar dBZ–IWC relationships closely matching measurements by Protat et al. (2016). Only one particle, modelled as an air–ice mixture spheroid, performs poorly overall. On the other hand, simulations at the higher ICI frequencies (328.65, 334.65, and 668.2 GHz) show significantly higher sensitivity to the assumed particle model. This study thus points to the potential use of combined ICI and 94 GHz radar measurements to constrain ice hydrometeor properties in radiative transfer (RT) using the method demonstrated in this paper.
  •  
14.
  • Eriksson, Patrick, 1964, et al. (författare)
  • Towards an operational Ice Cloud Imager (ICI) retrieval product
  • 2020
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 13:1, s. 53-71
  • Tidskriftsartikel (refereegranskat)abstract
    • The second generation of the EUMETSAT Polar System (EPS-SG) will include the Ice Cloud Imager (ICI), the first operational sensor covering sub-millimetre wavelengths. Three copies of ICI will be launched that together will give a measurement time series exceeding 20 years. Due to the novelty of ICI, preparing the data processing is especially important and challenging. This paper focuses on activities related to the operational product planned, but also presents basic technical characteristics of the instrument. A retrieval algorithm based on Bayesian Monte Carlo integration has been developed. The main retrieval quantities are ice water path (IWP), mean mass height (Z(m)) and mean mass diameter (D-m). A novel part of the algorithm is that it fully presents the inversion as a description of the posterior probability distribution. This is preferred for ICI as its retrieval errors do not always follow Gaussian statistics. A state-of-the-art retrieval database is used to test the algorithm and to give an updated estimate of the retrieval performance. The degrees of freedom in measured radiances, and consequently the retrieval precision, vary with cloud situation. According to present simulations, IWP, Z(m) and D-m can be determined with 90% confidence at best inside 50 %, 700m and 50 mu m, respectively. The retrieval requires that the data from the 13 channels of ICI are remapped to a common footprint. First estimates of the errors introduced by this remapping are also presented.
  •  
15.
  • Galle, Bo, 1952, et al. (författare)
  • A multi-purpose, multi-rotor drone system for long-range and high-altitude volcanic gas plume measurements
  • 2021
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 14:6, s. 4255-4277
  • Tidskriftsartikel (refereegranskat)abstract
    • A multi-rotor drone has been adapted for studies of volcanic gas plumes. This adaptation includes improved capacity for high-altitude and long-range, real-time SO2 concentration monitoring, long-range manual control, remotely activated bag sampling and plume speed measurement capability. The drone is capable of acting as a stable platform for various instrument configurations, including multi-component gas analysis system (MultiGAS) instruments for in situ measurements of SO2, H2S, and CO2 concentrations in the gas plume and portable differential optical absorption spectrometer (MobileDOAS) instruments for spectroscopic measurement of total SO2 emission rate, remotely controlled gas sampling in bags and sampling with gas denuders for posterior analysis on the ground of isotopic composition and halogens. The platform we present was field-tested during three campaigns in Papua New Guinea: in 2016 at Tavurvur, Bagana and Ulawun volcanoes, in 2018 at Tavurvur and Langila volcanoes and in 2019 at Tavurvur and Manam volcanoes, as well as in Mt. Etna in Italy in 2017. This paper describes the drone platform and the multiple payloads, the various measurement strategies and an algorithm to correct for different response times of MultiGAS sensors. Specifically, we emphasize the need for an adaptive flight path, together with live data transmission of a plume tracer (such as SO2 concentration) to the ground station, to ensure optimal plume interception when operating beyond the visual line of sight. We present results from a comprehensive plume characterization obtained during a field deployment at Manam volcano in May 2019. The Papua New Guinea region, and particularly Manam volcano, has not been extensively studied for volcanic gases due to its remote location, inaccessible summit region and high level of volcanic activity. We demonstrate that the combination of a multi-rotor drone with modular payloads is a versatile solution to obtain the flux and composition of volcanic plumes, even for the case of a highly active volcano with a high-altitude plume such as Manam. Drone-based measurements offer a valuable solution to volcano research and monitoring applications and provide an alternativespan idCombining double low line"page4256"/> and complementary method to ground-based and direct sampling of volcanic gases.
  •  
16.
  • Grieco, Francesco, 1992, et al. (författare)
  • Improvement of Odin/SMR water vapour and temperature measurements and validation of the obtained data sets
  • 2021
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 14:8, s. 5823-5857
  • Tidskriftsartikel (refereegranskat)abstract
    • Its long photochemical lifetime makes H2O a good tracer for mesospheric dynamics. Temperature observations are also critical to study middle atmospheric dynamics. In this study, we present the reprocessing of 18 years of mesospheric H2O and temperature measurements from the Sub-Millimetre Radiometer (SMR) aboard the Odin satellite, resulting in a part of the SMR version 3.0 level 2 data set. The previous version of the data set showed poor accordance with measurements from other instruments, which suggested that the retrieved concentrations and temperature were subject to instrumental artefacts. Different hypotheses have been explored, and the idea of an underestimation of the singlesideband leakage turned out to be the most reasonable one. The value of the lowest transmission achievable has therefore been raised to account for greater sideband leakage, and new retrievals have been performed with the new settings. The retrieved profiles extend between 40-100 km altitude and cover the whole globe to reach 85° latitudes. A validation study has been carried out, revealing an overall better accordance with the compared instruments. In particular, relative differences in H2O mixing ratio are always in the ±20% range between 40 and 70 km and diverge at higher altitudes, while temperature absolute differences are within ±5K between 40-80 km and also diverge at higher altitudes.
  •  
17.
  • Grieco, Francesco, 1992, et al. (författare)
  • Recovery and validation of Odin/SMR long-term measurements of mesospheric carbon monoxide
  • 2020
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 13:9, s. 5013-5031
  • Tidskriftsartikel (refereegranskat)abstract
    • The Sub-Millimetre Radiometer (SMR) on board the Odin satellite performs limb sounding measurements of the middle atmosphere to detect molecular emission from different species. Carbon monoxide (CO) is an important tracer of atmospheric dynamics at these altitudes, due to its long photochemical lifetime and high vertical concentration gradient. In this study, we have successfully recovered over 18 years of SMR observations, providing the only dataset to date being so extended in time and stretching out to the polar regions, with regards to satellite-measured mesospheric CO. This new dataset is part of the Odin/SMR version 3.0 level 2 data. Much of the level 1 dataset - except the October 2003 to October 2004 period - was affected by a malfunctioning of the phase-lock loop (PLL) in the front end used for CO observations. Because of this technical issue, the CO line could be shifted away from its normal frequency location, causing the retrieval to fail or leading to an incorrect estimation of the CO concentration. An algorithm was developed to locate the CO line and shift it to its correct location. Nevertheless, another artefact causing an underestimation of the concentration, i.e. a line broadening, stemmed from the PLL malfunctioning. This was accounted for by using a broader response function. The application of these corrections resulted in the recovery of a large amount of data that was previously being flagged as problematic and therefore not processed. A validation study has been carried out, showing how SMR CO volume mixing ratios are in general in good accordance with the other instruments considered in the study. Overall, the agreement is very good between 60 and 80 km altitude, with relative differences close to zero. A positive bias at low altitudes (50-60 km) up to +20% and a negative bias up to -20% at high altitudes (80-100 km) were found with respect to the comparison instruments.
  •  
18.
  • Griessbach, Sabine, et al. (författare)
  • Aerosol and cloud top height information of Envisat MIPAS measurements
  • 2020
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 13:3, s. 1243-1271
  • Tidskriftsartikel (refereegranskat)abstract
    • Infrared limb emission instruments have a long history in measuring clouds and aerosol. In particular, the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) instrument aboard ESA's Envisat provides 10 years of altitude-resolved global measurements. Previous studies found systematic overestimations and underestimations of cloud top heights for cirrus and polar stratospheric clouds. To assess the cloud top height information and to characterise its uncertainty for the MIPAS instrument we performed simulations for ice clouds, volcanic ash, and sulfate aerosol. From the simulation results we found that in addition to the known effects of the field-of-view that can lead to a cloud top height overestimation, and broken cloud conditions that can lead to underestimation, the cloud extinction also plays an important role. While for optically thick clouds the possible cloud top height overestimation for MIPAS reaches up to 1.6 km due to the field-of-view, for optically thin clouds and aerosol the systematic underestimation reaches 5.1 km. For the detection sensitivity and the degree of underestimation of the MIPAS measurements, the cloud layer thickness also plays a role; 1 km thick clouds are detectable down to extinctions of 5 x 10(-4) km(-1) and 6 km thick clouds are detectable down to extinctions of 1 x 10(-4) km(-1), where the largest underestimations of the cloud top height occur for the optically thinnest clouds with a vertical extent of 6 km. The relation between extinction coefficient, cloud top height estimate, and layer thickness is confirmed by a comparison of MIPAS cloud top heights of the volcanic sulfate aerosol from the Nabro eruption in 2011 with space- and ground-based lidar measurements and twilight measurements between June 2011 and February 2012. For plumes up to 2 months old, where the extinction was between 1 x 10(-4) and 7 x 10(-4) km(-1) and the layer thickness mostly below 4 km, we found for MIPAS an average underestimation of 1.1 km. In the aged plume with extinctions down to 5 x 10(-5) km(-1) and layer thicknesses of up to 9.5 km, the underestimation was higher, reaching up to 7.2 km. The dependency of the cloud top height overestimations or underestimations on the extinction coefficient can explain seemingly contradictory results of previous studies. In spite of the relatively large uncertainty range of the cloud top height, the comparison of the detection sensitivity towards sulfate aerosol between MIPAS and a suite of widely used UV/VIS limb and IR nadir satellite aerosol measurements shows that MIPAS provides complementary information in terms of detection sensitivity.
  •  
19.
  • Guyot, Adrien, et al. (författare)
  • Detection of supercooled liquid water containing clouds with ceilometers : development and evaluation of deterministic and data-driven retrievals
  • 2022
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 15:12, s. 3663-3681
  • Tidskriftsartikel (refereegranskat)abstract
    • Cloud and aerosol lidars measuring backscatter and depolarization ratio are the most suitable lidars to detect cloud phase (liquid, ice, or mixed phase). However, such instruments are not widely deployed as part of operational networks. In this study, we propose a new algorithm to detect supercooled liquid water containing clouds (SLCC) based on ceilometers measuring only co-polarization backscatter. We utilize observations collected at Davis, Antarctica, where low-level, mixed-phase clouds, including supercooled liquid water (SLW) droplets and ice crystals, remain poorly understood due to the paucity of ground-based observations. A 3-month set of observations were collected during the austral summer of November 2018 to February 2019, with a variety of instruments including a depolarization lidar and a W-band cloud radar which were used to build a two-dimensional cloud phase mask distinguishing SLW and mixed-phase clouds. This cloud phase mask is used as the reference to develop a new algorithm based on the observations of a single polarization ceilometer operating in the vicinity for the same period. Deterministic and data-driven retrieval approaches were evaluated: an extreme gradient boosting (XGBoost) framework ingesting backscatter average characteristics was the most effective method at reproducing the classification obtained with the combined radar–lidar approach with an accuracy as high as 0.91. This study provides a new SLCC retrieval approach based on ceilometer data and highlights the considerable benefits of these instruments to provide intelligence on cloud phase in polar regions that usually suffer from a paucity of observations. Finally, the two algorithms were applied to a full year of ceilometer observations to retrieve cloud phase and frequency of occurrences of SLCC: SLCC was present 29 ± 6 % of the time for T19 and 24 ± 5 % of the time for G22-Davis over that annual cycle.
  •  
20.
  • Hakkinen, E., et al. (författare)
  • Online measurement of highly oxygenated compounds from organic aerosol
  • 2023
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 16:6, s. 1705-1721
  • Tidskriftsartikel (refereegranskat)abstract
    • Highly oxygenated compounds are important contributors to the formation and growth of atmospheric organic aerosol and thus have an impact on Earth's radiation balance and global climate. However, knowledge of the contribution of highly oxygenated compounds to organic aerosol and their fate after condensing into the particle phase has been limited by the lack of suitable detection techniques. Here, we present a new online method for measuring highly oxygenated compounds from organic aerosol. The method includes thermal evaporation of particles in a new inlet, the vaporization inlet for aerosols (VIA), followed by identification of the evaporated highly oxygenated compounds by a nitrate chemical ionization mass spectrometer (NO3-CIMS). The method does not require sample collection, enabling highly time-resolved measurements of particulate compounds. We evaluate the performance of the method by measuring the detection limit and performing background measurements. We estimate a detection limit of below 1 ng m(-3) for a single compound and below 1 mu g m(-3) for SOA with the sampling setup used here. These detection limits can be improved upon by optimizing the flow setup. Furthermore, we detect hundreds of particulate highly oxygenated compounds from organic aerosol generated from different precursors. Our results are consistent with previous studies showing that the volatility of organic compounds decreases with increasing m/z ratio and level of oxygenation and that organic aerosol consists of monomers and oligomeric compounds. By comparing the gas- and particle-phase compounds, we found indications of potential particle-phase reactions occurring in organic aerosol. Future work will focus both on further improving the sampling design and on better understanding the evaporation dynamics of the system, but already these initial tests show that the VIA coupled to the NO3-CIMS is a promising method for investigating the transformations and fate of the compounds after condensing into the particle phase.
  •  
21.
  • Kastinen, Daniel, et al. (författare)
  • Probabilistic analysis of ambiguities in radar echo direction of arrival from meteors
  • 2020
  • Ingår i: Atmospheric Measurement Techniques. - : Nicolaus Copernicus University Press. - 1867-1381 .- 1867-8548. ; 13:12, s. 6813-6835
  • Tidskriftsartikel (refereegranskat)abstract
    • Meteors and hard targets produce coherent radar echoes. If measured with an interferometric radar system, these echoes can be used to determine the position of the target through finding the direction of arrival (DOA) of the incoming echo onto the radar. Depending on the spatial configuration of radar-receiving antennas and their individual gain patterns, there may be an ambiguity problem when determining the DOA of an echo. Radars that are theoretically ambiguity-free are known to still have ambiguities that depend on the total radar signal-to-noise ratio (SNR). In this study, we investigate robust methods which are easy to implement to determine the effect of ambiguities on any hard target DOA determination by interferometric radar systems. We apply these methods specifically to simulate four different radar systems measuring meteor head and trail echoes, using the multiple signal classification (MUSIC) DOA determination algorithm. The four radar systems are the Middle And Upper Atmosphere (MU) radar in Japan, a generic Jones 2.5 lambda specular meteor trail radar configuration, the Middle Atmosphere Alomar Radar System (MAARSY) radar in Norway and the Program of the Antarctic Syowa Mesosphere Stratosphere Troposphere Incoherent Scatter (PANSY) radar in the Antarctic. We also examined a slightly perturbed Jones 2.5 lambda configuration used as a meteor trail echo receiver for the PANSY radar. All the results are derived from simulations, and their purpose is to grant understanding of the behaviour of DOA determination. General results are as follows: there may be a region of SNRs where ambiguities are relevant; Monte Carlo simulation determines this region and if it exists; the MUSIC function peak value is directly correlated with the ambiguous region; a Bayesian method is presented that may be able to analyse echoes from this region; the DOA of echoes with SNRs larger than this region are perfectly determined; the DOA of echoes with SNRs smaller than this region completely fail to be determined; the location of this region is shifted based on the total SNR versus the channel SNR in the direction of the target; and asymmetric subgroups can cause ambiguities, even for ambiguity-free radars. For a DOA located at the zenith, the end of the ambiguous region is located at 17 dB SNR for the MU radar and 3 dB SNR for the PANSY radar. The Jones radars are usually used to measure specular trail echoes far from zenith. The ambiguous region for a DOA at 75.5 degrees elevation and 0 degrees azimuth ends at 12 dB SNR. Using the Bayesian method, it may be possible to analyse echoes down to 4 dB SNR for the Jones configuration when given enough data points from the same target. The PANSY meteor trail echo receiver did not deviate significantly from the generic Jones configuration. The MAARSY radar could not resolve arbitrary DOAs su degrees ciently well enough to determine a stable region. However, if the DOA search is restricted to 70 degrees elevation or above by assumption, stable DOA determination occurs above 15 dB SNR.
  •  
22.
  • Kastinen, Daniel, et al. (författare)
  • Resolving the ambiguous direction of arrival of weak meteor radar trail echoes
  • 2021
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 14:5, s. 3583-3596
  • Tidskriftsartikel (refereegranskat)abstract
    • Meteor phenomena cause ionized plasmas that can be roughly divided into two distinctly different regimes: a dense and transient plasma region co-moving with the ablating meteoroid and a trail of diffusing plasma left in the atmosphere and moving with the neutral wind. Interferometric radar systems are used to observe the meteor trails and determine their positions and drift velocities. Depending on the spatial configuration of the receiving antennas and their individual gain patterns, the voltage response can be the same for several different plane wave directions of arrival (DOAs), thereby making it impossible to determine the correct direction. A low signal-to-noise ratio (SNR) can create the same effect probabilistically even if the system contains no theoretical ambiguities. Such is the case for the standard meteor trail echo data products of the Sodankyl Geophysical Observatory SKiYMET all-sky interferometric meteor radar. Meteor trails drift slowly enough in the atmosphere and allow for temporal integration, while meteor head echo targets move too fast. Temporal integration is a common method to increase the SNR of radar signals. For meteor head echoes, we instead propose to use direct Monte Carlo (DMC) simulations to validate DOA measurements. We have implemented two separate temporal integration methods and applied them to 2222 events measured by the Sodankyl meteor radar to simultaneously test the usefulness of such DMC simulations on cases where temporal integration is possible, validate the temporal integration methods, and resolve the ambiguous SKiYMET data products. The two methods are the temporal integration of the signal spatial correlations and matchedfilter integration of the individual radar channel signals. The results are compared to Bayesian inference using the DMC simulations and the standard SkiYMET data products. In the examined data set, 13% of the events were indicated as ambiguous. Out of these, 13% contained anomalous signals. In 95% of all ambiguous cases with a nominal signal, the three methods found one and the same output DOA, which was also listed as one of the ambiguous possibilities in the SkiYMET analysis. In all unambiguous cases, the results from all methods concurred.
  •  
23.
  • Kaur, Inderpreet, 1985, et al. (författare)
  • Can machine learning correct microwave humidity radiances for the influence of clouds?
  • 2021
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 14:4, s. 2957-2979
  • Tidskriftsartikel (refereegranskat)abstract
    • A methodology based on quantile regression neural networks (QRNNs) is presented that identifies and corrects the cloud impact on microwave humidity sounder radiances at 183 GHz. This approach estimates the posterior distributions of noise-free clear-sky (NFCS) radiances, providing nearly bias-free estimates of clear-sky radiances with a full posterior error distribution. It is first demonstrated by application to a present sensor, the MicroWave Humidity Sounder 2 (MWHS-2); then the applicability to sub-millimetre (sub-mm) sensors is also analysed. The QRNN results improve upon what operational cloud filtering techniques like a scattering index can achieve but are ultimately imperfect due to limited information content on cirrus impact from traditional microwave channels - the negative departures associated with high cloud impact are successfully corrected, but thin cirrus clouds cannot be fully corrected. In contrast, when sub-mm observations are used, QRNN successfully corrects most cases with cloud impact, with only 2 %-6 % of the cases left partially corrected. The methodology works well even if only one sub-mm channel (325 GHz) is available. When using sub-mm observations, cloud correction usually results in error distributions with a standard deviation less than typical channel noise values. Furthermore, QRNN outputs predicted quantiles for case-specific uncertainty estimates, successfully representing the uncertainty of cloud correction for each observation individually. In comparison to deterministic correction or filtering approaches, the corrected radiances and attendant uncertainty estimates have great potential to be used efficiently in assimilation systems due to being largely unbiased and adding little further uncertainty to the measurements.
  •  
24.
  • Kiefer, M., et al. (författare)
  • The SPARC water vapour assessment II: biases and drifts of water vapour satellite data records with respect to frost point hygrometer records
  • 2023
  • Ingår i: Atmospheric Measurement Techniques. - 1867-1381 .- 1867-8548. ; 16:19, s. 4589-4642
  • Tidskriftsartikel (refereegranskat)abstract
    • Satellite data records of stratospheric water vapour have been compared to balloon-borne frost point hygrometer (FP) profiles that are coincident in space and time. The satellite data records of 15 different instruments cover water vapour data available from January 2000 through December 2016. The hygrometer data are from 27 stations all over the world in the same period. For the comparison, real or constructed averaging kernels have been applied to the hygrometer profiles to adjust them to the measurement characteristics of the satellite instruments. For bias evaluation, we have compared satellite profiles averaged over the available temporal coverage to the means of coincident FP profiles for individual stations. For drift determinations, we analysed time series of relative differences between spatiotemporally coincident satellite and hygrometer profiles at individual stations. In a synopsis we have also calculated the mean biases and drifts (and their respective uncertainties) for each satellite record over all applicable hygrometer stations in three altitude ranges (10-30 hPa, 30-100 hPa, and 100 hPa to tropopause). Most of the satellite data have biases <10 % and average drifts <1 % yr-1 in at least one of the respective altitude ranges. Virtually all biases are significant in the sense that their uncertainty range in terms of twice the standard error of the mean does not include zero. Statistically significant drifts (95 % confidence) are detected for 35 % of the ≈ 1200 time series of relative differences between satellites and hygrometers.
  •  
25.
  • Kuhn, Thomas, 1970-, et al. (författare)
  • Microphysical properties and fall speed measurements of snow ice crystals using the Dual Ice Crystal Imager (D-ICI)
  • 2020
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus Publications. - 1867-1381 .- 1867-8548. ; 13, s. 1273-1285
  • Tidskriftsartikel (refereegranskat)abstract
    • Accurate predictions of snowfall require good knowledge of the microphysical properties of the snow ice crystals and particles. Shape is an important parameter as it strongly influences the scattering properties of the ice particles, and thus their response to remote sensing techniques such as radar measurements. The fall speed of ice particles is another important parameter for both numerical forecast models as well as representation of ice clouds and snow in climate models, as it is responsible for the rate of removal of ice from these models.We describe a new ground-based in situ instrument, the Dual Ice Crystal Imager (D-ICI), to determine snow ice crystal properties and fall speed simultaneously. The instrument takes two high-resolution pictures of the same falling ice particle from two different viewing directions. Both cameras use a microscope-like setup resulting in an image pixel resolution of approximately 4 µm pixel−1. One viewing direction is horizontal and is used to determine fall speed by means of a double exposure. For this purpose, two bright flashes of a light-emitting diode behind the camera illuminate the falling ice particle and create this double exposure, and the vertical displacement of the particle provides its fall speed. The other viewing direction is close-to-vertical and is used to provide size and shape information from single-exposure images. This viewing geometry is chosen instead of a horizontal one because shape and size of ice particles as viewed in the vertical direction are more relevant than these properties viewed horizontally, as the vertical fall speed is more strongly influenced by the vertically viewed properties. In addition, a comparison with remote sensing instruments that mostly have a vertical or close-to-vertical viewing geometry is favoured when the particle properties are measured in the same direction.The instrument has been tested in Kiruna, northern Sweden (67.8∘ N, 20.4∘ E). Measurements are demonstrated with images from different snow events, and the determined snow ice crystal properties are presented.
  •  
26.
  • Laj, Paolo, et al. (författare)
  • A global analysis of climate-relevant aerosol properties retrieved from the network of Global Atmosphere Watch (GAW) near-surface observatories
  • 2020
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 13:8, s. 4353-4392
  • Tidskriftsartikel (refereegranskat)abstract
    • Aerosol particles are essential constituents of the Earth's atmosphere, impacting the earth radiation balance directly by scattering and absorbing solar radiation, and indirectly by acting as cloud condensation nuclei. In contrast to most greenhouse gases, aerosol particles have short atmospheric residence times, resulting in a highly heterogeneous distribution in space and time. There is a clear need to document this variability at regional scale through observations involving, in particular, the in situ near-surface segment of the atmospheric observation system. This paper will provide the widest effort so far to document variability of climate-relevant in situ aerosol properties (namely wavelength dependent particle light scattering and absorption coefficients, particle number concentration and particle number size distribution) from all sites connected to the Global Atmosphere Watch network. High-quality data from almost 90 stations worldwide have been collected and controlled for quality and are reported for a reference year in 2017, providing a very extended and robust view of the variability of these variables worldwide. The range of variability observed worldwide for light scattering and absorption coefficients, single-scattering albedo, and particle number concentration are presented together with preliminary information on their long-term trends and comparison with model simulation for the different stations. The scope of the present paper is also to provide the necessary suite of information, including data provision procedures, quality control and analysis, data policy, and usage of the ground-based aerosol measurement network. It delivers to users of the World Data Centre on Aerosol, the required confidence in data products in the form of a fully characterized value chain, including uncertainty estimation and requirements for contributing to the global climate monitoring system.
  •  
27.
  • Li, Anqi, 1990, et al. (författare)
  • Retrieval of daytime mesospheric ozone using OSIRIS observations of O2 (a1Δg) emission
  • 2020
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 13:11, s. 6215-6236
  • Tidskriftsartikel (refereegranskat)abstract
    • This work is distributed under the Creative Commons Attribution 4.0 License. Improving knowledge of the ozone global distributions in the mesosphere-lower thermosphere (MLT) is a crucial step in understanding the behaviour of the middle atmosphere. However, the concentration of ozone under sunlit conditions in the MLT is often so low that its measurement requires instruments with very high sensitivity. Fortunately, the bright oxygen airglow can serve as a proxy to retrieve the daytime ozone density indirectly, due to the strong connection to ozone photolysis in the Hartley band. The OSIRIS IR imager (hereafter, IRI), one of the instruments on the Odin satellite, routinely measures the oxygen infrared atmospheric band (IRA band) at 1.27 μm. In this paper, we will primarily focus on the detailed description of the steps done for retrieving the calibrated IRA band limb radiance (with <10 % random error), the volume emission rate of O2 ( a 1i"g) (with <25 % random error) and finally the ozone number density (with <20 % random error). This retrieval technique is applied to a 1-year sample from the IRI dataset. The resulting product is a new ozone dataset with very tight along-track sampling distance (<20 km). The feasibility of the retrieval technique is demonstrated by a comparison of coincident ozone measurements from other instruments aboard the same spacecraft, as well as zonal mean and monthly average comparisons between Odin-OSIRIS (both spectrograph and IRI), Odin-SMR and Envisat-MIPAS. We find that IRI appears to have a positive bias of up to 25 % below 75 km, and up to 50 % in some regions above. We attribute these differences to uncertainty in the IRI calibration as well as uncertainties in the photochemical constants. However, the IRI ozone dataset is consistent with the compared dataset in terms of the overall atmospheric distribution of ozone between 50 and 100 km. If the origin of the bias can be identified before processing the entire dataset, this will be corrected and noted in the dataset description. The retrieval technique described in this paper can be further applied to all the measurements made throughout the 19 year mission, leading to a new, long-term high-resolution ozone dataset in the middle atmosphere.
  •  
28.
  • Li, Haiyan, et al. (författare)
  • Fragmentation inside proton-transfer-reaction-based mass spectrometers limits the detection of ROOR and ROOH peroxides
  • 2022
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 15:6, s. 1811-1827
  • Tidskriftsartikel (refereegranskat)abstract
    • Proton transfer reaction (PTR) is a commonly applied ionization technique for mass spectrometers, in which hydronium ions (H3O+) transfer a proton to analytes with higher proton affinities than the water molecule. This method has most commonly been used to quantify volatile hydrocarbons, but later-generation PTR instruments have been designed for better throughput of less volatile species, allowing detection of more functionalized molecules as well. For example, the recently developed Vocus PTR time-of-flight mass spectrometer (PTR-TOF) has been shown to agree well with an iodide-adduct-based chemical ionization mass spectrometer (CIMS) for products with 3-5 O atoms from oxidation of monoterpenes (C10H16). However, while several different types of CIMS instruments (including those using iodide) detect abundant signals also at dimeric species, believed to be primarily ROOR peroxides, no such signals have been observed in the Vocus PTR even though these compounds fulfil the condition of having higher proton affinity than water. More traditional PTR instruments have been limited to volatile molecules as the inlets have not been designed for transmission of easily condensable species. Some newer instruments, like the Vocus PTR, have overcome this limitation but are still not able to detect the full range of functionalized products, suggesting that other limitations need to be considered. One such limitation, well-documented in PTR literature, is the tendency of protonation to lead to fragmentation of some analytes. In this work, we evaluate the potential for PTR to detect dimers and the most oxygenated compounds as these have been shown to be crucial for forming atmospheric aerosol particles. We studied the detection of dimers using a Vocus PTR-TOF in laboratory experiments, as well as through quantum chemical calculations. Only noisy signals of potential dimers were observed during experiments on the ozonolysis of the monoterpene alpha-pinene, while a few small signals of dimeric compounds were detected during the ozonolysis of cyclohexene. During the latter experiments, we also tested varying the pressures and electric fields in the ionization region of the Vocus PTR-TOF, finding that only small improvements were possible in the relative dimer contributions. Calculations for model ROOR and ROOH systems showed that most of these peroxides should fragment partially following protonation. With the inclusion of additional energy from the ion-molecule collisions driven by the electric fields in the ionization source, computational results suggest substantial or nearly complete fragmentation of dimers. Our study thus suggests that while the improved versions of PTR-based mass spectrometers are very powerful tools for measuring hydrocarbons and their moderately oxidized products, other types of CIMS are likely more suitable for the detection of ROOR and ROOH species.
  •  
29.
  • Lossow, Stefan, et al. (författare)
  • A reassessment of the discrepancies in the annual variation of delta D-H2O in the tropical lower stratosphere between the MIPAS and ACE-FTS satellite data sets
  • 2020
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 13:1, s. 287-308
  • Tidskriftsartikel (refereegranskat)abstract
    • The annual variation of delta D in the tropical lower stratosphere is a critical indicator for the relative importance of different processes contributing to the transport of water vapour through the cold tropical tropopause region into the stratosphere. Distinct observational discrepancies of the delta D annual variation were visible in the works of Steinwagner et al. (2010) and Randel et al. (2012). Steinwagner et al. (2010) analysed MIPAS (Michelson Interferometer for Passive Atmospheric Sounding) observations retrieved with the IMK/IAA (Institut fur Meteorologie und Klimaforschung in Karlsruhe, Germany, in collaboration with the Instituto de Astrofisica de Andalucia in Granada, Spain) processor, while Randel et al. (2012) focused on ACE-FTS (Atmospheric Chemistry Experiment Fourier Transform Spectrometer) observations. Here we reassess the discrepancies based on newer MIPAS (IMK/IAA) and ACE-FTS data sets, also showing for completeness results from SMR (Sub-Millimetre Radiometer) observations and a ECHAM/MESSy (European Centre for Medium-Range Weather Forecasts Hamburg and Modular Earth Sub-model System) Atmospheric Chemistry (EMAC) simulation (Eichinger et al., 2015b). Similar to the old analyses, the MIPAS data set yields a pronounced annual variation (maximum about 75 parts per thousand), while that derived from the ACE-FTS data set is rather weak (maximum about 25 parts per thousand). While all data sets exhibit the phase progression typical for the tape recorder, the annual maximum in the ACE-FTS data set precedes that in the MIPAS data set by 2 to 3 months. We critically consider several possible reasons for the observed discrepancies, focusing primarily on the MIPAS data set. We show that the delta D annual variation in the MIPAS data up to an altitude of 40 hPa is substantially impacted by a start altitude effect, i.e. dependency between the lowermost altitude where MIPAS retrievals are possible and retrieved data at higher altitudes. In itself this effect does not explain the differences with the ACE-FTS data. In addition, there is a mismatch in the vertical resolution of the MIPAS HDO and H2O data (being consistently better for HDO), which actually results in an artificial tape-recorder-like signal in delta D. Considering these MIPAS characteristics largely removes any discrepancies between the MIPAS and ACE-FTS data sets and shows that the MIPAS data are consistent with a delta D tape recorder signal with an amplitude of about 25 parts per thousand in the lowermost stratosphere.
  •  
30.
  • Lossow, Stefan, 1977, et al. (författare)
  • A reassessment of the discrepancies in the annual variation of δD-H2O in the tropical lower stratosphere between the MIPAS and ACE-FTS satellite data sets
  • 2020
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 13:1, s. 287-308
  • Tidskriftsartikel (refereegranskat)abstract
    • The annual variation of δD in the tropical lower stratosphere is a critical indicator for the relative importance of different processes contributing to the transport of water vapour through the cold tropical tropopause region into the stratosphere. Distinct observational discrepancies of the δD annual variation were visible in the works of Steinwagner et al. (2010) and Randel et al. (2012). Steinwagner et al. (2010) analysed MIPAS (Michelson Interferometer for Passive Atmospheric Sounding) observations retrieved with the IMK/IAA (Institut für Meteorologie und Klimaforschung in Karlsruhe, Germany, in collaboration with the Instituto de Astrofísica de Andalucía in Granada, Spain) processor, while Randel et al. (2012) focused on ACE-FTS (Atmospheric Chemistry Experiment Fourier Transform Spectrometer) observations. Here we reassess the discrepancies based on newer MIPAS (IMK/IAA) and ACE-FTS data sets, also showing for completeness results from SMR (Sub-Millimetre Radiometer) observations and a ECHAM/MESSy (European Centre for Medium-Range Weather Forecasts Hamburg and Modular Earth Submodel System) Atmospheric Chemistry (EMAC) simulation (Eichinger et al., 2015b). Similar to the old analyses, the MIPAS data set yields a pronounced annual variation (maximum about 75 ‰), while that derived from the ACE-FTS data set is rather weak (maximum about 25 ‰). While all data sets exhibit the phase progression typical for the tape recorder, the annual maximum in the ACE-FTS data set precedes that in the MIPAS data set by 2 to 3 months. We critically consider several possible reasons for the observed discrepancies, focusing primarily on the MIPAS data set. We show that the δD annual variation in the MIPAS data up to an altitude of 40 hPa is substantially impacted by a “start altitude effect”, i.e. dependency between the lowermost altitude where MIPAS retrievals are possible and retrieved data at higher altitudes. In itself this effect does not explain the differences with the ACE-FTS data. In addition, there is a mismatch in the vertical resolution of the MIPAS HDO and H2O data (being consistently better for HDO), which actually results in an artificial tape-recorder-like signal in δD. Considering these MIPAS characteristics largely removes any discrepancies between the MIPAS and ACE-FTS data sets and shows that the MIPAS data are consistent with a δD tape recorder signal with an amplitude of about 25 ‰ in the lowermost stratosphere.
  •  
31.
  • Ludwig Barbosa, Vinícius, 1990-, et al. (författare)
  • Detection and localization of F-layer ionospheric irregularities with the back-propagation method along the radio occultation ray path
  • 2023
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus Publications. - 1867-1381 .- 1867-8548. ; 16:7, s. 1849-1864
  • Tidskriftsartikel (refereegranskat)abstract
    • The back propagation (BP) method consists of diffractive integrals computed over a trajectory path, projecting a signal to different planes. It unwinds the diffraction and multipath, resulting in minimum disturbance on the BP amplitude when the auxiliary plane coincides with the region causing the diffraction. The method has been previously applied in GNSS Radio Occultation (RO) measurements showing promising results in the location estimate of ionospheric irregularities but without complementary data to validate the estimation. In this study, we investigate with wave optics propagator (WOP) simulations of an equatorial C/NOFS occultation with scintillation signatures caused by an equatorial plasma bubble (EPB), which was parametrized with aid of collocated data. In addition, a few more test cases were designed to assess the BP method regarding size, intensity and placement of single and multiple irregularity regions. The results show a location estimate accuracy of 10 km (single bubble, reference case), where in multiple bubble scenarios only the strongest disturbance would be resolved properly. The minimum detectable disturbance level and the estimation accuracy depend on the receiver noise level, and in the case of several bubbles on the distance between them. The remarks of the evaluation supported the interpretation of results for two COSMIC occultations.
  •  
32.
  • McCusker, Karina, et al. (författare)
  • The first microwave and submillimetre closure study using particle models of oriented ice hydrometeors to simulate polarimetric measurements of ice clouds
  • 2024
  • Ingår i: Atmospheric Measurement Techniques. - 1867-1381 .- 1867-8548. ; 17:11, s. 3533-3552
  • Tidskriftsartikel (refereegranskat)abstract
    • The first closure study involving passive microwave and submillimetre measurements of ice clouds with the consideration of oriented particles is presented, using a unique combination of polarised observations from the ISMAR spectral-like radiometer, two radars with frequencies of 35 and 95GHz, and a variety of in situ instruments. Of particular interest to this study are the large V-H polarised brightness temperature differences measured from ISMAR above a thick frontal ice cloud. Previous studies combining radar and passive submillimetre measurements have not considered polarisation differences. Moreover, they have assumed particle habits a priori. We aim to test whether the large V-H measurements can be simulated successfully by using an atmospheric model consistent with in situ microphysics. An atmospheric model is constructed using information from the in situ measurements, such as the ice water content, the particle size distribution, and the mass and shape of particles, as well as background information obtained from dropsonde profiles. Columnar and dendritic aggregate particle models are generated specifically for this case, and their scattering properties are calculated using the independent monomer approximation under the assumption of horizontal orientation. The scattering properties are used to perform polarised radiative transfer simulations using ARTS to test whether we can successfully simulate the measured large V-H differences. Radar measurements are used to extrapolate the 1-D microphysical profile to derive a time series of particle size distributions which are used to simulate ISMAR brightness temperatures. These simulations are compared to the observations. It is found that particle models that are consistent with in situ microphysics observations are capable of reproducing the brightness temperature depression and polarisation signature measured from ISMAR at the dual-polarised channel of 243GHz. However, it was required that a proportion of the particles were changed in order to increase the V-H polarised brightness temperature differences. Thus, we incorporated millimetre-sized dendritic crystals, as these particles were observed in the probe imagery. At the second dual-polarised channel of 664GHz, the brightness temperature depressions were generally simulated at the correct locations; however, the simulated V-H was too large. This work shows that multi-frequency polarisation information could be used to infer realistic particle shapes, orientations, and representations of the split between single crystals and aggregates within the cloud.
  •  
33.
  • Mellqvist, Johan, 1965, et al. (författare)
  • An uncertainty methodology for solar occultation flux measurements: ammonia emissions from livestock production
  • 2024
  • Ingår i: Atmospheric Measurement Techniques. - 1867-1381 .- 1867-8548. ; 17:8, s. 2465-2479
  • Tidskriftsartikel (refereegranskat)abstract
    • Ammonia (NH3/ emissions can negatively affect ecosystems and human health, so they should be monitored and mitigated. This study presents methodology for the estimation of uncertainties in NH3 emissions measurements using the solar occultation flux (SOF) method. The reactive nature of NH3 makes its measurement challenging, but SOF offers a reliable open-path passive method which utilizes solar spectrum data, thereby avoiding gas adsorption within the instrument. To compute NH3 gas fluxes, horizontal and vertical wind speed profiles, as well as plume height estimates and spatially resolved column measurements, are integrated. A unique aspect of this work is the first-time description of plume height estimations derived from ground and column NH3 concentration measurements aimed at uncertainty reduction. Initial validation tests indicated measurement errors between -31 % and C14 % on average, which was slightly larger than the estimated expanded uncertainty ranging from ± 12 % to ± 17 %. Application of the methodology to assess emission rates from farms of various sizes showed uncertainties between ± 21 % and ± 37 %, generally influenced by systematic wind uncertainties and random errors. The method demonstrates the capacity to measure NH3 emissions from both small (~ 0.5 1 kg h-1/ and large (~ 100 kg h-1/ sources in high-density farming areas. Generally, the SOF method provided an expanded uncertainty below 30 % in measuring NH3 emissions from livestock production, which could be further improved by adhering to best application practices. This paper s findings offer the potential for broader applications, such as measuring NH3 fluxes from fertilized fields and in the oil and gas sector. However, these applications would require further research to adapt and refine the methodologies for these specific contexts.
  •  
34.
  • Ning, Tong, 1975, et al. (författare)
  • High temporal resolution wet delay gradients estimated from multi-GNSS and microwave radiometer observations
  • 2021
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 14:8, s. 5593-5605
  • Tidskriftsartikel (refereegranskat)abstract
    • We have used 1 year of multi-GNSS observations at the Onsala Space Observatory on the Swedish west coast to estimate the linear horizontal gradients in the wet propagation delay. The estimated gradients are compared to the corresponding ones from a microwave radiometer. We have investigated different temporal resolutions from 5 min to 1 d. Relative to the GPS-only solution and using an elevation cutoff angle of 10 and a temporal resolution of 5 min, the improvement obtained for the solution using GPS, Glonass, and Galileo data is an increase in the correlation coefficient of 11 % for the east gradient and 20 % for the north gradient. Out of all the different GNSS solutions, the highest correlation is obtained for the east gradients and a resolution of 2 h, while the best agreement for the north gradients is obtained for 6 h. The choice of temporal resolution is a compromise between getting a high correlation and the possibility of detecting rapid changes in the gradient. Due to the differences in geometry of the observations, gradients which happen suddenly are either not captured at all or captured but with much less amplitude by the GNSS data. When a weak constraint is applied in the estimation of process, the GNSS data have an improved ability to track large gradients, however, at the cost of increased formal errors.
  •  
35.
  • Ohata, Sho, et al. (författare)
  • Estimates of mass absorption cross sections of black carbon for filter-based absorption photometers in the Arctic
  • 2021
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 14:10, s. 6723-6748
  • Tidskriftsartikel (refereegranskat)abstract
    • Long-term measurements of atmospheric mass concentrations of black carbon (BC) are needed to investigate changes in its emission, transport, and deposition. However, depending on instrumentation, parameters related to BC such as aerosol absorption coefficient (babs) have been measured instead. Most ground-based measurements of babs in the Arctic have been made by filter-based absorption photometers, including particle soot absorption photometers (PSAPs), continuous light absorption photometers (CLAPs), Aethalometers, and multi-angle absorption photometers (MAAPs). The measured babs can be converted to mass concentrations of BC (MBC) by assuming the value of the mass absorption cross section (MAC; MBC= babs/ MAC). However, the accuracy of conversion of babs to MBC has not been adequately assessed. Here, we introduce a systematic method for deriving MAC values from babs measured by these instruments and independently measured MBC. In this method, MBC was measured with a filter-based absorption photometer with a heated inlet (COSMOS). COSMOS-derived MBC (MBC (COSMOS)) is traceable to a rigorously calibrated single particle soot photometer (SP2), and the absolute accuracy of MBC (COSMOS) has been demonstrated previously to be about 15 % in Asia and the Arctic. The necessary conditions for application of this method are a high correlation of the measured babs with independently measured MBC and long-term stability of the regression slope, which is denoted as MACcor (MAC derived from the correlation). In general, babs–MBC (COSMOS) correlations were high (r2= 0.76–0.95 for hourly data) at Alert in Canada, Ny-Ålesund in Svalbard, Barrow (NOAA Barrow Observatory) in Alaska, Pallastunturi in Finland, and Fukue in Japan and stable for up to 10 years. We successfully estimated MACcor values (10.8–15.1 m2 g−1 at a wavelength of 550 nm for hourly data) for these instruments, and these MACcor values can be used to obtain error-constrained estimates of MBC from babs measured at these sites even in the past, when COSMOS measurements were not made. Because the absolute values of MBC at these Arctic sites estimated by this method are consistent with each other, they are applicable to the study of spatial and temporal variation in MBC in the Arctic and to evaluation of the performance of numerical model calculations.
  •  
36.
  • Pfreundschuh, Simon, 1989, et al. (författare)
  • An improved near-real-Time precipitation retrieval for Brazil
  • 2022
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 15:23, s. 6907-6933
  • Tidskriftsartikel (refereegranskat)abstract
    • Observations from geostationary satellites can provide spatially continuous coverage at continental scales with high spatial and temporal resolution. Because of this, they are commonly used to complement ground-based precipitation measurements, whose coverage is often more limited. We present Hydronn, a neural-network-based, near-real-Time precipitation retrieval for Brazil based on visible and infrared (Vis-IR) observations from the Advanced Baseline Imager (ABI) on the Geostationary Operational Environmental Satellite 16 (GOES-16). The retrieval, which employs a convolutional neural network to perform Bayesian precipitation retrievals, was developed with the aims of (1) leveraging the full potential of latest-generation geostationary observations and (2) providing probabilistic precipitation estimates with well-calibrated uncertainties. The retrieval is trained using more than 3 years of collocations with combined radar and radiometer retrievals from the Global Precipitation Measurement (GPM) core observatory over South America. The accuracy of instantaneous precipitation estimates is assessed using a separate year of GPM combined retrievals and compared to retrievals from passive microwave (PMW) sensors and HYDRO, the Vis-IR retrieval that is currently in operational use at the Brazilian Institute for Space Research. Using all available channels of the ABI, Hydronn achieves accuracy close to that of state-of-The-Art PMW precipitation retrievals in both precipitation estimation and detection despite the lower information content of the Vis-IR observations. Hourly, daily, and monthly precipitation accumulations are evaluated against gauge measurements for June and December 2020 and compared to HYDRO, the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN) Cloud Classification System (CCS), and the Integrated Multi-satellitE Retrievals for GPM (IMERG). Compared to HYDRO, Hydronn reduces the mean absolute error for hourly accumulations by 21% (22%) compared to HYDRO by 44% (41%) for the mean squared error (MSE) and increases the correlation by 138% (312%) for June (December) 2020. Compared to IMERG, the improvements correspond to 16% (14%), 12% (12%), and 20% (56%), respectively. Furthermore, we show that the probabilistic retrieval is well calibrated against gauge measurements when differences in the distributions of the training data and the gauge measurements are accounted for. Hydronn has the potential to significantly improve near-real-Time precipitation retrievals over Brazil. Furthermore, our results show that precipitation retrievals based on convolutional neural networks (CNNs) that leverage the full range of available observations from latest-generation geostationary satellites can provide instantaneous precipitation estimates with accuracy close to that of state-of-The-Art PMW retrievals. The high temporal resolution of the geostationary observation allows Hydronn to provide more accurate precipitation accumulations than any of the tested conventional precipitation retrievals. Hydronn thus clearly shows the potential of deep-learning-based precipitation retrievals to improve precipitation estimates from currently available satellite imagery.
  •  
37.
  • Pfreundschuh, Simon, 1989, et al. (författare)
  • GPROF-NN: a neural-network-based implementation of the Goddard Profiling Algorithm
  • 2022
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 15:17, s. 5033-5060
  • Tidskriftsartikel (refereegranskat)abstract
    • The Global Precipitation Measurement (GPM) mission measures global precipitation at a temporal resolution of a few hours to enable close monitoring of the global hydrological cycle. GPM achieves this by combining observations from a spaceborne precipitation radar, a constellation of passive microwave (PMW) sensors, and geostationary satellites. The Goddard Profiling Algorithm (GPROF) is used operationally to retrieve precipitation from all PMW sensors of the GPM constellation. Since the resulting precipitation rates serve as input for many of the level 3 retrieval products, GPROF constitutes an essential component of the GPM processing pipeline. This study investigates ways to improve GPROF using modern machine learning methods. We present two neuralnetwork-based, probabilistic implementations of GPROF: GPROF-NN 1D, which (just like the current GPROF implementation) processes pixels individually, and GPROF-NN 3D, which employs a convolutional neural network to incorporate structural information into the retrieval. The accuracy of the retrievals is evaluated using a test dataset consistent with the data used in the development of the GPROF and GPROF-NN retrievals. This allows for assessing the accuracy of the retrieval method isolated from the representativeness of the training data, which remains a major source of uncertainty in the development of precipitation retrievals. Despite using the same input information as GPROF, the GPROF-NN 1D retrieval improves the accuracy of the retrieved surface precipitation for the GPM Microwave Imager (GMI) from 0.079 to 0.059mmh 1 in terms of mean abso- lute error (MAE), from 76.1% to 69.5% in terms of symmetric mean absolute percentage error (SMAPE) and from 0 :797 to 0 :847 in terms of correlation. The improvements for the Microwave Humidity Sounder (MHS) are from 0.085 to 0.061mmh 1 in terms of MAE, from 81% to 70.1% for SMAPE, and from 0 :724 to 0 :804 in terms of correlation. Comparable improvements are found for the retrieved hydrometeor profiles and their column integrals, as well as the detection of precipitation. Moreover, the ability of the retrievals to resolve small-scale variability is improved by more than 40% for GMI and 29% for MHS. The GPROFNN 3D retrieval further improves the MAE to 0.043mmh 1; the SMAPE to 48.67 %; and the correlation to 0:897 for GMI and 0.043mmh 1, 63.42 %, and 0:83 for MHS. Application of the retrievals to GMI observations of Hurricane Harvey shows moderate improvements when compared to co-located GPM-combined and ground-based radar measurements indicating that the improvements at least partially carry over to assessment against independent measurements. Similar retrievals for MHS do not show equally clear improvements, leaving the validation against independent measurements for future investigation. Both GPROF-NN algorithms make use of the same input and output data as the original GPROF algorithm and thus may replace the current implementation in a future update of the GPM processing pipeline. Despite their superior accuracy, the single-core runtime required for the operational processing of an orbit of observations is lower than that of GPROF. The GPROF-NN algorithms promise to be a simple and cost-efficient way to increase the accuracy of the PMW precipitation retrievals of the GPM constellation and thus improve the monitoring of the global hydrological cycle.
  •  
38.
  • Pfreundschuh, Simon, et al. (författare)
  • GPROF V7 and beyond: Assessment of current and potential future versions of the GPROF passive microwave precipitation retrievals against ground radar measurements over the continental US and the Pacific Ocean
  • 2024
  • Ingår i: Atmospheric Measurement Techniques. - 1867-1381 .- 1867-8548. ; 17:2, s. 515-538
  • Tidskriftsartikel (refereegranskat)abstract
    • The Goddard Profiling Algorithm (GPROF) is used operationally for the retrieval of surface precipitation and hydrometeor profiles from the passive microwave (PMW) observations of the Global Precipitation Measurement (GPM) mission. Recent updates have led to GPROF V7, which has entered operational use in May 2022. In parallel, development is underway to improve the retrieval by transitioning to a neural-network-based algorithm called GPROF-NN. This study validates retrievals of liquid precipitation over snow-free and non-mountainous surfaces from GPROF V7 and multiple configurations of GPROF-NN against ground-based radar measurements over the conterminous United States (CONUS) and the tropical Pacific. GPROF retrievals from the GPM Microwave Imager (GMI) are validated over several years, and their ability to reproduce regional precipitation characteristics and effective resolution is assessed. Moreover, the retrieval accuracy for several other sensors of the constellation is evaluated. The validation of GPROF V7 indicates that the retrieval produces reliable estimates of liquid precipitation over the CONUS. During all four assessed years, annual mean precipitation is within 8% of gauge-corrected radar measurements. Although biases of up to 25% are observed over sub-regions of the CONUS and the tropical Pacific, the retrieval reliably reproduces each region's diurnal and seasonal precipitation characteristics. The effective resolution of GPROF V7 is found to be 51km over the CONUS and 18km over the tropical Pacific. GPROF V7 also produces robust precipitation estimates for the other sensors of the GPM constellation. The evaluation further shows that the GPROF-NN retrievals have the potential to significantly improve the GPM PMW precipitation retrievals. GPROF-NN 1D, the most basic neural network implementation of GPROF, improves the mean-squared error, mean absolute error, correlation and symmetric mean absolute percentage error of instantaneous precipitation estimates by about 20% for GPROF GMI while the effective resolution is improved to 31km over land and 15km over oceans. The two GPROF-NN retrievals that are based on convolutional neural networks can further improve the accuracy up to the level of the combined radar-radiometer retrievals from the GPM core observatory. However, these retrievals are found to overfit on the viewing geometry at the center of the swath, reducing their overall accuracy to that of GPROF-NN 1D. For the other sensors of the constellation, the GPROF-NN retrievals produce larger biases than GPROF V7 and only GPROF-NN 3D achieves consistent improvements compared to GPROF V7 in terms of the other assessed error metrics. This points to shortcomings in the hydrometeor profiles or radiative transfer simulations used to generate the training data for the other sensors of the GPM constellation as a critical limitation for improving GPM PMW retrievals.
  •  
39.
  • Pfreundschuh, Simon, 1989, et al. (författare)
  • Synergistic radar and radiometer retrievals of ice hydrometeors
  • 2020
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 13:8, s. 4219-4245
  • Tidskriftsartikel (refereegranskat)abstract
    • Remote sensing observations at sub-millimeter wavelengths provide higher sensitivity to small hydrometeors and low water content than observations at millimeter wavelengths, which are traditionally used to observe clouds and precipitation. They are employed increasingly in field campaigns to study cloud microphysics and will be integrated into the global meteorological observing system to measure the global distribution of ice in the atmosphere with the launch of the Ice Cloud Imager (ICI) radiometer on board the second generation of European operational meteorological satellites (Metop-SG). Observations at these novel wavelengths provide valuable information not only on their own but also in combination with complementary observations at other wavelengths. This study investigates the potential of combining passive sub-millimeter radiometer observations with a hypothetical W-band cloud radar for the retrieval of frozen hydrometeors. An idealized cloud model is used to investigate the information content of the combined observations and establish their capacity to constrain the microphysical properties of ice hydrometeors. A synergistic retrieval algorithm for airborne observations is proposed and applied to simulated observations from a cloud-resolving model. Results from the synergistic retrieval are compared to equivalent radar- and passive-only implementations in order to assess the benefits of the synergistic sensor configuration. The impact of the assumed ice particle shape on the retrieval results is assessed for all retrieval implementations. We find that the combined observations better constrain the microphysical properties of ice hydrometeors, which reduces uncertainties in retrieved ice water content and particle number concentrations for suitable choices of the ice particle model. Analysis of the retrieval information content shows that, although the radar contributes the largest part of the information in the combined retrieval, the radiometer observations provide complementary information over a wide range of atmospheric states. Furthermore, the combined observations yield slightly improved retrievals of liquid cloud water in mixed-phase clouds, pointing towards another potential application of combined radar-radiometer observations.
  •  
40.
  • Pfreundschuh, Simon, 1989, et al. (författare)
  • Synergistic radar and sub-millimeter radiometer retrievals of ice hydrometeors in mid-latitude frontal cloud systems
  • 2022
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 15:3, s. 677-699
  • Tidskriftsartikel (refereegranskat)abstract
    • Accurate measurements of ice hydrometeors are required to improve the representation of clouds and precipitation in weather and climate models. In this study, a newly developed, synergistic retrieval algorithm that combines radar with passive millimeter and sub-millimeter observations is applied to observations of three frontally generated, mid-latitude cloud systems in order to validate the retrieval and assess its capabilities to constrain the properties of ice hydrometeors. To account for uncertainty in the assumed shapes of ice particles, the retrieval is run multiple times while the shape is varied. Good agreement with in situ measurements of ice water content and particle concentrations for particle maximum diameters larger than 200ĝ€¯μm is found for one of the flights for the large plate aggregate and the six-bullet rosette shapes. The variational retrieval fits the observations well, although small systematic deviations are observed for some of the sub-millimeter channels pointing towards issues with the sensor calibration or the modeling of gas absorption. For one of the flights the quality of the fit to the observations exhibits a weak dependency on the assumed ice particle shape, indicating that the employed combination of observations may provide limited information on the shape of ice particles in the observed clouds. Compared to a radar-only retrieval, the results show an improved sensitivity of the synergistic retrieval to the microphysical properties of ice hydrometeors at the base of the cloud. Our findings indicate that the synergy between active and passive microwave observations may improve remote-sensing measurements of ice hydrometeors and thus help to reduce uncertainties that affect currently available data products. Due to the increased sensitivity to their microphysical properties, the retrieval may also be a valuable tool to study ice hydrometeors in field campaigns. The good fits obtained to the observations increase confidence in the modeling of clouds in the Atmospheric Radiative Transfer Simulator and the corresponding single scattering database, which were used to implement the retrieval forward model. Our results demonstrate the suitability of these tools to produce realistic simulations for upcoming sub-millimeter sensors such as the Ice Cloud Image or the Arctic Weather Satellite.
  •  
41.
  • Pineau, Adrien, et al. (författare)
  • Simulations of the collection of mesospheric dust particles with a rocket instrument
  • 2024
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 17:12, s. 3843-3861
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigate the collection of dust particles in the mesosphere with the MESS (MEteoric Smoke Sampler) instrument that is designed to fly on a sounding rocket. We assume that the ice particles that form in the polar mesosphere between 80 and 85 km altitude in summer contain meteoric smoke particles; and these should be collected with MESS. The instrument consists of a collection device with an opening and closure mechanism, as well as an attached conic funnel which increases the sampling area in comparison to the collection area. Dust particles are collected either directly after passing through the instrument or indirectly after colliding with and fragmenting on the funnel wall. We calculate the dust and fragment trajectories in the detector to determine the collection efficiency for different particle sizes, rocket velocities, and heights, and we find the final velocities and the temperatures of the particles. The considered design has a sampling area of 62.78 mm diameter and a collection area of 20 mm diameter. For the conditions at the rocket launch site in And & oslash;ya, Norway, we estimate the collection of meteoric smoke particles contained in the ice particles to be similar to 1012-1014 amumm-2. The estimated temperatures suggest that the composition of these smoke particles is not affected by the collection. Our calculations also show that keeping the instrument open above 85 km altitude increases the amount of small smoke particles that are directly collected. The directly collected smoke particles are heated as they decelerate, which can affect their composition.
  •  
42.
  • Read, William G., et al. (författare)
  • The SPARC Water Vapor Assessment II: assessment of satellite measurements of upper tropospheric humidity
  • 2022
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 15:11, s. 3377-3400
  • Tidskriftsartikel (refereegranskat)abstract
    • Nineteen limb-viewing data sets (occultation, passive thermal, and UV scattering) and two nadir upper tropospheric humidity (UTH) data sets are intercompared and also compared to frost-point hygrometer balloon sondes. The upper troposphere considered here covers the pressure range from 300-100 hPa. UTH is a challenging measurement, because concentrations vary between 2-1000 ppmv (parts per million by volume), with sharp changes in vertical gradients near the tropopause. Cloudiness in this region also makes the measurement challenging. The atmospheric temperature is also highly variable ranging from 180-250 K. The assessment of satellite-measured UTH is based on coincident comparisons with balloon frost-point hygrometer sondes, multi-month mapped comparisons, zonal mean time series comparisons, and coincident satellite-to-satellite comparisons. While the satellite fields show similar features in maps and time series, quantitatively they can differ by a factor of 2 in concentration, with strong dependencies on the amount of UTH. Additionally, time-lag response-corrected Vaisala RS92 radiosondes are compared to satellites and the frost-point hygrometer measurements. In summary, most satellite data sets reviewed here show on average similar to 30 % agreement amongst themselves and frost-point data but with an additional similar to 30 % variability about the mean bias. The Vaisala RS92 sonde, even with a time-lag correction, shows poor behavior for pressures less than 200 hPa.
  •  
43.
  • Resovsky, Alex, et al. (författare)
  • An algorithm to detect non-background signals in greenhouse gas time series from European tall tower and mountain stations
  • 2021
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 14:9, s. 6119-6135
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a statistical framework to identify regional signals in station-based CO2 time series with minimal local influence. A curve-fitting function is first applied to the detrended time series to derive a harmonic describing the annual CO2 cycle. We then combine a polynomial fit to the data with a short-term residual filter to estimate the smoothed cycle and define a seasonally adjusted noise component, equal to 2 standard deviations of the smoothed cycle about the annual cycle. Spikes in the smoothed daily data which surpass this ±2σ threshold are classified as anomalies. Examining patterns of anomalous behavior across multiple sites allows us to quantify the impacts of synoptic-scale atmospheric transport events and better understand the regional carbon cycling implications of extreme seasonal occurrences such as droughts.
  •  
44.
  • Sandvik, Oscar S., et al. (författare)
  • Methodology to obtain highly resolved SO2 vertical profiles for representation of volcanic emissions in climate models
  • 2021
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 14:11, s. 7153-7165
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study we describe a methodology to create high-vertical-resolution SO2 profiles from volcanic emissions. We demonstrate the method's performance for the volcanic clouds following the eruption of Sarychev in June 2009. The resulting profiles are based on a combination of satellite SO2 and aerosol retrievals together with trajectory modelling. We use satellite-based measurements, namely lidar backscattering profiles from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) satellite instrument, to create vertical profiles for SO2 swaths from the Atmospheric Infrared Sounder (AIRS) aboard the Aqua satellite. Vertical profiles are created by transporting the air containing volcanic aerosol seen in CALIOP observations using the FLEXible PARTicle dispersion model (FLEXPART) while preserving the high vertical resolution using the potential temperatures from the MERRA-2 (Modern-Era Retrospective analysis for Research and Application) meteorological data for the original CALIOP swaths. For the Sarychev eruption, air tracers from 75 CALIOP swaths within 9g d after the eruption are transported forwards and backwards and then combined at a point in time when AIRS swaths cover the complete volcanic SO2 cloud. Our method creates vertical distributions for column density observations of SO2 for individual AIRS swaths, using height information from multiple CALIOP swaths. The resulting dataset gives insight into the height distribution in the different sub-clouds of SO2 within the stratosphere. We have compiled a gridded high-vertical-resolution SO2 inventory that can be used in Earth system models, with a vertical resolution of 1g K in potential temperature, 61g g 56g m, or 1.8g g 2.9g mbar.
  •  
45.
  • Sha, Mahesh Kumar, et al. (författare)
  • Validation of methane and carbon monoxide from Sentinel-5 Precursor using TCCON and NDACC-IRWG stations
  • 2021
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 14:9, s. 6249-6304
  • Tidskriftsartikel (refereegranskat)abstract
    • The Sentinel-5 Precursor (S5P) mission with the TROPOspheric Monitoring Instrument (TROPOMI) on board has been measuring solar radiation backscattered by the Earth's atmosphere and surface since its launch on 13 October 2017. In this paper, we present for the first time the S5P operational methane (CH4) and carbon monoxide (CO) products' validation results covering a period of about 3 years using global Total Carbon Column Observing Network (TCCON) and Infrared Working Group of the Network for the Detection of Atmospheric Composition Change (NDACC-IRWG) network data, accounting for a priori alignment and smoothing uncertainties in the validation, and testing the sensitivity of validation results towards the application of advanced co-location criteria. We found that the S5P standard and bias-corrected CH4 data over land surface for the recommended quality filtering fulfil the mission requirements. The systematic difference of the bias-corrected total column-averaged dry air mole fraction of methane (XCH4) data with respect to TCCON data is -0.26 +/- 0.56 % in comparison to -0.68 +/- 0.74 % for the standard XCH4 data, with a correlation of 0.6 for most stations. The bias shows a seasonal dependence. We found that the S5P CO data over all surfaces for the recommended quality filtering generally fulfil the missions requirements, with a few exceptions, which are mostly due to co-location mismatches and limited availability of data. The systematic difference between the S5P total column-averaged dry air mole fraction of carbon monoxide (XCO) and the TCCON data is on average 9.22 +/- 3.45 % (standard TCCON XCO) and 2.45 +/- 3.38 % (unscaled TCCON XCO). We found that the systematic difference between the S5P CO column and NDACC CO column (excluding two outlier stations) is on average 6.5 +/- 3.54 %. We found a correlation of above 0.9 for most TCCON and NDACC stations. The study shows the high quality of S5P CH4 and CO data by validating the products against reference global TCCON and NDACC stations covering a wide range of latitudinal bands, atmospheric conditions and surface conditions.
  •  
46.
  • Sheese, Patrick E., et al. (författare)
  • Assessment of the quality of ACE-FTS stratospheric ozone data
  • 2022
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 15:5, s. 1233-1249
  • Tidskriftsartikel (refereegranskat)abstract
    • For the past 17 years, the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) instrument on the Canadian SCISAT satellite has been measuring profiles of atmospheric ozone. The latest operational versions of the level 2 ozone data are versions 3.6 and 4.1. This study characterizes how both products compare with correlative data from other limb-sounding satellite instruments, namely MAESTRO, MLS, OSIRIS, SABER, and SMR. In general, v3.6, with respect to the other instruments, exhibits a smaller bias (which is on the order of similar to 3 %) in the middle stratosphere than v4.1 (similar to 2 %-9 %); however, the bias exhibited in the v4.1 data tends to be more stable, i.e. not changing significantly over time in any altitude region. In the lower stratosphere, v3.6 has a positive bias of about 3 %-5 % that is stable to within +/- 1 % per decade, and v4.1 has a bias on the order of -1 % to +5 % and is also stable to within +/- 1 % per decade. In the middle stratosphere, v3.6 has a positive bias of similar to 3 % with a significant negative drift on the order of 0.5 %-2.5 % per decade, and v4.1 has a positive bias of 2 %-9 % that is stable to within +/- 0.5 % per decade. In the upper stratosphere, v3.6 has a positive bias that increases with altitude up to similar to 16 % and a significant negative drift on the order of 2 %-3 % per decade, and v4.1 has a positive bias that increases with altitude up to similar to 15 % and is stable to within +/- 1 % per decade. Estimates indicate that both versions 3.6 and 4.1 have precision values on the order of 0.1-0.2 ppmv below 20 km and above 45 km (similar to 5 %-10 %, depending on altitude). Between 20 and 45 km, the estimated v3.6 precision of similar to 4 %-6 % is better than the estimated v4.1 precision of similar to 6 %-10 %.
  •  
47.
  • von Clarmann, Thomas, et al. (författare)
  • Overview: Estimating and reporting uncertainties in remotely sensed atmospheric composition and temperature
  • 2020
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 13:8, s. 4393-4436
  • Tidskriftsartikel (refereegranskat)abstract
    • Remote sensing of atmospheric state variables typically relies on the inverse solution of the radiative transfer equation. An adequately characterized retrieval provides information on the uncertainties of the estimated state variables as well as on how any constraint or a priori assumption affects the estimate. Reported characterization data should be intercomparable between different instruments, empirically validatable, grid-independent, usable without detailed knowledge of the instrument or retrieval technique, traceable and still have reasonable data volume. The latter may force one to work with representative rather than individual characterization data. Many errors derive from approximations and simplifications used in real-world retrieval schemes, which are reviewed in this paper, along with related error estimation schemes. The main sources of uncertainty are measurement noise, calibration errors, simplifications and idealizations in the radiative transfer model and retrieval scheme, auxiliary data errors, and uncertainties in atmospheric or instrumental parameters. Some of these errors affect the result in a random way, while others chiefly cause a bias or are of mixed character. Beyond this, it is of utmost importance to know the influence of any constraint and prior information on the solution. While different instruments or retrieval schemes may require different error estimation schemes, we provide a list of recommendations which should help to unify retrieval error reporting.
  •  
48.
  • Yver-kwok, Camille, et al. (författare)
  • Evaluation and optimization of ICOS atmosphere station data as part of the labeling process
  • 2021
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-8548 .- 1867-1381. ; 14:1, s. 89-116
  • Tidskriftsartikel (refereegranskat)abstract
    • The Integrated Carbon Observation System (ICOS) is a pan-European research infrastructure which provides harmonized and high-precision scientific data on the carbon cycle and the greenhouse gas budget. All stations have to undergo a rigorous assessment before being labeled, i.e., receiving approval to join the network. In this paper, we present the labeling process for the ICOS atmosphere network through the 23 stations that were labeled between November 2017 and November 2019. We describe the labeling steps, as well as the quality controls, used to verify that the ICOS data (CO2, CH4, CO and meteorological measurements) attain the expected quality level defined within ICOS. To ensure the quality of the greenhouse gas data, three to four calibration gases and two target gases are measured: one target two to three times a day, the other gases twice a month. The data are verified on a weekly basis, and tests on the station sampling lines are performed twice a year. From these high-quality data, we conclude that regular calibrations of the CO2, CH4 and CO analyzers used here (twice a month) are important in particular for carbon monoxide (CO) due to the analyzer's variability and that reducing the number of calibration injections (from four to three) in a calibration sequence is possible, saving gas and extending the calibration gas lifespan. We also show that currently, the on-site water vapor correction test does not deliver quantitative results possibly due to environmental factors. Thus the use of a drying system is strongly recommended. Finally, the mandatory regular intake line tests are shown to be useful in detecting artifacts and leaks, as shown here via three different examples at the stations.
  •  
49.
  • Castarède, Dimitri, et al. (författare)
  • Development and characterization of the Portable Ice Nucleation Chamber 2 (PINCii)
  • 2023
  • Ingår i: Atmospheric Measurement Techniques. - 1867-1381. ; 16:16, s. 3881-3899
  • Tidskriftsartikel (refereegranskat)abstract
    • The Portable Ice Nucleation Chamber 2 (PINCii) is a newly developed continuous flow diffusion chamber (CFDC) for measuring ice nucleating particles (INPs). PINCii is a vertically oriented parallel-plate CFDC that has been engineered to improve upon the limitations of previous generations of CFDCs. This work presents a detailed description of the PINCii instrument and the upgrades that make it unique compared with other operational CFDCs. The PINCii design offers several possibilities for improved INP measurements. Notably, a specific icing procedure results in low background particle counts, which demonstrates the potential for PINCii to measure INPs at low concentrations ( < 10 L (-1)). High-spatial-resolution wall-temperature mapping enables the identification of temperature inhomogeneities on the chamber walls. This feature is used to introduce and discuss a new method for analyzing CFDC data based on the most extreme lamina conditions present within the chamber, which represent conditions most likely to trigger ice nucleation. A temperature gradient can be maintained throughout the evaporation section in addition to the main chamber, which enables PINCii to be used to study droplet activation processes or to extend ice crystal growth. A series of both liquid droplet activation and ice nucleation experiments were conducted at temperature and saturation conditions that span the spectrum of PINCii's operational conditions ( 50 <= temperature <= 15 degrees C and 100 <= relative humidity with respect to ice <= 160 %) to demonstrate the instrument's capabilities. In addition, typical sources of uncertainty in CFDCs, including particle background, particle loss, and variations in aerosol lamina temperature and relative humidity, are quantified and discussed for PINCii.
  •  
50.
  • Haszpra, Laszlo, et al. (författare)
  • Real-world wintertime CO, N2O, and CO2 emissions of a central European village
  • 2022
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-8548. ; 15:17, s. 5019-5031
  • Tidskriftsartikel (refereegranskat)abstract
    • Although small rural settlements are only minor individual sources of greenhouse gases and air pollution, their high overall occurrence can significantly contribute to the total emissions of a region or country. Emissions from a rural lifestyle may be remarkably different than those of urban and industrialized regions, but nevertheless they have hardly been studied so far. Here, flux measurements at a tall-tower eddy covariance monitoring site and the footprint model FFP are used to determine the real-world wintertime CO, N2O, and CO2 emissions of a small village in western Hungary. The recorded emission densities, dominantly resulting from residential heating, are 3.5, 0.043, and 72 μg m-2 s-1 for CO, N2O, and CO2, respectively. While the measured CO and CO2 emissions are comparable to those calculated using the assumed energy consumption and applying the according emission factors, the nitrous oxide emissions exceed the expected value by a magnitude. This may indicate that the nitrous oxide emissions are significantly underestimated in the emission inventories, and modifications in the methodology of emission calculations are necessary. Using a three-dimensional forward transport model, we further show that, in contrast to the flux measurements, the concentration measurements at the regional background monitoring site are only insignificantly influenced by the emissions of the nearby village.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 52
Typ av publikation
tidskriftsartikel (51)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (52)
Författare/redaktör
Eriksson, Patrick, 1 ... (19)
Pfreundschuh, Simon, ... (8)
Murtagh, Donal, 1959 (7)
Mellqvist, Johan, 19 ... (4)
Ekelund, Robin Nils, ... (4)
Conil, Sebastien (3)
visa fler...
Kiefer, M. (3)
Perot, Kristell, 198 ... (3)
Schneider, Matthias (3)
Kero, Johan (3)
Steinbacher, Martin (3)
Rydberg, Bengt (3)
Khosrawi, Farahnaz (2)
Zieger, Paul (2)
Krejci, Radovan (2)
Walker, K. A. (2)
Buehler, S. A. (2)
Kivi, Rigel (2)
Langerock, Bavo (2)
Ramonet, Michel (2)
Tunved, Peter (2)
Kulmala, Markku (2)
Amell Tosas, Adrià, ... (2)
Mohr, Claudia (2)
Mölder, Meelis (2)
Backman, John (2)
Asmi, Eija (2)
Sharma, Sangeeta (2)
Eleftheriadis, Konst ... (2)
Khosrawi, F. (2)
Kubistin, Dagmar (2)
Heliasz, Michal (2)
Lindauer, Matthias (2)
Mammarella, Ivan (2)
Griffith, David W.T. (2)
Heikkinen, Pauli (2)
Jeseck, Pascal (2)
Morino, Isamu (2)
Nagahama, Tomoo (2)
Ortega, Ivan (2)
Palm, Mathias (2)
Robinson, John (2)
Smale, Dan (2)
Té, Yao (2)
Brath, M. (2)
Andrews, Elisabeth (2)
Lossow, Stefan (2)
Riese, Martin (2)
Kummerow, Christian ... (2)
Clarmann, T. von (2)
visa färre...
Lärosäte
Chalmers tekniska högskola (29)
Stockholms universitet (9)
Lunds universitet (6)
Göteborgs universitet (5)
Umeå universitet (2)
Kungliga Tekniska Högskolan (1)
visa fler...
Luleå tekniska universitet (1)
Blekinge Tekniska Högskola (1)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (52)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (51)
Teknik (16)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy