SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1942 2466 srt2:(2019)"

Sökning: L773:1942 2466 > (2019)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • He, J., et al. (författare)
  • Development and Evaluation of an Ensemble-Based Data Assimilation System for Regional Reanalysis Over the Tibetan Plateau and Surrounding Regions
  • 2019
  • Ingår i: Journal of Advances in Modeling Earth Systems. - 1942-2466. ; 11:8, s. 2503-2522
  • Tidskriftsartikel (refereegranskat)abstract
    • The Tibetan Plateau is regarded as the Earth's Third Pole, which is the source region of several major rivers that impact more 20% the world population. This high‐altitude region is reported to have been undergoing much greater rate of weather changes under global warming, but the existing reanalysis products are inadequate for depicting the state of the atmosphere, particularly with regard to the amount of precipitation and its diurnal cycle. An ensemble Kalman filter (EnKF) data assimilation system based on the limited‐area Weather Research and Forecasting (WRF) model was evaluated for use in developing a regional reanalysis over the Tibetan Plateau and the surrounding regions. A 3‐month prototype reanalysis over the summer months (June−August) of 2015 using WRF‐EnKF at a 30‐km grid spacing to assimilate nonradiance observations from the Global Telecommunications System was developed and evaluated against independent sounding and satellite observations in comparison to the ERA‐Interim and fifth European Centre for Medium‐Range Weather Forecasts Reanalysis (ERA5) global reanalysis. Results showed that both the posterior analysis and the subsequent 6‐ to 12‐hr WRF forecasts of the prototype regional reanalysis compared favorably with independent sounding observations, satellite‐based precipitation versus those from ERA‐Interim and ERA5 during the same period. In particular, the prototype regional reanalysis had clear advantages over the global reanalyses of ERA‐Interim and ERA5 in the analysis accuracy of atmospheric humidity, as well as in the subsequent downscale‐simulated precipitation intensity, spatial distribution, diurnal evolution, and extreme occurrence.
  •  
2.
  • Mauritsen, Thorsten, et al. (författare)
  • Developments in the MPI-M Earth System Model version 1.2 (MPI-ESM1.2) and Its Response to Increasing CO2
  • 2019
  • Ingår i: Journal of Advances in Modeling Earth Systems. - 1942-2466. ; 11:4, s. 998-1038
  • Tidskriftsartikel (refereegranskat)abstract
    • A new release of the Max Planck Institute for Meteorology Earth System Model version 1.2 (MPI-ESM1.2) is presented. The development focused on correcting errors in and improving the physical processes representation, as well as improving the computational performance, versatility, and overall user friendliness. In addition to new radiation and aerosol parameterizations of the atmosphere, several relatively large, but partly compensating, coding errors in the model's cloud, convection, and turbulence parameterizations were corrected. The representation of land processes was refined by introducing a multilayer soil hydrology scheme, extending the land biogeochemistry to include the nitrogen cycle, replacing the soil and litter decomposition model and improving the representation of wildfires. The ocean biogeochemistry now represents cyanobacteria prognostically in order to capture the response of nitrogen fixation to changing climate conditions and further includes improved detritus settling and numerous other refinements. As something new, in addition to limiting drift and minimizing certain biases, the instrumental record warming was explicitly taken into account during the tuning process. To this end, a very high climate sensitivity of around 7 K caused by low-level clouds in the tropics as found in an intermediate model version was addressed, as it was not deemed possible to match observed warming otherwise. As a result, the model has a climate sensitivity to a doubling of CO2 over preindustrial conditions of 2.77 K, maintaining the previously identified highly nonlinear global mean response to increasing CO2 forcing, which nonetheless can be represented by a simple two-layer model. 
  •  
3.
  • Morel, X., et al. (författare)
  • A New Process-Based Soil Methane Scheme : Evaluation Over Arctic Field Sites With the ISBA Land Surface Model
  • 2019
  • Ingår i: Journal of Advances in Modeling Earth Systems. - 1942-2466. ; 11:1, s. 293-326
  • Tidskriftsartikel (refereegranskat)abstract
    • Permafrost soils and arctic wetlands methane emissions represent an important challenge for modeling the future climate. Here we present a process-based model designed to correctly represent the main thermal, hydrological, and biogeochemical processes related to these emissions for general land surface modeling. We propose a new multilayer soil carbon and gas module within the Interaction Soil-Biosphere-Atmosphere (ISBA) land-surface model (LSM). This module represents carbon pools, vertical carbon dynamics, and both oxic and anoxic organic matter decomposition. It also represents the soil gas processes for CH4, CO2, and O2 through the soil column. We base CH4 production and oxydation on an O2 control instead of the classical water table level strata approach used in state-of-the-art soil CH4 models. We propose a new parametrization of CH4 oxydation using recent field experiments and use an explicit O2 limitation for soil carbon decomposition. Soil gas transport is computed explicitly, using a revisited formulation of plant-mediated transport, a new representation of gas bulk diffusivity in porous media closer to experimental observations, and an innovative advection term for ebullition. We evaluate this advanced model on three climatically distinct sites : two in Greenland (Nuuk and Zackenberg) and one in Siberia (Chokurdakh). The model realistically reproduces methane and carbon dioxide emissions from both permafrosted and nonpermafrosted sites. The evolution and vertical characteristics of the underground processes leading to these fluxes are consistent with current knowledge. Results also show that physics is the main driver of methane fluxes, and the main source of variability appears to be the water table depth.
  •  
4.
  • Nilsson, Mats (författare)
  • PEAT-CLSM: A Specific Treatment of Peatland Hydrology in the NASA Catchment Land Surface Model
  • 2019
  • Ingår i: Journal of advances in modeling earth systems. - 1942-2466. ; 11, s. 2130-2162
  • Tidskriftsartikel (refereegranskat)abstract
    • Peatlands are poorly represented in global Earth system modeling frameworks. Here we add a peatland-specific land surface hydrology module (PEAT-CLSM) to the Catchment Land Surface Model (CLSM) of the NASA Goddard Earth Observing System (GEOS) framework. The amended TOPMODEL approach of the original CLSM that uses topography characteristics to model catchment processes is discarded, and a peatland-specific model concept is realized in its place. To facilitate its utilization in operational GEOS efforts, PEAT-CLSM uses the basic structure of CLSM and the same global input data. Parameters used in PEAT-CLSM are based on literature data. A suite of CLSM and PEAT-CLSM simulations for peatland areas between 40 degrees N and 75 degrees N is presented and evaluated against a newly compiled data set of groundwater table depth and eddy covariance observations of latent and sensible heat fluxes in natural and seminatural peatlands. CLSM's simulated groundwater tables are too deep and variable, whereas PEAT-CLSM simulates a mean groundwater table depth of -0.20 m (snow-free unfrozen period) with moderate temporal fluctuations (standard deviation of 0.10 m), in significantly better agreement with in situ observations. Relative to an operational CLSM version that simply includes peat as a soil class, the temporal correlation coefficient is increased on average by 0.16 and reaches 0.64 for bogs and 0.66 for fens when driven with global atmospheric forcing data. In PEAT-CLSM, runoff is increased on average by 38% and evapotranspiration is reduced by 19%. The evapotranspiration reduction constitutes a significant improvement relative to eddy covariance measurements.
  •  
5.
  • Retsch, M. H., et al. (författare)
  • Climate Change Feedbacks in Aquaplanet Experiments With Explicit and Parametrized Convection for Horizontal Resolutions of 2,525 Up to 5 km
  • 2019
  • Ingår i: Journal of Advances in Modeling Earth Systems. - 1942-2466. ; 11:7, s. 2070-2088
  • Tidskriftsartikel (refereegranskat)abstract
    • Earth's equilibrium climate sensitivity (ECS) is the long-term response to doubled atmospheric CO2 and likely between 1.5 and 4.5 K. Conventional general circulation models do not convincingly narrow down this range, and newly developed nonhydrostatic models with relatively fine horizontal resolutions of a few kilometers have thus far delivered diverse results. Here we use the nonhydrostatic ICON model with the physics package normally used for climate simulations at resolutions as fine as 5 km to study the response to a uniform surface warming in an aquaplanet configuration. We apply the model in two setups: one with convection parametrization employed and one with explicit convection. ICON exhibits a negative total feedback independent of convective representation, thus providing a stable climate with an ECS comparable to other general circulation models, though three interesting new results are found. First, ECS varies little across resolution for both setups but runs with explicit convection have systematically lower ECS than the parametrized case, mainly due to more negative tropical clear-sky longwave feedbacks. These are a consequence of a drier mean state of about 6% relative humidity for explicit convection and less midtropospheric moistening with global warming. Second, shortwave feedbacks switch from positive to negative with increasing resolution, originating foremost in the tropics and high latitudes. Third, the model shows no discernible high cloud area feedback (iris effect) in any configuration. It is possible that ICON's climate model parametrizations applied here are less appropriate for cloud resolving scales, and therefore, ongoing developments aim at implementing a more advanced prognostic cloud microphysics scheme.
  •  
6.
  • Wu, Lichuan, et al. (författare)
  • Ocean‐Wave‐Atmosphere Interaction Processes in a Fully Coupled Modeling System
  • 2019
  • Ingår i: Journal of Advances in Modeling Earth Systems. - 1942-2466. ; 11:11, s. 3852-3874
  • Tidskriftsartikel (refereegranskat)abstract
    • A high‐resolution coupled ocean‐wave‐atmosphere model (Uppsala University Coupled model, UU‐CM) of the Baltic Sea and the North Sea with improved representation of ocean‐wave‐atmosphere interaction processes is presented. In the UU‐CM model, the stress on the air‐sea interface is estimated as a balance of four stress terms, that is, the air‐side stress, ocean‐side stress, wave‐supported stress (absorption of momentum by the wave field), and the momentum flux from waves to currents (breaking waves). The vector differences between these four stress terms are considered in the coupled system. The turbulent kinetic energy flux induced by wave breaking, the Stokes‐Coriolis force and the Stokes drift material advection terms are added to the ocean circulation model component. Based on two‐month‐long (January and July) simulations, we find that the ocean‐wave‐atmosphere coupling has a significant influence on coastal areas. The coupled system captures the influence of surface currents and local systems such as coastal upwelling and their impact on the atmosphere. The wave‐current interaction enhances the upper ocean mixing and reduces the sea surface temperature in July significantly. However, the pattern of the wave‐current processes influences on the ocean current and waves are complex due to the stress differences in both magnitude and direction.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy