SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:2050 7496 OR L773:2050 7488 srt2:(2020-2024)"

Sökning: L773:2050 7496 OR L773:2050 7488 > (2020-2024)

  • Resultat 1-50 av 146
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abazari, R., et al. (författare)
  • High specific capacitance of a 3D-metal-organic framework-confined growth in CoMn2O4nanostars as advanced supercapacitor electrode materials
  • 2021
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry. - 2050-7488 .- 2050-7496. ; 9:17, s. 11001-11012
  • Tidskriftsartikel (refereegranskat)abstract
    • In the presence of fossil fuels, several environmental concerns, such as energy shortage, environmental pollution, and global warming may occur in the present century. In this respect, supercapacitors have been introduced as green energy storage systems playing a central role in providing a sustainable human society. In this work, an advanced strategy was initially demonstrated through various synergistic effects to synthesize cobalt(ii) metal-organic framework#CoMn2O4nanocomposites (Co(ii)-TMU-63#CoMn2O4NCPs) having interfaces adapted at tunable chemical nanocomposites for hybrid supercapacitors. The given NCPs showed excellent electrochemical performance at 7 A g−1current density endowed with a specific capacity of 156 mA h g−1(1420 F g−1) and good cycling stability at 10 A g−1current density, following 7000 cycles with 93.3% capacity retention. The hybrid supercapacitor was assembled using activated carbon (AC) as negative and NCPs as positive electrodes, which delivered specific energy of 38.54 W h kg−1and maximum-specific power of 2312.4 W kg−1with 89.5% capacity retention over 7000 cycles. The enhanced electrochemical performances of Co(ii)-TMU-63#CoMn2O4NCPs can be attributed to the high surface area, porous structure, open metal sites functioning as electron collectors to enhance electron transfer as well as unique morphology and synergistic effect between Co(ii)-TMU-63 and CoMn2O4. This work may inspire a new development of interface-adapted nanocomposite for advanced energy storage applications. © The Royal Society of Chemistry 2021.
  •  
2.
  • An, J., et al. (författare)
  • Supramolecular Co-adsorption on TiO2to enhance the efficiency of dye-sensitized solar cells
  • 2021
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry (RSC). - 2050-7488 .- 2050-7496. ; 9:23, s. 13697-13703
  • Tidskriftsartikel (refereegranskat)abstract
    • Three novel push-pull dyes, with carbazole donors, codedAJ502,TZ101andTZ102are synthesized and applied as co-sensitizers in dye-sensitized solar cells (DSSCs).TZ101andTZ102have similar structures except for two fluorine atoms introduced on the benzotriazole (BTZ) unit.AJ502shows a near-IR absorption spectrum that is suitable for co-sensitization withTZ101andTZ102. The co-sensitized DSSC device based onCO-1(AJ502 : TZ101= 3 : 4 (0.075 mM : 0.1 mM)) achieves a power conversion efficiency (PCE) of 10.3% under AM 1.5G irradiation, with 1.06 V open-circuit voltage (Voc), 13.75 mA cm−2short-circuit photocurrent density (Jsc), and 70.8% fill factor (FF), a significant improvement compared to the single dye, 6.0% forAJ502and 5.1% forTZ101with a copper(i/ii)-based redox electrolyte. A PCE of 8.9% is also obtained by devices based onCO-2(AJ502 : TZ102= 3 : 4). ForCO-1, the fluorine atoms inTZ101play a critical role by widening the active light capturing bands of bothTZ101andAJ502on the TiO2film whileTZ102andAJ502show weaker interaction under the same conditions. The UV-vis spectrum and Raman spectrum revealed thatAJ502can form supramolecules withTZ101andTZ102formed on the TiO2film. 
  •  
3.
  • Andersson, Edvin K. W., et al. (författare)
  • Initial SEI formation in LiBOB-, LiDFOB- and LiBF4-containing PEO electrolytes
  • 2024
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry. - 2050-7488 .- 2050-7496. ; 12:15, s. 9184-9199
  • Tidskriftsartikel (refereegranskat)abstract
    • A limiting factor for solid polymer electrolyte (SPE)-based Li-batteries is the functionality of the electrolyte decomposition layer that is spontaneously formed at the Li metal anode. A deeper understanding of this layer will facilitate its improvement. This study investigates three SPEs – polyethylene oxide:lithium tetrafluoroborate (PEO:LiBF4), polyethylene oxide:lithium bis(oxalate)borate (PEO:LiBOB), and polyethylene oxide:lithium difluoro(oxalato)borate (PEO:LiDFOB) – using a combination of electrochemical impedance spectroscopy (EIS), galvanostatic cycling, in situ Li deposition photoelectron spectroscopy (PES), and ab initio molecular dynamics (AIMD) simulations. Through this combination, the cell performance of PEO:LiDFOB can be connected to the initial SPE decomposition at the anode interface. It is found that PEO:LiDFOB had the highest capacity retention, which is correlated to having the least decomposition at the interface. This indicates that the lower SPE decomposition at the interface still creates a more effective decomposition layer, which is capable of preventing further electrolyte decomposition. Moreover, the PES results indicate formation of polyethylene in the SEI in cells based on PEO electrolytes. This is supported by AIMD that shows a polyethylene formation pathway through free-radical polymerization of ethylene.
  •  
4.
  • Anil, Athira, et al. (författare)
  • Effect of pore mesostructure on the electrooxidation of glycerol on Pt mesoporous catalysts
  • 2023
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry (RSC). - 2050-7488 .- 2050-7496. ; 11:31, s. 16570-16577
  • Tidskriftsartikel (refereegranskat)abstract
    • Glycerol is a renewable chemical that has become widely available and inexpensive due to the increased production of biodiesel. Noble metal materials have shown to be effective catalysts for the production of hydrogen and value-added products through the electrooxidation of glycerol. In this work we develop three platinum systems with distinct pore mesostructures, e.g., hierarchical pores (HP), cubic pores (CP) and linear pores (LP); all with high electrochemically active surface area (ECSA). The ECSA-normalized GEOR catalytic activity of the systems follows HPC > LPC > CPC > commercial Pt/C. Regarding the oxidation products, we observe glyceric acid as the main three-carbon product (3C), with oxalic acids as the main two-carbon oxidation product. DFT-based theoretical calculations support the glyceraldehyde route going through tartronic acid towards oxalic acid and also help understanding why the dihydroxyacetone (DHA) route is active despite the absence of DHA amongst the observed oxidation products.
  •  
5.
  • Araujo, Rafael, et al. (författare)
  • N-2 adsorption on high-entropy alloy surfaces : unveiling the role of local environments
  • 2023
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry. - 2050-7488 .- 2050-7496. ; 11:24, s. 12973-12983
  • Tidskriftsartikel (refereegranskat)abstract
    • Developing highly active catalysts to electrochemically reduce N-2 to NH3 under ambient conditions is challenging but bears the promise of using ammonia as a potential energy vector in sustainable energy technology. One of the scientific challenges concerns the inertness of N-2 emanating from the highly stable triple bonds and the lack of dipole moments, making N-2 fixation on catalytic surfaces difficult. Another critical challenge is that electrons are more prone to reduce hydrogen than N-2 at the surface, forming a scaling relationship where the reduction ability of the catalyst most often benefits hydrogen reduction instead of nitrogen reduction. Here we show that high-entropy alloys (HEA) - a new class of catalysts with vast compositional and structural possibilities, can enhance N-2 fixation. More specifically, we investigate the role of the local environment in the first and second solvation shell of the adsorbing elements in the bond strength between the dinitrogen molecules and the HEA surfaces. Density functional theory using a Bayesian error estimation functional and vdW interactions is employed to clarify the properties dictating the local bonding. The results show that although the main property calibrating the N-2 bond strength is the d-band centers of the adsorbing elements, the value of the d-band centers of the adsorbing elements is further regulated by their local environment, mainly from the elements in the first solvation shell due to electron donor-acceptor interactions. Therefore, there exists a first solvation shell effect of the adsorbing elements on the bond strength between N-2 molecules and the surface of HEAs. The results show that apart from the direct active site, the indirect relation adds further modulation abilities where the local interactions with a breath of metallic elements could be used in HEAs to engineer specific surface environments. This is utilized here to form a strategy for delivering higher bond strength with the N-2 molecules, mitigating the fixation issue. The analysis is corroborated by correlation analysis of the properties affecting the interaction, thus forming a solid framework of the model, easily extendable to other chemical reactions and surface interaction problems.
  •  
6.
  • Banerjee, Amitava, et al. (författare)
  • Promise and reality of organic electrodes from materials design and charge storage perspective
  • 2022
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry (RSC). - 2050-7488 .- 2050-7496. ; 10:29, s. 15215-15234
  • Forskningsöversikt (refereegranskat)abstract
    • Organic electrode materials are becoming increasingly important as they reduce the C-footprint as well as the production cost of currently used and studied rechargeable batteries. With increasing demand for high-energy-density devices, over the past few decades, various innovative new materials based on the fundamental structure-property relationships and molecular design have been explored to enable high-capacity next-generation battery chemistries. One critical dimension that catalyzes this study is the building up of an in-depth understanding of the structure-property relationship and mechanism of alkali ion batteries. In this review, we present a critical overview of the progress in the technical feasibility of organic battery electrodes for use in long-term and large-scale electrical energy-storage devices based on the materials designing, working mechanisms, performance, and battery safety. Specifically, we discuss the underlying alkali ion storage mechanisms in specific organic batteries, which could provide the designing requirements to overcome the limitations of organic batteries. We also discuss the promising future research directions in the field of alkali ion organic batteries, especially multivalent organic batteries along with monovalent alkali ion organic batteries.
  •  
7.
  • Barzgar Vishlaghi, Mahsa, et al. (författare)
  • Accelerating water oxidation on BiVO 4 photoanodes via surface modification with Co dopants
  • 2023
  • Ingår i: Journal of Materials Chemistry A. - 2050-7488 .- 2050-7496. ; 11:31, s. 16648-16658
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite the vast investigations on improving the photoelectrochemical performance of BiVO4 for water splitting, charge recombination in the near-surface region remains a challenge. In this study, we showed that the diffusion of Co2+ ions into the BiVO4 subsurface boosted the water oxidation activity and charge injection efficiency remarkably. The increase in the concentration of oxygen vacancies upon the incorporation of cobalt ions was shown by electron paramagnetic resonance (EPR) spectroscopy and confirmed by density functional theory (DFT) calculations. DFT calculations revealed that vanadium sites in the subsurface region were the most favorable sites for substitution with cobalt ions. Charge localization at surface oxygen vacancies was found less favorable in the presence of cobalt in the subsurface layer, eliminating surface recombination. This resulted in 4.25 times larger charge injection efficiency and 6.2 times higher photocurrent density at the potential of ∼0.6 V, as compared to pristine BiVO4. This enhancement was significantly larger as compared to CoOx-loaded BiVO4, indicating that the suppressed recombination at the surface and improved charge transfer kinetics obtained solely by CoOx deposition are not sufficient for enhanced activity of BiVO4. A longer charge carrier lifetime obtained upon cobalt incorporation was observed by transient absorption spectroscopy and verified the reduced rate of recombination.
  •  
8.
  • Bayrak Pehlivan, Ilknur, et al. (författare)
  • Scalable and thermally-integrated solar water-splitting modules using Ag-doped Cu(In,Ga)Se2 and NiFe layered double hydroxide nanocatalysts
  • 2022
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry. - 2050-7488 .- 2050-7496. ; 10:22, s. 12079-12091
  • Tidskriftsartikel (refereegranskat)abstract
    • Photovoltaic (PV) electrolysis is an important and powerful technology for environmentally-friendly fuel production based on solar energy. By directly coupling solar cell materials to electrochemical systems to perform water electrolysis, solar energy can be converted into hydrogen fuel utilizing locally-generated heat and avoid losses from DC-DC convertors and power grid transmission. Although there have been significant contributions to the photoelectrochemical and PV-electrolysis field using isolated laboratory cells, the capacity to upscale and retain high levels of efficiency in larger modules remains a critical issue for widespread use and application. In this study, we develop thermally-integrated, solar-driven water-splitting device modules using AgCu(In,Ga)Se2 (ACIGS) and an alkaline electrolyzer system with NiFe-layered double hydroxide (LDH) nanocatalysts with devices of 82-100 cm2 area. The Ga-content in the ACIGS solar cells is tuned to achieve an optimal voltage for the catalyst system, and the average efficiencies and durability of the PV-electrolyzer were tested in up to seven-day indoor and 21 day outdoor operations. We achieved a solar-to-hydrogen (STH) module efficiency of 13.4% from gas volume measurements for the system with a six-cell CIGS-electrolyzer module with an active area of 82.3 cm2 and a 17.27% PV module efficiency under 100 mW cm−2 illumination, and thus 77% electricity-to-hydrogen efficiency at one full sun. Outdoor tests under mid-Europeen winter conditions exhibited an STH efficiency between 10 and 11% after the initial activation at the installation site in Jülich, Germany, in December 2020, despite challenging outdoor-test weather conditions, including sub-zero temperatures. 
  •  
9.
  • Beydaghi, Hossein, et al. (författare)
  • Functionalized metallic transition metal dichalcogenide (TaS2) for nanocomposite membranes in direct methanol fuel cells
  • 2021
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry. - 2050-7488 .- 2050-7496. ; 9:10, s. 6368-6381
  • Tidskriftsartikel (refereegranskat)abstract
    • In this work, we designed a novel nanocomposite proton-exchange membrane (PEM) based on sulfonated poly(ether ether ketone) (SPEEK) and tantalum disulfide functionalized with terminal sulfonate groups (S-TaS2). The PEMs are prepared through a solution-casting method and exploited in direct methanol fuel cells (DMFCs). Two-dimensional S-TaS2 nanoflakes were prepared as a functional additive to produce the novel nanocomposite membrane for DMFCs due to their potential as a fuel barrier and an excellent proton conductor. To optimize the degree of sulfonation (DS) of SPEEK and the weight percentage (wt%) of S-TaS2 nanoflakes in PEMs, we used the central composite design of the response surface method. The optimum PEM was obtained for SPEEK DS of 1.9% and a weight fraction (wt%) of S-TaS2 nanoflakes of 70.2%. The optimized membrane shows a water uptake of 45.72%, a membrane swelling of 9.64%, a proton conductivity of 96.24 mS cm(-1), a methanol permeability of 2.66 x 10(-7) cm(2) s(-1), and a selectivity of 36.18 x 10(4) S s cm(-3). Moreover, SPEEK/S-TaS2 membranes show superior thermal and chemical stabilities compared to those of pristine SPEEK. The DMFC fabricated with the SPEEK/S-TaS2 membrane has reached the maximum power densities of 64.55 mW cm(-2) and 161.18 mW cm(-2) at 30 degrees C and 80 degrees C, respectively, which are similar to 78% higher than the values obtained with the pristine SPEEK membrane. Our results demonstrate that SPEEK/S-TaS2 membranes have a great potential for DMFC applications.
  •  
10.
  • Bharmoria, Pankaj, 1985, et al. (författare)
  • Recyclable optical bioplastics platform for solid state red light harvesting via triplet-triplet annihilation photon upconversion
  • 2022
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry (RSC). - 2050-7496 .- 2050-7488. ; 10:40, s. 21279-21290
  • Tidskriftsartikel (refereegranskat)abstract
    • Sustainable photonics applications of solid-state triplet-triplet annihilation photon upconversion (TTA-UC) are limited by a small UC spectral window, low UC efficiency in air, and non-recyclability of polymeric materials used. In a step to overcome these issues, we have developed new recyclable TTA-UC bioplastics by encapsulating TTA-UC chromophores liquid inside the semicrystalline gelatin films showing broad-spectrum upconversion (red/far-red to blue) with high UC efficiency in air. For this, we synthesized a new anionic annihilator, sodium-TIPS-anthracene-2-sulfonate (TIPS-AnS), that combined with red/far-red sensitizers (PdTPBP/Os(m-peptpy)(2)(TFSI)(2)), a liquid surfactant Triton X-100 reduced (TXr) and protein gelatin (G) formed red/far-red to blue TTA-UC bioplastic films just by air drying of their aqueous solutions. The G-TXr-TIPS-AnS-PdTPBP film showed record red to blue (633 to 478 nm) TTA-UC quantum yield of 8.5% in air. The high UC quantum yield has been obtained due to the fluidity of dispersed TXr containing chromophores and oxygen blockage by gelatin fibers that allowed efficient diffusion of triplet excited chromophores. Further, the G-TXr-TIPS-AnS-Os(m-peptpy)(2)(TFSI)(2) bioplastic film displayed far-red to blue (700-730 nm to 478 nm) TTA-UC, demonstrating broad-spectrum photon harvesting. Finally, we demonstrated the recycling of G-TXr-TIPS-AnS-PdTPBP bioplastics by developing a downstream approach that gives new directions for designing future recyclable photonics bioplastic materials.
  •  
11.
  • Boota, Muhammad, et al. (författare)
  • MXene binder stabilizes pseudocapacitance of conducting polymers
  • 2021
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry. - 2050-7488 .- 2050-7496. ; 9:36, s. 20356-20361
  • Tidskriftsartikel (refereegranskat)abstract
    • Conducting polymers (CPs) are by far the most studied organic materials for supercapacitors. Yet, their structural instability stemming from volumetric expansion/contraction during charge/discharge results in capacitance loss after moderate cycling that limits their applications. Here, we show that the remarkable cycling stability, capacitance, and rate performance can be achieved by replacing conventional electrode additives (carbon black or insulating polymer binder) with titanium carbide (Ti3C2Tx) MXene. Using polyaniline (PANI) as a model system, an addition of only 15 wt% of Ti3C2Tx MXene binder delivered remarkable capacitance retention of 96% after 10 000 cycles at 50 mV s(-1) and high-rate capability with a capacitance of 434 F g(-1). Using density functional theory (DFT) calculations, we show that, unlike insulating polymer binders, surface groups of MXene bond to PANI with a significantly high binding energy (up to -2.11 eV) via a charge transfer mechanism. This is one of the key mechanisms to achieve a high electrochemical performance of the CP-based electrodes when MXene is used as a binder. We expect that a similar approach can be used for stabilizing other organic electrode materials.
  •  
12.
  • Bui, Thi Diem Huong, et al. (författare)
  • p-block doped semi-metallic xenes as highly selective and efficient transition-metal free single atom catalysts for electrochemical CO reduction
  • 2023
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry (RSC). - 2050-7488 .- 2050-7496. ; 12:4, s. 2110-2120
  • Tidskriftsartikel (refereegranskat)abstract
    • The development of robust and inexpensive catalysts for the electrochemical CO reduction reaction (CORR) is key for sustainable production of valuable chemicals, yet it remains a long-standing challenge. Herein, we conduct a systematic theoretical investigation on p-block doping of semi-metallic xene monolayers to afford transition metal free catalysts for the CORR. Silicene (Si) and germanene (Ge) are suitable platforms for capturing the dopant (B/Al) to ensure high stability. Our single atom catalysts (SACs) are promising candidates for CORR due to their favorable initial CO adsorption and the selectivity of CO reduction over H2 evolution. B@Si, Al@Si, Al@Ge and B@Ge exhibit superior CORR catalytic activity with a limiting potential UL of 0.04, −0.39, −0.40, and −0.40 V, respectively. Notably, B@Si is identified as the best CORR electrocatalyst with an overpotential of less than 0.1 V. B@Si, Al@Si, Al@Ge exhibit high CORR selectivity towards CH3OH production, whereas B@Ge is predicted to form mainly CH4. The fundamental principles behind the outstanding CORR catalytic enhancement are disclosed by analyzing the structural and electronic configurations of two key intermediates, CO* and CHO*. CO* binds the dopant with moderate strength through a combination of σ-donation and π-backdonation unique for a transition metal free catalyst, whereas CHO* adsorbs strongly to the surface by the simultaneous binding to two neighboring atomic sites; consequently, the binding of the two intermediates breaks the scaling relation that limits the CORR activity of conventional catalysts. The optimal adsorption behaviors are attributed to the surface charge modulation induced by the substitutional doping. Hence, these findings may facilitate rational design of xene-based SACs for CORR and advance other catalytic applications.
  •  
13.
  • Bykova, Elena, et al. (författare)
  • Synthesis, crystal structure, and properties of stoichiometric hard tungsten tetraboride, WB4
  • 2022
  • Ingår i: Journal of Materials Chemistry A. - : ROYAL SOC CHEMISTRY. - 2050-7488 .- 2050-7496. ; 10:37, s. 20111-20120
  • Tidskriftsartikel (refereegranskat)abstract
    • Tungsten tetraboride has been known so far as a non-stoichiometric compound with a variable composition (e.g. WB4-x, WB4+x). Its mechanical properties could exceed those of hard tungsten carbide, which is widely used nowadays in science and technology. The existence of stoichiometric WB4 has not been proven yet, and its structure and crystal chemistry remain debatable to date. Here we report the synthesis of single crystals of the stoichiometric WB4 phase under high-pressure high-temperature conditions. The crystal structure of WB4 was determined using synchrotron single-crystal X-ray diffraction. In situ high-pressure compressibility measurements show that the bulk modulus of WB4 is 238.6(2) GPa for B = 5.6(0). Measurements of mechanical properties of bulk polycrystalline sub-millimeter size samples under ambient conditions reveal a hardness of similar to 36 GPa, confirming that the material falls in the category of superhard materials.
  •  
14.
  • Cattaruzza, Martina, et al. (författare)
  • Hybrid polymer-liquid lithium ion electrolytes: effect of porosity on the ionic and molecular mobility
  • 2023
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry (RSC). - 2050-7488 .- 2050-7496. ; 11:13, s. 7006-7015
  • Tidskriftsartikel (refereegranskat)abstract
    • Alternative electrolyte systems such as hybrid electrolytes are much sought after to overcome safety issues related to liquid electrolytes in lithium ion batteries (LIBs). Hybrid solid-liquid electrolytes (HEs) like the heterogeneous structural battery electrolyte (SBE) consist of two discrete co-existing phases prepared by polymerization-induced phase separation: one solid polymer phase providing mechanical integrity and the other one a percolating liquid ion-conducting phase. The present work investigates the ion and the solvent mobility in a series of HEs using morphological, electrochemical impedance and NMR spectroscopic methods. All the dried HEs exhibit a porous structure with a broad pore size distribution stretching down to <10 nm diameter. Penetration of the individual components of the solution, that is the ions and the solvent, in the solid polymer phase is demonstrated. Yet, it is the pores that are the main ion conduction channels in the liquid-saturated HEs and, in general, translational mobility is strongly dependent on the volume fraction and size of the pores and, thereby, on the initial liquid electrolyte content. We also observe that the translational mobility of solvent and the ions vary differently with the pore volume fraction. This finding is explained by the presence of small mesopores where the mobility strongly depends on the specific interactions of the molecular constituent with the pore wall. These interactions are inferred to be stronger for the EC/PC solvent than for the ions. This study shows how the morphology and the chemical composition of HEs affect the ionic and molecular transport in the system.
  •  
15.
  •  
16.
  • Chang, Ribooga, et al. (författare)
  • Synthesis and characterization of sodium hafnium oxide (Na2HfO3) and its high-temperature CO2 sorption properties
  • 2023
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry. - 2050-7488 .- 2050-7496. ; 11:14, s. 7617-7628
  • Tidskriftsartikel (refereegranskat)abstract
    • The CO2 sorption properties of sodium hafnium oxide (Na2HfO3) were investigated in this study. Na2HfO3 was synthesized by solid-state synthesis using Na2CO3 and HfO2 as starting materials. The solid-state synthesized Na2HfO3 appeared structurally similar to other mixed metal oxides such as Na2ZrO3, but stacking disorder appeared to be common in Na2HfO3. The synthesis conditions, including the Na : Hf ratio (between 0.5 and 1.5 : 1), synthesis temperature, time and heating rate, were investigated to optimize CO2 sorption properties of Na2HfO3. The Na2HfO3 sorbent showed comparable CO2 uptake capacity, reaction rate and excellent cycling stability compared to other metal oxide sorbents. Na2HfO3 with Na : Hf = 1 : 1 and 1.25 : 1 showed the highest CO2 uptake among all Na2HfO3 samples obtained, with a CO2 uptake capacity of around 15 wt% (at 650–800 °C). The CO2 uptake rate of NHO-1 and NHO-1.25 was fast with over 80% of the equilibrium uptake reached within 250 s. Na2HfO3 remained stable even after 100 cycles with less than 3% difference in the CO2 uptake capacity between the 1st and 100th cycles. We performed kinetic analysis on the CO2 sorption data and found that the Avrami–Erofeev model fitted the kinetic data best among the kinetic models used. Apart from sorbent optimization, we showed that 3D-printing of Na2HfO3 : HfO2 mixtures can be used to produce structured Na2HfO3 sorbents with a slightly improved CO2 uptake rate and the same CO2 uptake capacity as the powder-based solid-state synthesized Na2HfO3 sorbent.
  •  
17.
  • Chang, Ribooga, et al. (författare)
  • Synthesis and characterization of sodium hafnium oxide (Na2HfO3) and its high-temperature CO2 sorption properties
  • 2023
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry (RSC). - 2050-7488 .- 2050-7496. ; 11:14, s. 7617-7628
  • Tidskriftsartikel (refereegranskat)abstract
    • The CO2 sorption properties of sodium hafnium oxide (Na2HfO3) were investigated in this study. Na2HfO3 was synthesized by solid-state synthesis using Na2CO3 and HfO2 as starting materials. The solid-state synthesized Na2HfO3 appeared structurally similar to other mixed metal oxides such as Na2ZrO3, but stacking disorder appeared to be common in Na2HfO3. The synthesis conditions, including the Na : Hf ratio (between 0.5 and 1.5 : 1), synthesis temperature, time and heating rate, were investigated to optimize CO2 sorption properties of Na2HfO3. The Na2HfO3 sorbent showed comparable CO2 uptake capacity, reaction rate and excellent cycling stability compared to other metal oxide sorbents. Na2HfO3 with Na : Hf = 1 : 1 and 1.25 : 1 showed the highest CO2 uptake among all Na2HfO3 samples obtained, with a CO2 uptake capacity of around 15 wt% (at 650–800 °C). The CO2 uptake rate of NHO-1 and NHO-1.25 was fast with over 80% of the equilibrium uptake reached within 250 s. Na2HfO3 remained stable even after 100 cycles with less than 3% difference in the CO2 uptake capacity between the 1st and 100th cycles. We performed kinetic analysis on the CO2 sorption data and found that the Avrami–Erofeev model fitted the kinetic data best among the kinetic models used. Apart from sorbent optimization, we showed that 3D-printing of Na2HfO3 : HfO2 mixtures can be used to produce structured Na2HfO3 sorbents with a slightly improved CO2 uptake rate and the same CO2 uptake capacity as the powder-based solid-state synthesized Na2HfO3 sorbent.
  •  
18.
  • Chang, Ribooga, et al. (författare)
  • Synthetic solid oxide sorbents for CO2 capture : state-of-the art and future perspectives
  • 2022
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry (RSC). - 2050-7488 .- 2050-7496. ; 10:4, s. 1682-1705
  • Forskningsöversikt (refereegranskat)abstract
    • Carbon capture is an important and effective approach to control the emission of CO2 from point sources such as fossil fuel power plants, industrial furnaces and cement plants into the atmosphere. For an efficient CO2 capture operation, many aspects of the CO2 capture steps need to be carefully considered. Currently the most mature CO2 capture technology is liquid amine scrubbing. Alternatively, solid sorbents can be used to effectively capture CO2 while alleviating the disadvantages associated with liquid amine sorbents. In this review, we critically assess solid metal oxide CO2 sorbents, especially oxides of group 1 (Li, Na and K) and group 2 (Mg, Ca, Sr and Ba) metals, for capturing CO2 at moderate to high temperatures. In particular, we focus on the recent advances in developing synthetic metal oxide sorbents, and the correlation between the design, synthetic approaches and their cyclic CO2 capture performance, which are characterised by CO2 uptake capacity, rate of carbonation and cyclic stability. The state-of-the-art, challenges, opportunities and future research directions for these metal oxide sorbents are discussed. By devoting more research effort to address the issues identified, there can be great potential to utilise Group 1 and 2 metal oxides as cost-effective, highly efficient sorbents for CO2 capture in a variety of carbon capture applications.
  •  
19.
  • Chen, Pan, et al. (författare)
  • Surface modification effects on nanocellulose - molecular dynamics simulations using umbrella sampling and computational alchemy
  • 2020
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry (RSC). - 2050-7496 .- 2050-7488. ; 8:44, s. 23617-23627
  • Tidskriftsartikel (refereegranskat)abstract
    • Topochemical modification of nanocellulose particles, in particular acetylation, is commonly used to reduce hygroscopicity and improve their dispersibility in non-polar polymers. Despite enormous experimental efforts on cellulose surface modification, there is currently no comprehensive model which considers both (a) the specific interactions between nanocellulose particles and the surrounding liquid or polymer matrix, and (b) the interactions between the particles themselves. The second mechanism is therefore frequently ignored. The present approach is based on atomistic molecular dynamics (MD) simulations, where computational alchemy is used to calculate the changes in interactions between nanocellulose and the surrounding medium (liquid or polymer) upon modification. This is combined with another method, based on potential of mean force, to calculate interactions between particles. Results show that both contributions are of equal importance for nanoparticle surface acetylation effects. The proposed method is not restricted to either cellulose or acetylation, and has the prospect to find application in a broad context of nanomaterials design.
  •  
20.
  • Chen, Shangzhi, et al. (författare)
  • Unraveling vertical inhomogeneity in vapour phase polymerized PEDOT:Tos films
  • 2020
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry. - 2050-7488 .- 2050-7496. ; 8, s. 18726-18734
  • Tidskriftsartikel (refereegranskat)abstract
    • The conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) forms a promising alternative to conventional inorganic conductors, where deposition of thin films via vapour phase polymerization (VPP) has gained particular interest owing to high electrical conductivity within the plane of the film. The conductivity perpendicular to the film is typically much lower, which may be related not only to preferential alignment of PEDOT crystallites but also to vertical stratification across the film. In this study, we reveal non-linear vertical microstructural variations across VPP PEDOT:Tos thin films, as well as significant differences in doping level between the top and bottom surfaces. The results are consistent with a VPP mechanism based on diffusion-limited transport of polymerization precursors. Conducting polymer films with vertical inhomogeneity may find applications in gradient-index optics, functionally graded thermoelectrics, and optoelectronic devices requiring gradient doping.
  •  
21.
  • Chen, Shangzhi, et al. (författare)
  • Unraveling vertical inhomogeneity in vapour phase polymerized PEDOT:Tos films
  • 2020
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry. - 2050-7488 .- 2050-7496. ; 8:36, s. 18726-18734
  • Tidskriftsartikel (refereegranskat)abstract
    • The conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) forms a promising alternative to conventional inorganic conductors, where deposition of thin filmsviavapour phase polymerization (VPP) has gained particular interest owing to high electrical conductivity within the plane of the film. The conductivity perpendicular to the film is typically much lower, which may be related not only to preferential alignment of PEDOT crystallites but also to vertical stratification across the film. In this study, we reveal non-linear vertical microstructural variations across VPP PEDOT:Tos thin films, as well as significant differences in doping level between the top and bottom surfaces. The results are consistent with a VPP mechanism based on diffusion-limited transport of polymerization precursors. Conducting polymer films with vertical inhomogeneity may find applications in gradient-index optics, functionally graded thermoelectrics, and optoelectronic devices requiring gradient doping. 
  •  
22.
  •  
23.
  • Choque, Sergio, et al. (författare)
  • Development of biophoto anodes using Ulvophyceae macroalgae
  • 2023
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry (RSC). - 2050-7488 .- 2050-7496. ; 11:6, s. 2661-2669
  • Tidskriftsartikel (refereegranskat)abstract
    • Three different macroalgae, i.e., U. lactuca, U. linza, and U. compressa, have been studied for biological photovoltaic energy system (BPVE) using edge plane pyrolytic graphite as the supporting working electrode. The studied biophotoanodes were evaluated in terms of direct electron transfer (DET) and mediated electron transfer (MET) processes. Ferrocyanide (FeCN), p-benzoquinone (BQ), and 1,4-naphthoquinone (NQ) were used as a mediator during biophotovoltaic experiments in the presence and absence of applied light. The electrochemical characterization was performed by cyclic voltammetry (CV) and chronoamperometry. The results show that using BQ during the MET process, the electron transfer to the graphite electrode drastically increases during light conditions, where the most promising biophotoanode was in the presence of BQ and U. linza with a current density of 72.1 ± 9.1 μA cm−2, which represents an increase of almost 2000 times over DET results. Similar results were obtained with U. lactuca and U. compressa. The high performance in the presence of BQ for the three macroalgae has been attributed to the favorable penetration of the quinone molecule to the cytoplasmic membrane, allowing the direct exchange of electrons with photosystem II in the thylakoid structure.
  •  
24.
  • Coduri, Mauro, et al. (författare)
  • Structure-property correlation in oxide-ion and proton conductors for clean energy applications: recent experimental and computational advancements
  • 2022
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry (RSC). - 2050-7496 .- 2050-7488. ; 10, s. 5082-5110
  • Forskningsöversikt (refereegranskat)abstract
    • In the last decade, the field of oxide-ion and proton conductors continued to trigger a significant amount of basic research aimed at improving the properties and the comprehension of actual materials, as well as at discovering novel phases. This need comes from the current and future urgent requests of changing our energy management towards cleaner solutions such as solid oxide fuel cells. In this review article, we highlight the most recent advancements in this exciting field by putting particular emphasis on the structure-property correlations in oxide-ion and proton conductors both from an experimental and a computational perspective. Special focus is laid on developments in the area of operando and in situ spectroscopy, machine learning and high-throughput approaches to accelerate the discovery of new and advanced materials.
  •  
25.
  • Cui, Yuxiao, et al. (författare)
  • Hierarchical soot nanoparticle self-assemblies for enhanced performance as sodium-ion battery anodes
  • 2022
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry (RSC). - 2050-7488 .- 2050-7496. ; 10:16, s. 9059-9066
  • Tidskriftsartikel (refereegranskat)abstract
    • The drawbacks of amorphous hard carbon are its low conductivity and structural instability, due to its large volume change and the occurrence of side reactions with the electrolyte during cycling. Here, we propose a simple and rapid method to address these disadvantages; we used an emulsion solvent-evaporation method to create hierarchically structured microparticles of hard carbon nanoparticles, derived from soot, and multi-walled-carbon-nanotubes at a very low threshold of 2.8 wt%. These shrub-ball like microparticles have well-defined void spaces between different nanostructures of carbon, leading to an increased surface area, lower charge-resistance and side reactions, and higher electronic conductivity for Na+ insertion and de-insertion. They can be slurry cast to assemble Na+ anodes, exhibiting an initial discharge capacity of 713.3 mA h g(-1) and showing long-term stability with 120.8 mA h g(-1) at 500 mA g(-1) after 500 cycles, thus outperforming neat hard carbon nanoparticles by an order of magnitude. Our work shows that hierarchical self-assembly is attractive for increasing the performance of microparticles used for battery production.
  •  
26.
  • Das, Biswanath, et al. (författare)
  • Bifunctional and regenerable molecular electrode for water electrolysis at neutral pH
  • 2023
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry (RSC). - 2050-7488 .- 2050-7496. ; 11:25, s. 13331-13340
  • Tidskriftsartikel (refereegranskat)abstract
    • The instability of molecular electrodes under oxidative/reductive conditions and insufficient understanding of the metal oxide-based systems have slowed down the progress of H2-based fuels. Efficient regeneration of the electrode's performance after prolonged use is another bottleneck of this research. This work represents the first example of a bifunctional and electrochemically regenerable molecular electrode which can be used for the unperturbed production of H2 from water. Pyridyl linkers with flexible arms (–CH2–CH2–) on modified fluorine-doped carbon cloth (FCC) were used to anchor a highly active ruthenium electrocatalyst [RuII(mcbp)(H2O)2] (1) [mcbp2− = 2,6-bis(1-methyl-4-(carboxylate)benzimidazol-2-yl)pyridine]. The pyridine unit of the linker replaces one of the water molecules of 1, which resulted in RuPFCC (ruthenium electrocatalyst anchored on –CH2–CH2–pyridine modified FCC), a high-performing electrode for oxygen evolution reaction [OER, overpotential of ∼215 mV] as well as hydrogen evolution reaction (HER, overpotential of ∼330 mV) at pH 7. A current density of ∼8 mA cm−2 at 2.06 V (vs. RHE) and ∼−6 mA cm−2 at −0.84 V (vs. RHE) with only 0.04 wt% loading of ruthenium was obtained. OER turnover of >7.4 × 103 at 1.81 V in 48 h and HER turnover of >3.6 × 103 at −0.79 V in 3 h were calculated. The activity of the OER anode after 48 h use could be electrochemically regenerated to ∼98% of its original activity while it serves as a HE cathode (evolving hydrogen) for 8 h. This electrode design can also be used for developing ultra-stable molecular electrodes with exciting electrochemical regeneration features, for other proton-dependent electrochemical processes.
  •  
27.
  • Duchon, Tomas, et al. (författare)
  • Establishing structure-sensitivity of ceria reducibility : real-time observations of surface hydrogen interactions
  • 2020
  • Ingår i: Journal of Materials Chemistry A. - : ROYAL SOC CHEMISTRY. - 2050-7488 .- 2050-7496. ; 8:11, s. 5501-5507
  • Tidskriftsartikel (refereegranskat)abstract
    • The first Layer of atoms on an oxide cataLyst provides the first sites for adsorption of reactants and the Last sites before products or oxygen are desorbed. We employ a unique combination of morphological, structural, and chemical analyses of a model ceria cataLyst with different surface terminations under an H2 environment to unequivocally establish the effect of the Last Layer of atoms on surface reduction. (111) and (100) terminated epitaxiaL isLands of ceria are simultaneously studied in situ allowing for a direct investigation of the structure reducibility relationship under identical conditions. Kinetic rate constants of Ce4+ to Ce3+ transformation and equilibrium concentrations are extracted for both surface terminations. Unlike the kinetic rate constants, which are practically the same for both types of isLands, more pronounced oxygen release, and overall higher reducibility were observed for (100) isLands compared to (111) ones. The findings are in agreement with coordination -Limited oxygen vacancy formation energies calculated by density functional theory. The results point out the important aspect of surface terminations in redox processes, with particular impact on the catalytic reactions of a variety of catalysts.
  •  
28.
  • Eklöf-Österberg, Carin, 1987, et al. (författare)
  • The role of oxygen vacancies on the vibrational motions of hydride ions in the oxyhydride of barium titanate
  • 2020
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry (RSC). - 2050-7488 .- 2050-7496. ; 8:13, s. 6360-6371
  • Tidskriftsartikel (refereegranskat)abstract
    • Perovskite-type oxyhydrides, BaTiO3-xHx, represent a novel class of hydride ion conducting materials of interest for several electrochemical applications, but fundamental questions surrounding the defect chemistry and hydride ion transport mechanism remain unclear. Here we report results from powder X-ray diffraction, thermal gravimetric analysis, nuclear magnetic resonance spectroscopy, inelastic neutron scattering (INS), and density functional theory (DFT) simulations on three metal hydride reduced BaTiO3 samples characterized by the simultaneous presence of hydride ions and oxygen vacancies. The INS spectra are characterized by two predominating bands at around 114 (omega(perpendicular to)) and 128 (omega(parallel to)) meV, assigned as fundamental Ti-H vibrational modes perpendicular and parallel to the Ti-H-Ti bond direction, respectively, and four additional, weaker, bands at around 99 (omega(1)), 110 (omega(2)), 137 (omega(3)) and 145 (omega(4)) meV that originate from a range of different local structures associated with different configurations of the hydride ions and oxygen vacancies in the materials. Crucially, the combined analyses of INS and DFT data confirm the presence of both nearest and next-nearest neighbouring oxygen vacancies to the hydride ions. This supports previous findings from quasielastic neutron scattering experiments, that the hydride ion transport is governed by jump diffusion dynamics between neighbouring and next-nearest neighbouring hydride ion-oxygen vacancy local structures. Furthermore, the investigation of the momentum transfer dependence of the INS spectrum is used to derive the mean square displacement of the hydride ions, which is shown to be in excellent agreement with the calculations. Analysis of the mean square displacement confirms that the hydrogen vibrational motions are localized in nature and only very weakly affected by the dynamics of the surrounding perovskite structure. This insight motivates efforts to identify alternative host lattices that allow for a less localization of the hydride ions as a route to higher hydride ion conductivities.
  •  
29.
  • Fan, Ke, et al. (författare)
  • Surface and bulk reconstruction of CoW sulfides during pH-universal electrocatalytic hydrogen evolution
  • 2021
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry (RSC). - 2050-7488 .- 2050-7496. ; 9:18, s. 11359-11369
  • Tidskriftsartikel (refereegranskat)abstract
    • Electrocatalytic water splitting is an efficient means of producing energy carriers, such as H2. The hydrogen evolution reaction (HER) requires high-efficiency electrocatalysts. Understanding the active site structures of the HER electrocatalysts is essential for the rational design and development of water splitting devices. In this study, porous CoW sulfides were employed as model electrocatalysts for pH-universal HER. Multiple characterization studies, such as X-ray photoelectron spectroscopy, X-ray absorption spectroscopy and operando X-ray diffraction, were systematically used to investigate the reconstruction of the active species at the surface and in the bulk. The results show that during the HER, the structural transformation of the species CoW sulfides is strongly dependent on the pH of the electrolyte. Electrolytes of varying pH lead to varied reconstruction and influence the true catalytically active species responsible for the HER. The surface and the bulk of the electrocatalysts transform to different oxides/hydroxides when subjected to the HER. This is the first time that the pH-dependent bulk and surface structural evolution in the HER has been revealed. This study reveals the reconstruction and potential active site evolution of mixed-metal sulfides for the HER. We believe that the present study not only provides an idealized "pre-catalyst"for pH-universal highly-efficient HER, but also provides a thorough understanding about the identification of the real active sites and the mechanism of the structural evolution of the electrocatalysts during hydrogen evolution.
  •  
30.
  • Fan, Lizhou, et al. (författare)
  • Holistic functional biomimetics : a key to make an efficient electrocatalyst for water oxidation
  • 2023
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry (RSC). - 2050-7488 .- 2050-7496. ; 11:20, s. 10669-10676
  • Tidskriftsartikel (refereegranskat)abstract
    • Water oxidation is the holy grail reaction of natural and artificial photosynthesis. How to design an efficient water-oxidation catalyst remains a long-term challenge for solar fuel production. The rate of water oxidation in photosystem II by the oxygen-evolving complex (OEC) Mn4CaO5 cluster is as high as 100-400 s−1. Mimicking the structures of the OEC is a straightforward strategy to design water-oxidation catalysts. However, the high efficiency of the OEC relies on not only its highly active site but also its holistic system for well-organized electron transfer and proton transport. Lacking such a holistic functional system makes δ-MnO2 a poor water-oxidation catalyst, although the local structure of δ-MnO2 is similar to that of the Mn4CaO5 cluster. Electrocatalysts simultaneously imitating the catalytically active sites, fast electron transfer, and promoted proton transport in a natural OEC have been rarely reported. The significance of the synergy of a holistic system is underrated in the design of water-oxidation catalysts. In this work, we fabricated holistic functional biomimetic composites of two-dimensional manganese oxide nanosheets and pyridyl-modified graphene (MnOx-NS/py-G) for electrocatalytic water oxidation. MnOx-NS/py-G simultaneously imitates the synergy of catalytically active sites, fast electron transfer, and promoted proton transport in a natural OEC, resulting in overall 600 times higher activity than that of typical δ-MnO2. This work demonstrates the significance of holistic functional biomimetic design and guides the development of highly active electrocatalysts for small molecule activation related to solar energy storage.
  •  
31.
  • Fan, Xiangyang, et al. (författare)
  • Phosphine oxide modulator-ameliorated hole injection for blue perovskite light-emitting diodes
  • 2023
  • Ingår i: Journal of Materials Chemistry A. - : ROYAL SOC CHEMISTRY. - 2050-7488 .- 2050-7496. ; 11:38, s. 20808-20815
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite the enormous developments in perovskite light-emitting diodes (PeLEDs) recently, obtaining efficient blue PeLEDs is still considered a critical challenge due to the non-radiative recombination and unbalanced charge injection caused by the unmatched carrier mobility and the deep hole-injection barrier between the hole-transport layer (HTL) and the emissive layer (EML). Herein, we incorporate tris(4-trifluoromethylphenyl)phosphine oxide (TMFPPO), obtained through a facile oxidation synthesis process, into poly(9-vinylcarbazole) (PVK). TMFPPO incorporation modulated the energy level and hole mobility of the binary-blend HTLs to eliminate the hole-injection barrier and balance the charge injection within the EML. Consequently, the blue PeLEDs with blended HTL presented an external quantum efficiency (EQE) of 7.23% centred at 477 nm, which was much higher than the EQE of a PVK device (4.95%). Our results demonstrate that modulating the energy level and charge injection of the HTL in the device is a promising method for obtaining efficient blue PeLEDs. TMFPPO is developed and incorporated into PVK to modulate the hole mobility and energy level of the hole-transport layer, giving rise to a barrier-free blue perovskite light-emitting diode and an enhancement of the EQE from 4.95 to 7.23% at 477 nm.
  •  
32.
  • Fang, Yuan, et al. (författare)
  • Lithium insertion in hard carbon as observed by 7Li NMR and XRD. The local and mesoscopic order and their relevance for lithium storage and diffusion
  • 2022
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry. - 2050-7488 .- 2050-7496. ; 10:18, s. 10069-10082
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigate hard carbon fibers in different states of charge by a combination of 7Li-NMR and 2D-XRD. In particular, we record the quadrupole-split 7Li-NMR spectra and 7Li longitudinal relaxation over a wide temperature range, and determine lithium self-diffusion both parallel and perpendicular to the fiber axis. Recording the temperature dependence permits us to interpret the presence of motional averaging of spin couplings for mobile Li. The joint analysis shows that at low Li content, Li occupies sites that lack ordered coordination and delocalized electrons and are collected in disordered spatial domains. Upon increasing the Li content, ordered sites collected in ordered domains become populated. Both disordered and ordered domains have a high inherent heterogeneity with a typical spatial extension of a few nanometers. The disordered domains exhibit a continuous topology that permits unhindered diffusion within it. At high Li content we also observe the presence of very small (∼nm) particles of metallic lithium. The joint analysis of XRD in combination with diffusion anisotropy, and anisotropy from the 7Li-NMR spectrum (with samples oriented differently with regard to the applied magnetic field), shows that the mesoscopic structure is made by ordered domains arranged in a cylindrically rolled-up manner with the mesoscopic axis parallel to the fiber axis. 
  •  
33.
  • Fijoł, Natalia, 1994-, et al. (författare)
  • MOF@Cell : 3D printed biobased filters anchored with a green metal–organic framework for effluent treatment
  • 2023
  • Ingår i: Journal of Materials Chemistry A. - 2050-7488 .- 2050-7496. ; 11:23, s. 12384-12394
  • Tidskriftsartikel (refereegranskat)abstract
    • Multifunctional, biobased materials processed by means of additive manufacturing technology can behighly applicable within the water treatment industry. This work summarizes a scalable and sustainablemethod of anchoring a green metal–organic framework (MOF) SU-101 onto the surface of 3D printed,biobased matrices built of polylactic acid (PLA)-based composites reinforced with TEMPO-oxidizedcellulose nanofibers (TCNFs). The two tested anchoring methods were hydrolysis via either concentratedhydrochloric acid treatment or via a photooxidation reaction using UV–ozone treatment. Stabledeposition of SU-101 distributed homogenously over the filter surface was achieved and confirmed byFT-IR, XPS and SEM measurements. The obtained 3D printed and functionalized MOF@PLA andMOF@TCNF/PLA (aka MOF@Cell) filters exhibit high efficiency in removing heavy metal ions from mineeffluent and methylene blue from contaminated water, as demonstrated through batch adsorptionexperiments. In addition to their potential for removal of contaminants from water, the MOF@Cell filtersalso exhibit excellent mechanical properties with a Young's modulus value of about 1200 MPa,demonstrating their potential for use in practical water treatment applications. The MOF@Cell filterswere able to maintain their structural integrity and filtration performance even after multiple cycles ofuse and regeneration. This study highlights the potential of multifunctional, biobased materials processedby additive manufacturing technology as a cost-effective alternative to traditional water treatmentmethods. The MOF@Cell filters presented in this study demonstrate high efficiency, durability, andreusability, making them promising candidates for practical applications in the modern water treatmentindustry.
  •  
34.
  • Firdaus, Yuliar, et al. (författare)
  • Novel wide-bandgap non-fullerene acceptors for efficient tandem organic solar cells
  • 2020
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry (RSC). - 2050-7488 .- 2050-7496. ; 8:3, s. 1164-1175
  • Tidskriftsartikel (refereegranskat)abstract
    • The power conversion efficiency (PCE) of tandem organic photovoltaics (OPVs) is currently limited by the lack of suitable wide-bandgap materials for the front-cell. Here, two new acceptor molecules, namely IDTA and IDTTA, with optical bandgaps (Eoptg) of 1.90 and 1.75 eV, respectively, are synthesized and studied for application in OPVs. When PBDB-T is used as the donor polymer, single-junction cells with PCE of 7.4%, for IDTA, and 10.8%, for IDTTA, are demonstrated. The latter value is the highest PCE reported to date for wide-bandgap (Eoptg ≥ 1.7 eV) bulk-heterojunction OPV cells. The higher carrier mobility in IDTTA-based cells leads to improved charge extraction and higher fill-factor than IDTA-based devices. Moreover, IDTTA-based OPVs show significantly improved shelf-lifetime and thermal stability, both critical for any practical applications. With the aid of optical-electrical device modelling, we combined PBDB-T:IDTTA, as the front-cell, with PTB7-Th:IEICO-4F, as the back-cell, to realize tandem OPVs with open circuit voltage of 1.66 V, short circuit current of 13.6 mA cm-2 and a PCE of 15%; in excellent agreement with our theoretical predictions. The work highlights IDTTA as a promising wide-bandgap acceptor for high-performance tandem OPVs. © 2019 The Royal Society of Chemistry.
  •  
35.
  • Frank, Sara, et al. (författare)
  • Exploring the influence of atomic level structure, porosity, and stability of bismuth(iii) coordination polymers on electrocatalytic CO2 reduction
  • 2021
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry (RSC). - 2050-7488 .- 2050-7496. ; 9:46, s. 26298-26310
  • Tidskriftsartikel (refereegranskat)abstract
    • Bismuth-based coordination polymers (CPs) have recently attracted attention as catalyst precursors for the electrocatalytic CO2 reduction reaction (eCO(2)RR). We present a comparative study by investigating six bismuth-based compounds in-depth to elucidate the correlation between their structures and their catalytic CO2-to-formate conversion. Thereby, we identify structural indicators of the pristine CPs resulting in optimized catalytic performance, paving the way for future design of CP derived catalysts. The structural properties of the six pristine materials vary in terms of porosity (from non-porous to 495 m(2) g(-1)), linker type (carboxylate- or phenolate-based), thermal- and chemical stability, and metal content. Herein, electrochemical studies are combined with comprehensive structural investigations using electron microscopy, powder X-ray diffraction, and X-ray absorption spectroscopy. Our study reveals that low chemical stability of the pristine CPs is crucial for the conversion of the precursors into active Bi2O2CO3 and of paramount importance for the eCO(2)RR activity, while the nature of the pristine material mostly influence the catalyst morphology and transport properties. Of the six investigated CPs, the best performing compounds selectively convert CO2 to formate with faradaic efficiencies in the range 80(3)-95(3)% and current densities of 5(1)-8(1) mA cm(-2) at -0.97 V-RHE.
  •  
36.
  • García-Ben, Javier, et al. (författare)
  • Structure and thermal property relationships in the thermomaterial di-n-butylammonium tetrafluoroborate for multipurpose cooling and cold-storage
  • 2023
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry (RSC). - 2050-7488 .- 2050-7496. ; 11:41, s. 22232-22247
  • Tidskriftsartikel (refereegranskat)abstract
    • Nowadays around 46% of food production around the world requires refrigeration, which is generally provided either by active vapour-compression (based on refrigerants with liquid-gas transitions) or passive cold-storage (based on solid-to-liquid phase change materials, SL-PCMs). However, in order to avoid fluid losses during the transitions, new thermomaterials with solid-solid transitions are desired for both applications. In this work, we find that [DBA][BF4] (DBA = di-n-butylammonium) is a promising thermomaterial with solid-solid phase transitions. This compound presents thermal properties of great interest not only for active barocaloric refrigeration, but also for passive cold-storage, which make this a unique multipurpose thermomaterial. The observed cold-storage capacity is very close to that of commercial SL-PCMs (E ∼ 135 kJ kg−1), while the pressure-induced thermal changes (ΔS ∼ [200-270] J K−1 kg−1) are superior to those of most barocaloric materials, operating under lower pressures (p ∼ [500-1000] bar). Moreover, the operating temperature range of this material is very adequate for food preservation (250-310 K), which is a great advantage over most barocaloric materials. Beyond the thermal properties, we perform deep structural characterization, which reveals a progressive structural disorder of the [DBA]+ cations and [BF4]− anions as the origin of such thermal properties, which will help the future rational design of enhanced thermomaterials.
  •  
37.
  • Günther, Tyran, et al. (författare)
  • Redox-site accessibility of composites containing a 2D redox-active covalent organic framework : from optimization to application
  • 2023
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry. - 2050-7488 .- 2050-7496. ; 11:26, s. 13923-13931
  • Tidskriftsartikel (refereegranskat)abstract
    • Redox-active covalent organic frameworks (RACOFs) can be employed in various functional materials and enesrgy applications. A crucial performance or efficiency indicator is the percentage of redox centres that can be utilised. Herein, the term redox-site accessibility (RSA) is defined and shown to be an effective metric for developing and optimising a 2D RACOF (viz., TpOMe-DAQ made from 2,4,6-trimethoxy-1,3,5-benzenetricarbaldehyde [TpOMe] and 2,6-diaminoanthraquinone [DAQ]) as an anode material for potential organic-battery applications. Pristine TpOMe-DAQ utilises only 0.76% of its redox sites, necessitating the use of conductivity-enhancement strategies such as blending it with different conductive carbons, or performing in situ polymerisation with EDOT (3,4-ethylenedioxythiophene) to form a conductive polymer. While conductive carbon-RACOF composites showed a modest RSA improvement of 4.0%, conductive polymer-RACOF composites boosted the redox-site usage (RSA) to 90% at low mass loadings. The material and electrochemical characteristics of the conductive polymer-RACOF composite containing more-than-necessary conductive polymer showed a reduced surface area but almost identical electrochemical behaviour, compared to the optimal ratio. The high RSA of the optimally loaded composite was replicated in a RACOF-air battery with over 90% active redox sites. We believe that the reported approach and methods, which can be employed on a milligram scale, could serve as a general guide for the electrification and characterisation of RACOFs, as well as for other redox-active porous polymers.
  •  
38.
  • Gupta, Divyani, et al. (författare)
  • High yield selective electrochemical conversion of N-2 to NH(3)via morphology controlled silver phosphate under ambient conditions
  • 2022
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry. - 2050-7488 .- 2050-7496. ; 10:38, s. 20616-20625
  • Tidskriftsartikel (refereegranskat)abstract
    • Development of a highly active catalyst for the synthesis of ammonia via the electrochemical dinitrogen reduction reaction (e-NRR) is an immense challenge. We report the modification of metallic Ag with inorganic phosphate to obtain Ag3PO4 as an effective electrocatalyst for the e-NRR in alkaline media under ambient conditions. The designed Ag3PO4 catalyst can effectually suppress the HER. The e-NRR activity was improved by fine-tuning the morphology by a template free one-pot synthesis. The synthesised Ag3PO4 having cuboidal morphology is shown to have superior activity and stability towards the e-NRR witnessed from a high faradaic efficiency of 26.67%, yield rate of 456.75 mu g h(-1) mg(cat)(-1) and TOF value of 0.46 h(-1) at a positive potential of 0 V vs. RHE in 0.1 M KOH. Careful examination of any N-contaminants present in catalyst/electrolyte/gas-feed is carried out by UV-vis spectroscopy and gas-purification methods prior to e-NRR measurements to eliminate any false NH3 production. Also, the true source of NH3 production is confirmed by means of N-15-isotope labelling experiments via(1)H-NMR spectroscopy.
  •  
39.
  • Gupta, Divyani, et al. (författare)
  • Local electrocatalytic activity of PtRu supported on nitrogen-doped carbon nanotubes towards methanol oxidation by scanning electrochemical microscopy
  • 2021
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry. - 2050-7488 .- 2050-7496. ; 9:37, s. 21291-21301
  • Tidskriftsartikel (refereegranskat)abstract
    • Nitrogen-doped carbon nanotubes (NCNTs) were synthesized by treating HNO3-oxidized carbon nanotubes (CNTs) in an NH3 flow at different temperatures. PtRu nanoparticles were decorated over NCNTs. The PtRu catalysts were prepared by an impregnation-reduction method from metal chloride precursors with a total metal loading of about 10 wt%. The electrocatalytic activity with respect to methanol oxidation was studied using electrochemical and scanning electrochemical microscopy (SECM) measurements. Transmission electron microscopy revealed the spherical shape and narrow particle size distribution of the PtRu particles over NCNTs with average particle sizes of similar to 3-5 nm. A detailed X-ray photoelectron spectroscopy study was performed to quantitatively identify different nitrogen functional groups and to evaluate their role in the observed enhanced catalytic activity towards methanol oxidation. The determination of the local electrocatalytic activity of the proposed catalyst towards methanol oxidation and simultaneous evaluation of the intermediates produced during methanol oxidation were achieved using SECM. Density functional theory studies were performed to understand the adsorption sites of methanol and intermediates on different reactive sites and to investigate possible reaction mechanisms.
  •  
40.
  • Gupta, Divyani, et al. (författare)
  • Self-powered NH3 synthesis by trifunctional Co2B-based high power density Zn-air batteries
  • 2023
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry. - 2050-7488 .- 2050-7496. ; 11:23, s. 12223-12235
  • Tidskriftsartikel (refereegranskat)abstract
    • The electrochemical production of NH3 by Zn-air batteries is a viable and economical approach to realize sustainable and competent energy conversion. We report the environment friendly, cost-effective, and energy efficient sonochemical synthesis of amorphous Co2B nanosheets for trifunctional electrocatalysis. The catalyst exhibits a high NH3 yield rate (2.98 mg h(-1) mg(cat.)(-1)), F.E (20.45%), and TOF of 0.74 h(-1) at -0.3 V vs. RHE, thereby unveiling an outstanding performance for the artificial ammonia synthesis. The reliable and true NH3 production is premediated by following rigorous protocol that involves the purification of gas supplies, elimination of N-contaminants, and quantification of NH3 by different methods, UV-Vis spectroscopy and N-15(2) isotope labelling experiments. More interestingly, DFT calculations on the Co2B catalyst surface shed light on the efficient NRR owing to the presence of Co active sites and possible HER suppression. The optimized Co2B catalyst shows outstanding oxygen bifunctional activity. When employed as an air-cathode for Zn-air batteries, it exhibited remarkable electrocatalytic activity delivering an open circuit potential of 1.45 V with a high power density of 500 mW cm(-2) and an energy density of 1078 W h kg(-1), which can perform NH3 generation with an overall NH3 production yield rate of 1.048 mg h(-1) mg(cat.)(-1).
  •  
41.
  •  
42.
  • Haque, Anamul, et al. (författare)
  • Vacancy assisted growth of copper tantalum sulfide nanocrystals
  • 2022
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry. - 2050-7488 .- 2050-7496. ; 10:37, s. 19925-19934
  • Tidskriftsartikel (refereegranskat)abstract
    • Cu-based ternary chalcogenides have received significant interest as an alternative to conventional photovoltaic materials. CuInS2 and CuInSe2 are the most studied copper-based ternary chalcogenides for photovoltaics. Recently, copper tantalum sulfide (CuTaS3) has been proposed as a potential light absorber for photovoltaics. The synthesis conditions and growth mechanism of ternary systems control the final composition and crystal structure. However, such studies have not been explored for copper tantalum sulfides. Here, we studied the formation and growth mechanism of Cu3TaS4 nanocrystals (NCs) primarily using X-ray diffraction, transmission electron microscopy, and density functional theory (DFT) calculations. The reactions proceed via the formation of cubic Cu2-xS NCs due to soft Lewis acid - soft Lewis base interaction. The Cu2-xS have Cu vacancies, which can be controlled by the relative concentration of the Cu precursor. Ta incorporation occurs in the Cu2-xS NCs at Cu vacancy sites, followed by the diffusion of Ta by replacing Cu into the lattice. Low packing of atoms in Cu3TaS4 provides suitable diffusion channels for Ta and Cu atoms. The diffusion barriers of Ta atoms outweigh that of Cu atoms, implying a reaction rate controlled by Ta diffusion. Thus by varying the relative Cu precursor concentration, the concentration of Cu-vacancies in Cu2-xS can be tuned, which controls the growth rate of Cu3TaS4. Understanding of the growth mechanism obtained in this paper will significantly contribute to the rational synthesis of various Cu-based ternary chalcogenides that is not possible by direct synthesis and hence will have an impact on potential applications in photovoltaics and photocatalysis.
  •  
43.
  • Haydous, Fatima, et al. (författare)
  • The impact of ligands on the synthesis and application of metal halide perovskite nanocrystals
  • 2021
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry (RSC). - 2050-7488 .- 2050-7496. ; 9:41, s. 23419-23443
  • Tidskriftsartikel (refereegranskat)abstract
    • Metal halide perovskites have emerged as attractive materials for use in solar cells, light emitting diodes and other optoelectronic devices, mainly due to their impressive charge transport properties, strong light absorption, long carrier diffusion lengths and long excited state lifetime. The extensive research on these materials has paved the way for a new class of materials: metal halide perovskite nanocrystals (NCs). Due to their high photoluminescence quantum yield and narrow emission that can be tuned by size and compositional variations, perovskite NCs are considered to be ideal candidates compared to traditional quantum dots. With the growing interest in these materials and the current challenges in their commercialization, this review aims mainly to provide the necessary understanding of the influence of capping ligands on the synthesis and application of perovskite NCs. The different synthetic approaches and the role of ligands in determining the morphological and optical properties of the resulting NCs will be discussed. Thereafter, we review the advances in understanding the surface chemistry and ligation in the metal halide perovskite NCs. Lastly, we review the ligand exchange and management processes that are shown to be beneficial in improving the performance and stability of perovskite nanocrystal films for optoelectronic applications.
  •  
44.
  • He, Chengliang, et al. (författare)
  • Near infrared electron acceptors with a photoresponse beyond 1000 nm for highly efficient organic solar cells
  • 2020
  • Ingår i: Journal of Materials Chemistry A. - : ROYAL SOC CHEMISTRY. - 2050-7488 .- 2050-7496. ; 8:35, s. 18154-18161
  • Tidskriftsartikel (refereegranskat)abstract
    • Developing near infrared (NIR) organic semiconductors is indispensable for promoting the performance of organic solar cells (OSCs), but addressing the trade-off between voltage and current density thus achieving high efficiency with low energy loss is still an urgent challenge. Herein, NIR acceptors (H1, H2 and H3) with a photoresponse beyond 1000 nm were developed by conjugating dithienopyrrolobenzothiadiazole to 2-(5,6-difluoro-3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrileviavaried alkyl thiophene bridges. It was found that the linear outward chains in thiophene bridges could mitigate both the conformation disorder of H3 and the electronic disorder of the PBDB-T:H3 blends, which could help to form a favorable blend morphology, facilitating highly efficient photoelectric conversion in the resultant OSCs. As a result, devices based on PBDB-T:H3 achieve a high efficiency of 13.75% with a low energy loss of 0.55 eV, which is one of the highest efficiencies and the lowest energy loss among OSCs with an optoelectronic response near 1000 nm. This work provides a new design strategy towards NIR acceptors for efficient OSCs and future exploration of functional optoelectronics.
  •  
45.
  • Heise, Katja, et al. (författare)
  • Spatioselective surface chemistry for the production of functional and chemically anisotropic nanocellulose colloids
  • 2022
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry (RSC). - 2050-7496 .- 2050-7488. ; 121
  • Forskningsöversikt (refereegranskat)abstract
    • Maximizing the benefits of nanomaterials from biomass requires unique considerations associated with their native chemical and physical structure. Both cellulose nanofibrils and nanocrystals are extracted from cellulose fibers via a top-down approach and have significantly advanced materials chemistry and set new benchmarks in the last decade. One major challenge has been to prepare defined and selectively modified nanocelluloses, which would, e.g., allow optimal particle interactions and thereby further improve the properties of processed materials. At the molecular and crystallite level, the surface of nanocelluloses offers an alternating chemical structure and functional groups of different reactivity, enabling straightforward avenues towards chemically anisotropic and molecularly patterned nanoparticles via spatioselective chemical modification. In this review, we will explain the influence and role of the multiscale hierarchy of cellulose fibers in chemical modifications, and critically discuss recent advances in selective surface chemistry of nanocelluloses. Finally, we will demonstrate the potential of those chemically anisotropic nanocelluloses in materials science and discuss challenges and opportunities in this field.
  •  
46.
  • Hernández, Guiomar, et al. (författare)
  • Do non-coordinating polymers function as host materials for solid polymer electrolytes? : The case of PVdF-HFP
  • 2023
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry. - 2050-7488 .- 2050-7496. ; 11:28, s. 15329-15335
  • Tidskriftsartikel (refereegranskat)abstract
    • In the search for novel solid polymer electrolytes (SPEs), primarily targeting battery applications, a range of different polymers is currently being explored. In this context, the non-coordinating poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP) polymer is a frequently utilized system. Considering that PVdF-HFP should be a poor solvent for cation salts, it is counterintuitive that this is a functional host material for SPEs. Here, we do an in-depth study of the salt dissolution properties and ionic conductivity of PVdF-HFP-based electrolytes, using two different fabrication methods and also employing a low-molecular-weight solvent analogue. It is seen that PVdF-HFP is remarkably poor as an SPE host, despite its comparatively high dielectric constant, and that the salt dissolution properties instead are controlled by fluorophilic interactions of the anion with the polymer.
  •  
47.
  • Hu, Jutao, et al. (författare)
  • The origin of anomalous hydrogen occupation in high entropy alloys
  • 2022
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry (RSC). - 2050-7488 .- 2050-7496. ; 10:13, s. 7228-7237
  • Tidskriftsartikel (refereegranskat)abstract
    • Metal hydrogen storage materials have been the focus of intensive research in the field of hydrogen-based economy. An outstanding question is that the number of hydrogen atoms accommodated in metal hydrides is generally much below the number of interstices, which limits their hydrogen storage capacities. Unlike traditional FCC metal hydrides where hydrogen can only occupy tetrahedral interstices, this study demonstrates that hydrogen can also occupy octahedral interstices in FCC high entropy alloy (HEA) hydrides, which leads to the violation of the Switendick criterion. For Ti25V25Nb25Ta25 and Ti25V25Nb25Zr25 HEAs, nearly 20% and 17.5% of octahedral interstices can be occupied by hydrogen, respectively. The anomalous hydrogen occupation mainly originates from the intrinsic electron delocalization between hydrogen atoms in HEA hydrides, which presents a sharp contrast to traditional metal hydrides. Such electron delocalization decreases repulsive interactions between hydrogens and promotes the electron localization at octahedral interstices. Additionally, this study reveals that hydrogen occupation at octahedral interstices enhances the structural disordering and decreases the thermal stability of HEA hydrides, which will be beneficial to reduce the dehydrogenation temperature. The presented results may provide a new strategy for the design of high-density storage materials.
  •  
48.
  • Huang, Can, et al. (författare)
  • Stabilizing the Li1.4Al0.4Ti1.6(PO4)3/Li interface with an in situ constructed multifunctional interlayer for high energy density batteries
  • 2022
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry. - 2050-7488 .- 2050-7496. ; 10:48, s. 25500-25508
  • Tidskriftsartikel (refereegranskat)abstract
    • The sodium super-ionic conductor (NASICON)-type solid-state electrolyte Li1.4Al0.4Ti1.6(PO4)3 (LATP) is an attractive alternative to liquid electrolytes for lithium batteries. The rapid development of LATP, however, is hindered by its poor interfacial compatibilities against the Li metal. Herein, a flexible membrane coating layer consisting of Mg3N2 and PVDF has been adopted to modify LATP via a simple drop-casting method. A multifunctional interlayer with Mg, LiF and Li3N is in situ constructed by the reaction of the coating layer with the Li metal. The decomposition of LATP has been restrained and interfacial ionic transport kinetics has been improved with the modification. Benefitting from the multifunctional interlayer, the critical current density of LATP is improved from 0.34 mA cm−2 to 0.76 mA cm−2. The symmetric cells assembled with the modified LATP exhibit a stable cycle for more than 1000 h at 0.20 mA cm−2, and the Li/LiFePO4 cells after modification have a capacity retention of 80% after 385 cycles at 2C. The present work demonstrates a promising strategy for fine interfacial stability tuning and low-impedance LATP.
  •  
49.
  • Huo, Meiling, et al. (författare)
  • A heteroepitaxially grown two-dimensional metal-organic framework and its derivative for the electrocatalytic oxygen reduction reaction
  • 2022
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry (RSC). - 2050-7488 .- 2050-7496. ; 10:19, s. 10408-10416
  • Tidskriftsartikel (refereegranskat)abstract
    • Two-dimensional (2D) metal–organic frameworks (MOFs) have become a hot topic recently due to their high surface area, larger number of exposed active sites, and improved conductivity. Combining different 2D MOFs could introduce new physical and chemical properties. Here, we have synthesized a heteroepitaxially grown 2D zeolitic imidazolate framework with a leaf-like morphology (ZIF-L). ZIF-L has a layer-by-layer dense structure, which possesses a high content of N and metal ions as active sites. ZIF-L-Co is heteroepitaxially grown on ZIF-L-Zn, while ZIF-L-Zn@ZIF-Co has been successfully prepared. After pyrolysis, the heteroepitaxially grown MOF derived ultra-small Co nanoparticle immobilized nitrogen doped carbon (NC) material (HM-Co@NC) exhibits superior oxygen reduction reaction (ORR) activity (Eonset = 0.998 V, E1/2 = 0.905 V) and better stability than Pt/C, achieving well-qualified assemblies for use in rechargeable Zn–air batteries.
  •  
50.
  • Isacsson, Patrik, et al. (författare)
  • Production of energy-storage paper electrodes using a pilot-scale paper machine
  • 2022
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry. - 2050-7488 .- 2050-7496. ; 10:40, s. 21579-21589
  • Tidskriftsartikel (refereegranskat)abstract
    • The global efforts in electrifying our society drive the demand for low-cost and sustainable energy storage solutions. In the present work, a novel material concept was investigated to enable fabrication of several 10 meter-long rolls of supercapacitor paper electrodes on a pilot-scale paper machine. The material concept was based on cationized, cellulose-rich wood-derived fibres, conducting polymer PEDOT:PSS, and activated carbon filler particles. Cationic fibres saturated with anionic PEDOT:PSS provide a conducting scaffold hosting the activated carbon, which functions as the active charge-storage material. The response from further additives was systematically investigated for several critical paper properties. Cellulose nanofibrils were found to improve mechanical properties, while carbon black enhanced both the conductivity and the storage capacity of the activated carbon, reaching a specific capacitance of 67 F g−1. This pilot trial shows that “classical” papermaking methods are fit for the purpose and provides valuable insights on how to further advance bio-based energy storage solutions for large-scale applications.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 146
Typ av publikation
tidskriftsartikel (135)
forskningsöversikt (11)
Typ av innehåll
refereegranskat (140)
övrigt vetenskapligt/konstnärligt (6)
Författare/redaktör
Ahuja, Rajeev, 1965- (8)
Sun, Licheng, 1962- (8)
Hagfeldt, Anders (6)
Jannasch, Patric (5)
Edvinsson, Tomas, Pr ... (5)
Cheung, Ocean (5)
visa fler...
Berglund, Lars, 1956 ... (5)
Moth-Poulsen, Kasper ... (4)
Brandell, Daniel, 19 ... (4)
Berggren, Magnus (3)
khataee, Amirreza (3)
Crispin, Xavier (3)
Inge, A. Ken, 1984- (3)
Johansson, Patrik, 1 ... (3)
Vomiero, Alberto (3)
Zhang, Fengling (3)
Hahlin, Maria (3)
Wang, Ergang, 1981 (3)
Fahlman, Mats (2)
Cornell, Ann M., 196 ... (2)
Lo Re, Giada, 1971 (2)
Mathew, Aji P., 1971 ... (2)
Rensmo, Håkan (2)
Engquist, Isak (2)
Yin, Hang (2)
Larsson, Per Tomas (2)
Wågberg, Thomas, 197 ... (2)
Scragg, Jonathan J., ... (2)
Platzer Björkman, Ch ... (2)
Petsagkourakis, Ioan ... (2)
Tybrandt, Klas (2)
Furo, Istvan (2)
Svensson Grape, Erik ... (2)
Baryshnikov, Glib (2)
Ågren, Hans (2)
Strømme, Maria, 1970 ... (2)
Schmitt, Thorsten (2)
Zhao, Haiguang (2)
Hernández, Guiomar (2)
Younesi, Reza (2)
Li, Xin (2)
Rosén, Johanna (2)
Karlsson, Maths, 197 ... (2)
Vitos, Levente (2)
Duda, Laurent (2)
Diaz de León, Ramón (2)
Valencia, Luis (2)
Langhammer, Christop ... (2)
Cornell, Ann (2)
Cappel, Ute B. (2)
visa färre...
Lärosäte
Uppsala universitet (50)
Kungliga Tekniska Högskolan (32)
Linköpings universitet (25)
Chalmers tekniska högskola (23)
Stockholms universitet (14)
Lunds universitet (10)
visa fler...
RISE (8)
Umeå universitet (3)
Luleå tekniska universitet (3)
Mittuniversitetet (2)
visa färre...
Språk
Engelska (146)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (128)
Teknik (37)
Medicin och hälsovetenskap (3)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy