SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "L773:2073 4344 srt2:(2020-2024)"

Search: L773:2073 4344 > (2020-2024)

  • Result 1-50 of 54
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Ajakaiye Jensen, Lucy Idowu, et al. (author)
  • Effect of pd and ir as promoters in the activity of Ni/CeZrO2 catalyst for the reverse water-gas shift reaction
  • 2021
  • In: Catalysts. - : MDPI AG. - 2073-4344. ; 11:9
  • Journal article (peer-reviewed)abstract
    • Catalytic conversion of CO2 to CO using reverse water gas shift (RWGS) reaction is a key intermediate step for many CO2 utilization processes. RWGS followed by well-known synthesis gas conversion may emerge as a potential approach to convert CO2 to valuable chemicals and fuels. Nickel (Ni) based catalysts with ceria-zirconia (Ce-Zr) support can be used to tune the metal-support interactions, resulting in a potentially enhanced CO2 hydrogenation rate and elongation of the catalyst lifespan. The thermodynamics of RWGS reaction is favored at high temperature for CO2 conversion. In this paper the effect of Palladium (Pd) and Iridium (Ir) as promoters in the activity of 10 wt%Ni 2 wt%Pd 0.1wt%Ir/CeZrO2 catalyst for the reverse water gas shift reaction was investigated. RWGS was studied for different feed (CO2:H2) ratios. The new active interface between Ni, Pd and Ir particles is proposed to be an important factor in enhancing catalytic activity. 10 wt%Ni 2 wt%Pd 0.1 wt%Ir/CeZrO2 catalyst showed a better activity with CO2 conversion of 52.4% and a CO selectivity of 98% for H2:CO2 (1:1) compared to the activity of 10%Ni/CeZrO2 with CO2 conversion of 49.9% and a CO selectivity of 93%. The catalytic activity for different feed ratios using 10 wt%Ni 2 wt%Pd 0.1 wt%Ir/CeZrO2 were also studied. The use of palladium and iridium boosts the stability and life span of the Ni-based catalysts. This indicates that the catalyst could be used potentially to design RWGS reactors for CO2 utilization units.
  •  
2.
  • Al Soubaihi, Rola Mohammad, et al. (author)
  • CO Oxidation Efficiency and Hysteresis Behavior over Mesoporous Pd/SiO2 Catalyst
  • 2021
  • In: Catalysts. - : MDPI AG. - 2073-4344. ; 11:1
  • Journal article (peer-reviewed)abstract
    • Carbon monoxide (CO) oxidation is considered an important reaction in heterogeneous industrial catalysis and has been extensively studied. Pd supported on SiO2 aerogel catalysts exhibit good catalytic activity toward this reaction owing to their CO bond activation capability and thermal stability. Pd/SiO2 catalysts were investigated using carbon monoxide (CO) oxidation as a model reaction. The catalyst becomes active, and the conversion increases after the temperature reaches the ignition temperature (T-ig). A normal hysteresis in carbon monoxide (CO) oxidation has been observed, where the catalysts continue to exhibit high catalytic activity (CO conversion remains at 100%) during the extinction even at temperatures lower than T-ig. The catalyst was characterized using BET, TEM, XPS, TGA-DSC, and FTIR. In this work, the influence of pretreatment conditions and stability of the active sites on the catalytic activity and hysteresis is presented. The CO oxidation on the Pd/SiO2 catalyst has been attributed to the dissociative adsorption of molecular oxygen and the activation of the C-O bond, followed by diffusion of adsorbates at T-ig to form CO2. Whereas, the hysteresis has been explained by the enhanced stability of the active site caused by thermal effects, pretreatment conditions, Pd-SiO2 support interaction, and PdO formation and decomposition.
  •  
3.
  • Amaro-Gahete, Juan, et al. (author)
  • Hydroxyl-Decorated Diiron Complex as a [FeFe]-Hydrogenase Active Site Model Complex : Light-Driven Photocatalytic Activity and Heterogenization on Ethylene-Bridged Periodic Mesoporous Organosilica
  • 2022
  • In: Catalysts. - : MDPI. - 2073-4344. ; 12:3
  • Journal article (peer-reviewed)abstract
    • A biomimetic model complex of the [FeFe]-hydrogenase active site (FeFeOH) with an ethylene bridge and a pendant hydroxyl group has been synthesized, characterized and evaluated as catalyst for the light-driven hydrogen production. The interaction of the hydroxyl group present in the complex with 3-isocyanopropyltriethoxysilane provided a carbamate triethoxysilane bearing a diiron dithiolate complex (NCOFeFe), thus becoming a potentially promising candidate for anchoring on heterogeneous supports. As a proof of concept, the NCOFeFe precursor was anchored by a grafting procedure into a periodic mesoporous organosilica with ethane bridges (EthanePMO@NCOFeFe). Both molecular and heterogenized complexes were tested as catalysts for light-driven hydrogen generation in aqueous solutions. The photocatalytic conditions were optimized for the homogenous complex by varying the reaction time, pH, amount of the catalyst or photosensitizer, photon flux, and the type of light source (light-emitting diode (LED) and Xe lamp). It was shown that the molecular FeFeOH diiron complex achieved a decent turnover number (TON) of 70 after 6 h, while NCOFeFe and EthanePMO@NCOFeFe had slightly lower activities showing TONs of 37 and 5 at 6 h, respectively.
  •  
4.
  • Berdugo Vilches, Teresa, 1985, et al. (author)
  • Mapping the effects of potassium on fuel conversion in industrial-scale fluidized bed gasifiers and combustors
  • 2021
  • In: Catalysts. - : MDPI AG. - 2073-4344. ; 11:11
  • Journal article (peer-reviewed)abstract
    • Potassium (K) is a notorious villain among the ash components found in the biomass, being the cause of bed agglomeration and contributing to fouling and corrosion. At the same time, K is known to have catalytic properties towards fuel conversion in combustion and gasification environments. Olivine (MgFe silicate) used as gasifier bed material has a higher propensity to form catalytically active K species than traditional silica sand beds, which tend to react with K to form stable and inactive silicates. In a dual fluidized bed (DFB) gasifier, many of those catalytic effects are expected to be relevant, given that the bed material becomes naturally enriched with ash elements from the fuel. However, a comprehensive overview of how enrichment of the bed with alkali affects fuel conversion in both parts of the DFB system is lacking. In this work, the effects of ash-enriched olivine on fuel conversion in the gasification and combustion parts of the process are mapped. The work is based on a dedicated experimental campaign in a Chalmers DFB gasifier, wherein enrichment of the bed material with K is promoted by the addition of a reaction partner, i.e., sulfur, which ensures K retention in the bed in forms other than inactive silicates. The choice of sulfur is based on its affinity for K under combustion conditions. The addition of sulfur proved to be an efficient strategy for capturing catalytic K in olivine particles. In the gasification part, K-loaded olivine enhanced the char gasification rate, decreased the tar concentration, and promoted the WGS equilibrium. In the combustion part, K prevented full oxidation of CO, which could be mitigated by the addition of sulfur to the cyclone outlet.
  •  
5.
  • Berwanger, Mailing, et al. (author)
  • HfS2 and TiS2 Monolayers with Adsorbed C, N, P Atoms : A First Principles Study
  • 2020
  • In: Catalysts. - : MDPI. - 2073-4344. ; 10:1
  • Journal article (peer-reviewed)abstract
    • First principles density functional theory was used to study the energetic, structural, and electronic properties of HfS2 and TiS2 materials in their bulk, pristine monolayer, as well as in the monolayer structure with the adsorbed C, N, and P atoms. It is shown that the HfS2 monolayer remains a semiconductor while TiS2 changes from semiconductor to metallic behavior after the atomic adsorption. The interaction with the external atoms introduces localized levels inside the band gap of the pristine monolayers, significantly altering their electronic properties, with important consequences on the practical use of these materials in real devices. These results emphasize the importance of considering the interaction of these 2D materials with common external atomic or molecular species.
  •  
6.
  • Cao, Zhejian, 1991-, et al. (author)
  • Rapid Ammonia Carriers for SCR Systems Using MOFs [M2(adc)2(dabco)] (M = Co, Ni, Cu, Zn)
  • 2020
  • In: Catalysts. - : MDPI. - 2073-4344. ; 10:12
  • Journal article (peer-reviewed)abstract
    • Ammonia is one of the most common reductants for the automotive selective catalytic reduction (SCR) system owing to its high NO2 reduction (deNOx) efficiency. However, ammonia carriers for the SCR system have sluggishly evolved to achieve rapid ammonia dosing. In this study, the MOFs [M2(adc)2(dabco)] (M = Co, Ni, Cu, Zn) were synthesized and characterized as ammonia carriers. Among the four obtained MOFs, Ni2(adc)2(dabco) possessed the highest surface area, 772 m2/g, highest ammonia uptake capacity, 12.1 mmol/g, and stable cyclic adsorption-desorption performance. All the obtained MOFs demonstrated physisorption of ammonia and rapid kinetics of ammonia adsorption and desorption. Compared with halide ammonia carrier MgCl2, the obtained MOFs showed four times faster adsorption kinetics to reach 90% of the ammonia uptake capacity. For the ammonia desorption, the Ni2(adc)2(dabco) provided 6 mmol/g ammonia dosing when temperature reached 125 °C in the first 10 min, which was six times of the ammonia dosing from Mg(NH3)6Cl2. The results offer a solution to shorten the buffering time for ammonia dosing in the SCR system.
  •  
7.
  • Creci, Simone, 1992, et al. (author)
  • Acidity as Descriptor for Methanol Desorption in B-, Ga- and Ti-MFI Zeotypes
  • 2021
  • In: Catalysts. - : MDPI AG. - 2073-4344. ; 11:1, s. 1-12
  • Journal article (peer-reviewed)abstract
    • The isomorphous substitution of Si with metals other than Al in zeotype frameworks allows for tuning the acidity of the zeotype and, therefore, to tailor the catalyst's properties as a function of the desired catalytic reaction. In this study, B, Ga, and Ti are incorporated in the MFI framework of silicalite samples and the following series of increasing acidity is observed: Ti-silicalite < B-silicalite < Ga-silicalite. It is also observed that the lower the acidity of the sample, the easier the methanol desorption from the zeotype surface. In the target reaction, namely the direct conversion of methane to methanol, methanol extraction is affected by the zeotype acidity. Therefore, the results shown in this study contribute to a more enriched knowledge of this reaction.
  •  
8.
  • Dobrota, Ana S., et al. (author)
  • What Is the Real State of Single-Atom Catalysts under Electrochemical Conditions-From Adsorption to Surface Pourbaix Plots?
  • 2021
  • In: Catalysts. - : MDPI AG. - 2073-4344. ; 11:10
  • Journal article (peer-reviewed)abstract
    • The interest in single-atom catalysts (SACs) is increasing, as these materials have the ultimate level of catalyst utilization, while novel reactions where SACs are used are constantly being discovered. However, to properly understand SACs and to further improve these materials, it is necessary to consider the nature of active sites under operating conditions. This is particularly important when SACs are used as electrocatalysts due to harsh experimental conditions, including extreme pH values or high anodic and cathodic potential. In this contribution, density functional theory-based thermodynamic modelling is used to address the nature of metal centers in SACs formed by embedding single metal atoms (Ru, Rh, Ir, Ni, Pd, Pt, Cu, Ag, and Au) into graphene monovacancy. Our results suggest that none of these SAC metal centers are clean at any potential or pH in the water thermodynamic stability region. Instead, metal centers are covered with H-ads, OHads, or O-ads, and in some cases, we observed the restructuring of the metal sites due to oxygen incorporation. Based on these findings, it is suggested that setting up theoretical models for SAC modelling and the interpretation of ex situ characterization results using ultra-high vacuum (UHV) techniques requires special care, as the nature of SAC active sites under operating conditions can significantly diverge from the basic models or the pictures set by the UHV measurements.
  •  
9.
  • Engedahl, Unni, 1990, et al. (author)
  • Reaction mechanism for methane-to-methanol in CU-SSZ-13: First-principles study of the Z 2 [Cu 2 O] and Z 2 [Cu 2 oh] motifs
  • 2021
  • In: Catalysts. - : MDPI AG. - 2073-4344. ; 11:1, s. 1-12
  • Journal article (peer-reviewed)abstract
    • As transportation continues to increase world-wide, there is a need for more efficient utilization of fossil fuel. One possibility is direct conversion of the solution gas bi-product CH4 into an energy-rich, easily usable liquid fuel such as CH3OH. However, new catalytic materials to facilitate the methane-to-methanol reaction are needed. Using density functional calculations, the partial oxidation of methane is investigated over the small-pore copper-exchanged zeolite SSZ-13. The reaction pathway is identified and the energy landscape elucidated over the proposed motifs Z2 [Cu2O] and Z2 [Cu2OH]. It is shown that the Z2[Cu2O] motif has an exergonic reaction path, provided water is added as a solvent for the desorption step. However, a micro-kinetic model shows that neither Z2 [Cu2O] nor Z2 [Cu2OH] has any notable activity under the reaction conditions. These findings highlight the importance of the detailed structure of the active site and that the most stable motif is not necessarily the most active.
  •  
10.
  • Englund, Johanna, 1988, et al. (author)
  • Deactivation of a Vanadium-Based SCR Catalyst Used in a Biogas-Powered Euro VI Heavy-Duty Engine Installation
  • 2020
  • In: Catalysts. - : MDPI AG. - 2073-4344. ; 10:5
  • Journal article (peer-reviewed)abstract
    • We have investigated how the exhaust gases from a heavy-duty Euro VI engine, powered with biogas impact a vanadium-based selective catalytic reduction (SCR) catalyst in terms of performance. A full Euro VI emission control system was used and the accumulation of catalyst poisons from the combustion was investigated for the up-stream particulate filter as well as the SCR catalyst. The NO(x)reduction performance in terms of standard, fast and NO2-rich SCR was evaluated before and after exposure to exhaust from a biogas-powered engine for 900 h. The SCR catalyst retains a significant part of its activity towards NO(x)reduction after exposure to biogas exhaust, likely due to capture of catalyst poisons on the up-stream components where the deactivation of the oxidation catalyst is especially profound. At lower temperatures some deactivation of the first part of the SCR catalyst was observed which could be explained by a considerably higher surface V4+/V(5+)ratio for this sample compared to the other samples. The higher value indicates that the reoxidation of V(4+)to V(5+)is partially hindered, blocking the redox cycle for parts of the active sites.
  •  
11.
  • Friberg, Ida, 1990, et al. (author)
  • Hydrothermal Aging of Pd/LTA Monolithic Catalyst for Complete CH4 Oxidation
  • 2020
  • In: Catalysts. - : MDPI AG. - 2073-4344. ; 10:5
  • Journal article (peer-reviewed)abstract
    • Palladium-based catalysts are known to provide high CH4 oxidation activity. One drawback for these materials is that they often lose activity in the presence of water vapor due to the formation of surface hydroxyls. It is however possible to improve the water vapor tolerance by using zeolites as support material. In this study, we have investigated Pd supported on thermally stable LTA zeolite with high framework Si/Al ratio (Si/Al = ~44) for CH4 oxidation and the effect of hydrothermal aging at temperatures up to 900◦C. High and stable CH4 oxidation activity in the presence of water vapor was observed for Pd/LTA after hydrothermal aging at temperatures ≤ 700◦C. However, aging at temperatures of 800–900◦C resulted in catalyst deactivation. This deactivation was not a result of structural collapse of the LTA zeolite as the LTA zeolite only showed minor changes in surface area, pore volume, and X-ray diffraction pattern after 900◦C aging. We suggest that the deactivation was caused by extensive formation of ion-exchanged Pd2+ together with Pd sintering. These two types of Pd species appear to have lower CH4 oxidation activity and to be more sensitive to water deactivation compared to the well dispersed Pd particles observed on the LTA support prior to the hydrothermal aging. By contrast, Pd/Al2O3 was generally sensitive to water vapor no matter of the aging temperature. Although the aging caused extensive Pd sintering in Pd/Al2O3, only minor deterioration of the CH4 oxidation activity was seen. The results herein presented show that Pd/LTA is a promising CH4 oxidation catalyst, however Pd rearrangement at high temperatures (≥800◦C) is one remaining challenge.
  •  
12.
  • Goszewska, Ilona, et al. (author)
  • Boosting the Performance of Nano-Ni Catalysts by Palladium Doping in Flow Hydrogenation of Sulcatone
  • 2020
  • In: Catalysts. - : MDPI. - 2073-4344. ; 10:11
  • Journal article (peer-reviewed)abstract
    • The effect of Pd doping on nano-Ni catalyst hydrogenation aptitude in sulcatone (6-methyl-5-hepten-2-one) hydrogenation was investigated. Obtained results demonstrated that the addition of non-catalytic amounts of Pd to the surface of parent Ni catalyst improves the activity to the extent that it surpassed the activity of 2.16 wt% Pd catalyst (model catalyst) at optimal reaction conditions in the flow hydrogenation of an unsaturated ketone. Pd doping improves hydrogen activation on the catalyst, which was found to be a rate-limiting step using kinetic isotopic measurements and theoretical calculations.
  •  
13.
  • Granestrand, Jonas, et al. (author)
  • Assessment of the Impact of Trace Elements in FAME Biodiesel on Diesel Oxidation Catalyst Activity after Full Lifetime of Operation in A Heavy-Duty Truck
  • 2020
  • In: Catalysts. - : MDPI AG. - 2073-4344. ; 10:12
  • Journal article (peer-reviewed)abstract
    • Fatty acid methyl ester (FAME) biodiesel contains some trace amounts of Na, K, P, Ca, and Mg. Our objective was to investigate whether the presence of such elements can poison a diesel oxidation catalyst that has been used for an entire regulatory lifetime in a heavy-duty truck fueled by FAME biodiesel. The investigated vehicle-aged catalyst contained high loadings of S, P, and Na, as well as a visible layer of soot. Activity in the NO oxidation reaction was severely decreased compared to a fresh catalyst of the same type, while the CO and C3H6 oxidation reactions were less affected. Subsequent selective trace element removal procedures, followed by activity tests, were used to decouple the effect of different poisons. Sintering was observed to be the main cause of catalyst deactivation. Of the trace elements present on the catalyst, P had the greatest effect on catalyst activity, while the other trace elements had little effect.
  •  
14.
  • Gutic, Sanjin J., et al. (author)
  • Hydrogen Evolution Reaction-From Single Crystal to Single Atom Catalysts
  • 2020
  • In: Catalysts. - : MDPI. - 2073-4344. ; 10:3
  • Research review (peer-reviewed)abstract
    • Hydrogen evolution reaction (HER) is one of the most important reactions in electrochemistry. This is not only because it is the simplest way to produce high purity hydrogen and the fact that it is the side reaction in many other technologies. HER actually shaped current electrochemistry because it was in focus of active research for so many years (and it still is). The number of catalysts investigated for HER is immense, and it is not possible to overview them all. In fact, it seems that the complexity of the field overcomes the complexity of HER. The aim of this review is to point out some of the latest developments in HER catalysis, current directions and some of the missing links between a single crystal, nanosized supported catalysts and recently emerging, single-atom catalysts for HER.
  •  
15.
  • Hemmingsson, Felix, 1992, et al. (author)
  • CO2 Methanation over Rh/CeO2 Studied with Infrared Modulation Excitation Spectroscopy and Phase Sensitive Detection
  • 2020
  • In: Catalysts. - : MDPI AG. - 2073-4344. ; 10:6
  • Journal article (peer-reviewed)abstract
    • Methane is a well-established fuel molecule whose production from CO2 through methanation garners increasing interest as an energy storage solution. While often produced with Ni based catalysts, other metals are of interest thanks to higher robustness and activity-selectivity numbers. The Rh/CeO2 catalyst has shown appreciable properties for CO2 methanation and its structural dynamics has been studied in situ. However, the reaction pathway is unknown. Here, we present infrared modulation excitation spectroscopy measurements with phase sensitive detection of a Rh/CeO2 catalyst adsorbate composition during H2 pulsing (0–2 vol.%) to a constant CO2 (0.5 vol.%) feed. Various carbonyl (CO) and carbonate (b-CO3 /p-CO3 ) ad-species clearly respond to the hydrogen stimulus, making them potential reaction intermediates. The different CO ad-species are likely intermediates for product CO and CH4 but their individual contributions to the respective formations are not unambiguously ascertained. As for the carbonate dynamics, it might be linked to the reduction/oxidation of the CeO2 surface upon H2 pulsing. Formate (HCOO) ad-species are clearly visible but appear to be, if not spectators, linked to slow side reactions possibly also affected by CeO2 redox processes.
  •  
16.
  • Hulteberg, Christian, et al. (author)
  • Scaling up a Gas-Phase Process for Converting Glycerol to Propane
  • 2020
  • In: Catalysts. - : MDPI AG. - 2073-4344. ; 10:9
  • Journal article (peer-reviewed)abstract
    • It is of interest to study not only the fundamental behavior of catalysts and reactors but also to ensure that they can be scaled up in size. This paper investigates the scale-up of a glycerol-to-propane process starting from fundamental laboratory data from micro-reactor testing to the kilogram scale. The process is described in detail and consist of the use of design documents and computer simulations for determining the sizes of the unit operations involved. The final design included a vaporizer section for a glycerol/water mixture, four reactors in tandem with subsequent dehydration and hydrogenation reactions, a flash vessel to separate the excess hydrogen used, and a compressor for recycling the excess hydrogen with additional light components. The system was commissioned in a linear fashion, which is described, and operated for more than 3000 h and more than 1000 h in the final operating mode including recycle. The major results were that no catalyst deactivation was apparent aside from the slow build-up of carbonaceous material in the first dehydration reactor. That the system design calculations proved to be quite close to the results achieved and that the data generated is believed to be sufficient for up-scaling the process into the 1000 to 10,000 tonnes-per-annum range.
  •  
17.
  • Jonsson, Rasmus, 1989, et al. (author)
  • The Impact of Lanthanum and Zeolite Structure on Hydrocarbon Storage
  • 2021
  • In: Catalysts. - : MDPI AG. - 2073-4344. ; 11:5
  • Journal article (peer-reviewed)abstract
    • Hydrocarbon traps can be used to bridge the temperature gap from the cold start of a vehicle until the exhaust after-treatment catalyst has reached its operating temperature. In this work, we investigate the effect of zeolite structure (ZSM-5, BEA, SSZ-13) and the effect of La addition to H-BEA and H-ZSM-5 on the hydrocarbon storage capacity by temperature-programmed desorption and DRIFT spectroscopy. The results show that the presence of La has a significant effect on the adsorption characteristics of toluene on the BEA-supported La materials. A low loading of La onto zeolite BEA (2% La-BEA) improves not only the toluene adsorption capacity but also the retention of toluene. However, a higher loading of La results in a decrease in the adsorbed amount of toluene, which likely is due to partial blocking of the pore of the support. High loadings of La in BEA result in a contraction of the unit cell of the zeolite as evidenced by XRD. A synergetic effect of having simultaneously different types of hydrocarbons (toluene, propene, and propane) in the feed is found for samples containing ZSM-5, where the desorption temperature of propane increases, and the quantity that desorbed increases by a factor of four. This is found to be due to the interaction between toluene and propane inside the structure of the zeolite.
  •  
18.
  • Jonsson, Rasmus, 1989, et al. (author)
  • Zeolite beta doped with La, Fe, and Pd as a hydrocarbon trap
  • 2020
  • In: Catalysts. - : MDPI AG. - 2073-4344. ; 10:2
  • Journal article (peer-reviewed)abstract
    • Hydrocarbon trapping is a technique of great relevance, since a substantial part of hydrocarbon emissions from engines are released from engines before the catalyst has reached the temperature for efficient conversion of the hydrocarbons. In this work, the influence of doping zeolite beta (BEA) with Fe, Pd, and La on the storage and release of propene and toluene is studied. Five monolith samples were prepared; Fe/BEA, La/BEA, Pd/BEA, Pd/Fe/BEA, and Pd/La/BEA using incipient wetness impregnation, and the corresponding powder samples were used for catalyst characterization by Inductively coupled plasma sector field mass spectrometry (ICP-SFMS), Temperature-programmed oxidation (TPO), X-ray photoelectron spectroscopy (XPS) and Scanning transmission electron microscopy with Energy dispersive X-ray analysis (STEM-EDX). The hydrocarbon trapping ability of the samples was quantified using Temperature-programmed desorption (TPD) of propene and toluene, and in situ Diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). The results from the TPD experiments show that the addition of Pd and La to the zeolite affected the release patterns of the stored hydrocarbons on the trapping material in a positive way. The in situ DRIFTS results indicate that these elements provide H-BEA with additional sites for the storage of hydrocarbons. Furthermore, EDX-mapping showed that the La and Pd are located in close connection.
  •  
19.
  • Kaufhold, Simon, et al. (author)
  • Design and synthesis of photoactive iron n-heterocyclic carbene complexes
  • 2020
  • In: Catalysts. - : MDPI AG. - 2073-4344. ; 10:1
  • Research review (peer-reviewed)abstract
    • The use of iron in photoactive metal complexes has been investigated for decades. In this respect, the charge transfer (CT) states are of particular interest, since they are usually responsible for the photofunctionality of such compounds. However, only recently breakthroughs have been made in extending CT excited state lifetimes that are notoriously short-lived in classical polypyridine iron coordination compounds. This success is in large parts owed to the use of strongly σ-donating N-heterocyclic carbene (NHC) ligands that help manipulating the photophysical and photochemical properties of iron complexes. In this review we aim to map out the basic design principles for the generation of photofunctional iron NHC complexes, summarize the progress made so far and recapitulate on the synthetic methods used. Further, we want to highlight the challenges still existing and give inspiration for future generations of photoactive iron complexes.
  •  
20.
  • Kawde, Anurag, et al. (author)
  • Photoelectrochemical oxidation in ambient conditions using earth-abundant hematite anode : A green route for the synthesis of biobased polymer building blocks
  • 2021
  • In: Catalysts. - : MDPI AG. - 2073-4344. ; 11:8
  • Journal article (peer-reviewed)abstract
    • This study demonstrates the use of a photoelectrochemical device comprising earth-abundant hematite photoanode for the oxidation of 5-hydroxymethylfurfural (5-HMF), a versatile bio-based platform chemical, under ambient conditions in the presence of an electron mediator. The results obtained in this study showed that the hematite photoanode, upon doping with fluorine, can oxidize water even at lower pH (4.5 and 9.0). For 5-HMF oxidation, three different pH conditions were investigated, and complete oxidation to 2,5-furandicarboxylic acid (FDCA) via 5-hydroxymethyl-2-furancarboxylic acid (HMFCA) was achieved at pH above 12. At lower pH, the oxidation followed another route via 2,5-diformylfuran (DFF), yielding 5-formyl-2-furancarboxylic acid (FFCA) as the main product. Using the oxidized intermediates as substrates showed DFF to be most efficiently oxidized to FDCA. We also show that, at pH 4.5, the addition of the laccase enzyme promoted the oxidation of 5-HMF to FFCA.
  •  
21.
  • Khan, Farooq-Ahmad, et al. (author)
  • Ruthenium Nanoparticles Intercalated in Montmorillonite (nano-Ru@MMT) Is Highly Efficient Catalyst for the Selective Hydrogenation of 2-Furaldehyde in Benign Aqueous Medium
  • 2021
  • In: Catalysts. - : MDPI AG. - 2073-4344. ; 11:1
  • Journal article (peer-reviewed)abstract
    • Chemoselective hydrogenation of 2-furaldehyde to furfuryl alcohol using green solvents is an important research area to get eco-friendly fuels and fine chemicals. Herein, we report ruthenium nanoparticles (similar to 1.8 nm) intercalated in montmorillonite as an efficient catalytic system, which can selectively hydrogenate 2-furaldehyde in a benign aqueous medium. The complete conversion was observed at 40 degrees C with 1 MPa H-2, the selectivity of furfuryl alcohol being >99%, and turnover number 1165. After a catalytic run, the montmorillonite-supported ruthenium nanoparticles can be recycled and reused without losing their activity and selectivity.
  •  
22.
  • Kulik, Tetiana, et al. (author)
  • Catalytic Pyrolysis of Aliphatic Carboxylic Acids into Symmetric Ketones over Ceria-Based Catalysts : Kinetics, Isotope Effect and Mechanism
  • 2020
  • In: Catalysts. - : MDPI AG. - 2073-4344. ; 10:2
  • Journal article (peer-reviewed)abstract
    • Ketonization is a promising way for upgrading bio-derived carboxylic acids from pyrolysis bio-oils, waste oils, and fats to produce high value-added chemicals and biofuels. Therefore, an understanding of its mechanism can help to carry out the catalytic pyrolysis of biomass more efficiently. Here we show that temperature-programmed desorption mass spectrometry (TPD-MS) together with linear free energy relationships (LFERs) can be used to identify catalytic pyrolysis mechanisms. We report the kinetics of the catalytic pyrolysis of deuterated acetic acid and a reaction series of linear and branched fatty acids into symmetric ketones on the surfaces of ceria-based oxides. A structure-reactivity correlation between Taft's steric substituent constants Es* and activation energies of ketonization indicates that this reaction is the sterically controlled reaction. Surface D3-n-acetates transform into deuterated acetone isotopomers with different yield, rate, E-not equal and deuterium kinetic isotope effect (DKIE). The obtained values of inverse DKIE together with the structure-reactivity correlation support a concerted mechanism over ceria-based catalysts. These results demonstrate that analysis of Taft's correlations and using simple equation for estimation of DKIE from TPD-MS data are promising approaches for the study of catalytic pyrolysis mechanisms on a semi-quantitative level.
  •  
23.
  • Kulik, Tetiana, et al. (author)
  • Catalytic Pyrolysis of Lignin Model Compound (Ferulic Acid) over Alumina : Surface Complexes, Kinetics, and Mechanisms
  • 2021
  • In: Catalysts. - : MDPI AG. - 2073-4344. ; 11:12
  • Journal article (peer-reviewed)abstract
    • Studies of the thermochemical properties of the important model compound of lignin-ferulic acid (FA) and its surface complexes are substantial for developing technologies for catalytic pyrolysis of renewable biomass into biofuels and lignin-derived chemicals as well as for bio-oil upgrading. In this work, the catalytic pyrolysis of ferulic acid over alumina was studied by temperature-programmed desorption mass spectrometry (TPD MS), in situ FT-IR spectroscopy, thermogravimetric analysis, and DFT calculations. We established that both the carboxyl group and the active groups (HO and CH3O) of the aromatic ring interact with the alumina surface. We calculated the kinetic parameters of formation of the main products of catalytic pyrolysis: 4-vinylguaiacol, guaiacol, hydroxybenzene, benzene, toluene, cresol, naphthalene, and PACs. Possible methods of their forming from the related surface complexes of FA are suggested.
  •  
24.
  • Lidskog, Anna, et al. (author)
  • Asymmetric ring-opening of epoxides catalyzed by metal–salen complexes
  • 2020
  • In: Catalysts. - : MDPI AG. - 2073-4344. ; 10:6
  • Journal article (peer-reviewed)abstract
    • The asymmetric ring-opening of epoxides is an important reaction in organic synthesis, since it allows for the enantioselective installation of two vicinal functional groups with specific stereochemistry within one step from a highly available starting material. An effective class of catalysts for the asymmetric ring-opening of epoxides is metal–salen complexes. This review summarizes the development of metal–salen catalyzed enantioselective desymmetrization of meso-epoxides and kinetic resolution of epoxides with various nucleophiles, including the design and application of both homogeneous- and heterogeneous epoxide-opening catalysts as well as multi-metallic covalent and supramolecular catalytic systems.
  •  
25.
  • Lindh, Linnea, et al. (author)
  • Photophysics and photochemistry of iron carbene complexes for solar energy conversion and photocatalysis
  • 2020
  • In: Catalysts. - : MDPI AG. - 2073-4344. ; 10:3
  • Research review (peer-reviewed)abstract
    • Earth-abundant first row transition metal complexes are important for the development of large-scale photocatalytic and solar energy conversion applications. Coordination compounds based on iron are especially interesting, as iron is the most common transition metal element in the Earth’s crust. Unfortunately, iron-polypyridyl and related traditional iron-based complexes generally suffer from poor excited state properties, including short excited-state lifetimes, that make them unsuitable for most light-driven applications. Iron carbene complexes have emerged in the last decade as a new class of coordination compounds with significantly improved photophysical and photochemical properties, that make them attractive candidates for a range of light-driven applications. Specific aspects of the photophysics and photochemistry of these iron carbenes discussed here include long-lived excited state lifetimes of charge transfer excited states, capabilities to act as photosensitizers in solar energy conversion applications like dye-sensitized solar cells, as well as recent demonstrations of promising progress towards driving photoredox and photocatalytic processes. Complementary advances towards photofunctional systems with both Fe(II) complexes featuring metal-to-ligand charge transfer excited states, and Fe(III) complexes displaying ligand-to-metal charge transfer excited states are discussed. Finally, we outline emerging opportunities to utilize the improved photochemical properties of iron carbenes and related complexes for photovoltaic, photoelectrochemical and photocatalytic applications.
  •  
26.
  • Manzoor, Numair, et al. (author)
  • RETRACTED: Experimental Study of CO2 Conversion into Methanol by Synthesized Photocatalyst (ZnFe2O4/TiO2) Using Visible Light as an Energy Source
  • 2020
  • In: Catalysts. - : MDPI. - 2073-4344. ; 10:2
  • Journal article (peer-reviewed)abstract
    • Ozone layer depletion is a serious threat due to the extensive release of greenhouse gases. The emission of carbon dioxide (CO2) from fossil fuel combustion is a major reason for global warming. Energy demands and climate change are coupled with each other. CO2is a major gas contributing to global warming; hence, the conversion of CO2 into useful products such as methanol, formic acid, formaldehyde, etc., under visible light is an attractive topic. Challenges associated with the current research include synthesizing a photocatalyst that is driven by visible light with a narrow band gap range between 2.5 and 3.0 eV, the separation of a mixed end product, and the two to three times faster recombination rate of an electron–hole pair compared with separation over yield. The purpose of the current research is to convert CO2 into useful fuel i.e., methanol; the current study focuses on the photocatalytic reduction of CO2into a useful product. This research is based on the profound analysis of published work, which allows the selection of appropriate methods and material for this research. In this study, zinc ferrite (ZnFe2O4) is synthesized via the modified sol–gel method and coupled with titanium dioxide (TiO2). Thereafter, the catalyst is characterized by Fourier transform infrared (FTIR), FE-SEM, UV–Vis, and XRD characterization techniques. UV–Vis illustrates that the synthesized catalyst has a low band gap and utilizes a major portion of visible light irradiation. The XRD pattern was confirmed by the formation of the desired catalyst. FE-SEM illustrated that the size of the catalyst ranges from 50 to 500 nm and BET analysis determined the surface area, which was 2.213 and 6.453 m2/g for ZnFe2O4 and ZnFe2O4/TiO2, respectively. The continuous gas flow photoreactor was used to study the activity of the synthesized catalyst, while titanium dioxide (TiO2) has been coupled with zinc ferrite (ZnFe2O4) under visible light in order to obtain the maximum yield of methanol as a single product and simultaneously avoid the conversion of CO2 into multiple products. The performance of ZnFe2O4/TiO2was mainly assessed through methanol yield with a variable amount of TiO2 over ZnFe2O4 (1:1, 1:2, 2:1, 1:3, and 3:1). The synthesized catalyst recycling ability has been tested up to five cycles. Finally, we concluded that the optimum conditions for maximum yield were found to be a calcination temperature of ZnFe2O4at 900 °C, and optimum yield was at a 1:1 w/w coupling ratio of ZnFe2O4/TiO2. It was observed that due to the enhancement in the electron–hole pair lifetime, the methanol yield at 141.22 μmol/gcat·h over ZnFe2O4/TiO2was found to be 7% higher than the earlier reported data.
  •  
27.
  • Margarita, Cristiana, et al. (author)
  • Recent Advances in Asymmetric Catalytic Electrosynthesis
  • 2020
  • In: Catalysts. - : MDPI. - 2073-4344. ; 10:9
  • Research review (peer-reviewed)abstract
    • The renewed interest in electrosynthesis demonstrated by organic chemists in the last years has allowed for rapid development of new methodologies. In this review, advances in enantioselective electrosynthesis that rely on catalytic amounts of organic or metal-based chiral mediators are highlighted with focus on the most recent developments up to July 2020. Examples of C-H functionalization, alkene functionalization, carboxylation and cross-electrophile couplings are discussed, along with their related mechanistic aspects.
  •  
28.
  • Ngoc Pham, Tung, et al. (author)
  • NiCo Nanoneedles on 3D Carbon Nanotubes/Carbon Foam Electrode as an Efficient Bi-Functional Catalyst for Electro-Oxidation of Water and Methanol
  • 2021
  • In: Catalysts. - : MDPI. - 2073-4344. ; 11:4
  • Journal article (peer-reviewed)abstract
    • In this study, we report a 3D structured carbon foam electrode assembled from a bi-functional NiCo catalyst, carbon nanotubes (CNT), and a monolith 3D structured carbon foam (CF) as a highly active and stable electrode for oxygen evolution reaction (OER) and methanol oxidation reaction (MOR). When the NiCo@CNTs/CF electrode was used as an anode in OER, after the anodization step, the electrode required a small overpotential of 320 mV to reach the current density of 10 mA cm−2 and demonstrated excellent stability over a long testing time (total 30 h) in 1 M KOH. The as-prepared NiCo@CNTs/CF electrode also exhibited a good performance towards methanol oxidation reaction (MOR) with high current density, 100 mA cm−2 at 0.6 V vs. Ag/AgCl, and good stability in 1 M KOH plus 0.5 M CH3OH electrolyte. The NiCo@CNTs/CF catalyst/electrode provides a potential for application as an anode in water electrolysis and direct methanol fuel cells.
  •  
29.
  • Ratnasari, Devy Kartika, 1990-, et al. (author)
  • Effect of H-ZSM-5 and Al-MCM-41 Proportions in Catalyst Mixtures on the Composition of Bio-Oil in Ex-Situ Catalytic Pyrolysis of Lignocellulose Biomass
  • 2020
  • In: Catalysts. - : MDPI AG. - 2073-4344. ; 10
  • Journal article (peer-reviewed)abstract
    • The present work is an attempt to optimize the proportion of H-ZSM-5 and Al-MCM-41 in the catalyst mixtures for lignocellulose biomass catalytic pyrolysis. The H-ZSM-5 proportions of 50.0, 66.7, 75.0, and 87.5 wt.% were examined for the upgrading of biomass pyrolysis vapors in the fixed bed reactor. The catalyst mixture of 87.5 wt.% H-ZSM-5 and 12.5 wt.% Al-MCM-41 was found most effective in this study, giving a 65.75% deoxygenation degree. An organic-rich bio-oil was obtained with 74.90 wt.% of carbon content, 8 wt.% of hydrogen content, 15 wt.% oxygen content, a 0.39 wt.% water content, and a high heating value of 34.15 MJ/kg. The highest amount of desirable compounds among the studied catalytic experiments, which include hydrocarbons, phenols, furans, and alcohols, was obtained with a value of 95.89%. A significant improvement in the quality of bio-oil with the utilization of H-ZSM-5 and Al-MCM-41 catalyst mixtures was the rise of desirable compounds in bio-oil.
  •  
30.
  • Saeid, Soudabeh, et al. (author)
  • Advanced Oxidation Process for Degradation of Carbamazepine from Aqueous Solution : Influence of Metal Modified Microporous, Mesoporous Catalysts on the Ozonation Process
  • 2020
  • In: Catalysts. - : MDPI. - 2073-4344. ; 10:1
  • Journal article (peer-reviewed)abstract
    • Carbamazepine (CBZ), a widely used pharmaceutical compound, is one of the most detected drugs in surface waters. The purpose of this work was to identify an active and durable catalyst, which, in combination with an ozonation process, could be used to remove CBZ and its degradation products. It was found that the CBZ was completely transformed after ozonation within the first minutes of the treatment. However, the resulting degradation products, 1-(2-benzaldehyde)-4-hydro-(1H,3H)-quinazoline-2-one (BQM) and 1-(2-benzaldehyde)-(1H,3H)-quinazoline-2,4-dione (BQD), were more resistant during the ozonation process. The formation and degradation of these products were studied in more detail and a thorough catalytic screening was conducted to reveal the reaction kinetics of both the CBZ and its degradation products. The work was performed by non-catalytic ozonation and with six different heterogeneous catalysts (Pt-MCM-41-IS, Ru-MCM-41-IS, Pd-H-Y-12-EIM, Pt-H-Y-12-EIM, Pd-H-Beta-300-EIM and Cu-MCM-41-A-EIM) operating at two temperatures 20 °C and 50 °C. The influence of temperature on degradation kinetics of CBZ, BQM and BQD was studied. The results exhibited a notable difference in the catalytic behavior by varying temperature. The higher reactor temperature (50 °C) showed a higher activity of the catalysts but a lower concentration of dissolved ozone. Most of the catalysts exhibited higher removal rate for BQM and BQD compared to non-catalytic experiments in both temperatures. The Pd-H-Y-12-EIM catalyst illustrated a higher degradation rate of by-products at 50 °C compared to other catalysts.
  •  
31.
  • Saeid, Soudabeh, et al. (author)
  • Pt Modified Heterogeneous Catalysts Combined with Ozonation for the Removal of Diclofenac from Aqueous Solutions and the Fate of by-Products
  • 2020
  • In: Catalysts. - : MDPI. - 2073-4344. ; 10:3
  • Journal article (peer-reviewed)abstract
    • The degradation of the pharmaceutical compound diclofenac in an aqueous solution was studied with an advanced oxidation method, catalytic ozonation. Diclofenac was destroyed in a few minutes by ozonation but several long-lasting degradation by-products were formed. For this reason, the combination of heterogeneous catalysts and ozonation was applied to eliminate them completely. The kinetics of the diclofenac degradation and the formation of by-products were thoroughly investigated. Loading of Pt on the catalysts resulted in an improvement of the activity. The Mesoporous Molecular Sieves (MCM) were one of the promising catalysts for the degradation of organic pollutants. In this study, six heterogeneous catalysts were screened, primarily MCM-22-100 catalysts with different Pt concentrations loaded via the evaporation-impregnation (EIM) method, and they were applied on the degradation of diclofenac. It was found that the presence of Pt improved the degradation of diclofenac and gave lower concentrations of by-products. The 2 wt % Pt-H-MCM-22-100-EIM demonstrated the highest degradation rate compared to the proton form, 1% or 5 wt % Pt concentration, i.e., an optimum was found in between. Pt-H-Y-12-IE and Pt-γ-Al2O3 (UOP)-IMP catalysts were applied and compared with the MCM-22 structure. Upon use of both of these catalysts, an improvement in the degradation of diclofenac and by-products was observed, and the 2 wt % Pt-H-MCM-22-100-EIM illustrated the maximum activity. All important characterization methods were applied to understand the behavior of the catalysts (X-ray powder diffraction, transmission electron microscopy, nitrogen physisorption, scanning electron microscopy, energy dispersive X-ray micro-analyses, pyridine adsorption-desorption with FTIR spectroscopy, X-ray photoelectron spectroscopy). Finally, leaching of Pt and Al were analyzed by inductively coupled optical emission spectrometry.
  •  
32.
  • Saeid, Soudabeh, et al. (author)
  • Synthesis and Characterization of Metal Modified Catalysts for Decomposition of Ibuprofen from Aqueous Solutions
  • 2020
  • In: Catalysts. - : MDPI. - 2073-4344. ; 10:7
  • Journal article (other academic/artistic)abstract
    • The presence of pharmaceuticals in surface water, drinking water, and wastewater has attracted significant concern because of the non-biodegradability, resistance, and toxicity of pharmaceutical compounds. The catalytic ozonation of an anti-inflammatory pharmaceutical, ibuprofen was investigated in this work. The reaction mixture was analyzed and measured by high-performance liquid chromatography (HPLC). Liquid chromatography-mass spectrometry (LC-MS) was used for the quantification of by-products during the catalytic ozonation process. Ibuprofen was degraded by ozonation under optimized conditions within 1 h. However, some intermediate oxidation products were detected during the ibuprofen ozonation process that were more resistant than the parent compound. To optimize the process, nine heterogeneous catalysts were synthesized using different preparation methods and used with ozone to degrade the ibuprofen dissolved in aqueous solution. The aim of using several catalysts was to reveal the effect of various catalyst preparation methods on the degradation of ibuprofen as well as the formation and elimination of by-products. Furthermore, the goal was to reveal the influence of various support structures and different metals such as Pd-, Fe-, Ni-, metal particle size, and metal dispersion in ozone degradation. Most of the catalysts improved the elimination kinetics of the by-products. Among these catalysts, Cu-H-Beta-150-DP synthesized by the deposition–precipitation process showed the highest decomposition rate. The regenerated Cu-H-Beta-150-DP catalyst preserved the catalytic activity to that of the fresh catalyst. The catalyst characterization methods applied in this work included nitrogen adsorption–desorption, scanning electron microscopy, transmission electron microscopy, and Fourier-transform infrared spectroscopy. The large pore volume and small metal particle size contributed to the improved catalytic activity.
  •  
33.
  • Sánchez-Rodríguez, Dalia, et al. (author)
  • Semiconducting Nanocrystalline Bismuth Oxychloride (BiOCl) for Photocatalytic Reduction of CO2
  • 2020
  • In: Catalysts. - : MDPI AG. - 2073-4344. ; 10:9
  • Journal article (peer-reviewed)abstract
    • The reduction of CO2 is relevant for the production of compounds as part of the carbon capture and utilization research approaches. Thus, photocatalytic reduction of CO2 over a tailored BiOCl-based photocatalyst (BTEG) was tested under UV light (365 nm). BTEG was synthesized in the presence of triethylene glycol, which gave 4-nm crystallites, much smaller than the 30 nm crystallites of commercial BiOCl. Commercial BiOCl reduced CO2 mainly to methane with a minor fraction of ethanol, and was inactivated after 20 h. BTEG was a more active catalyst for CO2 photoreduction, producing approximately equal amounts of methane, methanol, and ethanol while consuming 0.38 µmol g−1 h−1 of CO2 before the experiment was stopped after 43 h, with the catalyst still active. The different products formed by the BTEG photocatalyst samples were tentatively ascribed to its greater content of {110} facets. Thus, in addition to band-gap tuning, the relative fractions of BiOCl facets had a key role in the effective photocatalytic reduction of CO2, and the BiOCl-based BTEG catalyst promoted the formation of important compounds as methanol and ethanol.
  •  
34.
  • Sebastian, Joby, 1984, et al. (author)
  • The promotor and poison effects of the inorganic elements of kraft lignin during hydrotreatment over nimos catalyst
  • 2021
  • In: Catalysts. - : MDPI AG. - 2073-4344. ; 11:8
  • Journal article (peer-reviewed)abstract
    • One-pot deoxygenation of kraft lignin to aromatics and hydrocarbons of fuel-range quality is a promising way to improve its added value. Since most of the commercially resourced kraft lignins are impure (Na, S, K, Ca, etc., present as impurities), the effect of these impurities on the deoxygenation activity of a catalyst is critical and was scrutinized in this study using a NiMoS/Al2O3 catalyst. The removal of impurities from the lignin indicated that they obstructed the depolymerization. In addition, they deposited on the catalyst during depolymerization, of which the major element was the alkali metal Na which existed in kraft lignin as Na2S and single-site ionic Na+. Conditional experiments have shown that at lower loadings of impurities on the catalyst, their promotor effect was prevalent, and at their higher loadings, a poisoning effect. The number of moles of impurities, their strength, and the synergism among the impurity elements on the catalyst were the major critical factors responsible for the catalyst’s deactivation. The promotor effects of deposited impurities on the catalyst, however, could counteract the negative effects of impurities on the depolymerization.
  •  
35.
  • Stojkovic, Marija, et al. (author)
  • Strain Engineering for Tuning the Photocatalytic Activity of Metal-Organic Frameworks-Theoretical Study of the UiO-66 Case
  • 2021
  • In: Catalysts. - : MDPI AG. - 2073-4344. ; 11:2
  • Journal article (peer-reviewed)abstract
    • In recent years, the class of metal-organic framework (MOF) materials emerged. These materials' unique properties can be ascribed to their structure, containing inorganic nodes connected with organic linkers. Due to their porosity and flexibility, MOFs have become suitable for various energy-related applications, including gas storage, hydrogen production and heterogeneous catalysis, and photocatalysis. Using DFT+U calculations, we show that the substitution of metal centers in inorganic nodes and the strain engineering of UiO-66 alters the electronic and optical properties of this material. We show that applying mechanical strain on UiO-66 enables the control of absorption coefficient in the UV-Vis spectrum and the photocatalytic processes' selectivity when reactants for several photocatalytic processes are present. The presented findings could lead to general strategies for designing novel MOFs for sustainable energy conversion applications.
  •  
36.
  • Vucetic, Nemanja, et al. (author)
  • Tuned Bis-Layered Supported Ionic Liquid Catalyst (SILCA) for Competitive Activity in the Heck Reaction of Iodobenzene and Butyl Acrylate
  • 2020
  • In: Catalysts. - : MDPI. - 2073-4344. ; 10:9
  • Journal article (peer-reviewed)abstract
    • A thorough experimental optimization of supported ionic liquid catalyst (SILCA) was performed in order to obtain a stable and efficient catalyst for the Heck reaction. Out of fifteen proposed structures, propyl imidazolium bromide-tetramethylguanidinium pentanoate modified SiO2 loaded with PdCl2 appeared to be the most stable and to have a good activity in the reaction between butylacrylate and iodobezene, resulting in a complete conversion in 40 min at 100 °C, in four consecutive experiments. This study elucidated on the stability of the catalytic system with an ionic liquid layer during the catalyst synthesis but also under reaction conditions. In the bis-layered catalyst, the imidazolium moiety as a part of internal layer, brought rigidity to the structure, while in external layer pentanoic acid gave sufficiently acidic carboxylic group capable to coordinate 1,1,3,3-tetramethylguanidine (TMG) and thus, allow good dispersion of Pd nanoparticles. The catalyst was characterized by means of XPS, FT-IR, TEM, ICP-OES, ζ-potential, EDX, TGA, and 13C NMR. The release and catch mechanism was observed, whereas Pd re-deposition can be hindered by catalyst poisoning and eventual loss of palladium.
  •  
37.
  • Wojcik, Sylwia, et al. (author)
  • Atomic-Level Dispersion of Bismuth over Co3O4 Nanocrystals-Outstanding Promotional Effect in Catalytic DeN(2)O
  • 2020
  • In: Catalysts. - : MDPI AG. - 2073-4344. ; 10:3
  • Journal article (peer-reviewed)abstract
    • A series of cobalt spinel catalysts doped with bismuth in a broad range of 0-15.4 wt % was prepared by the co-precipitation method. The catalysts were thoroughly characterized by several physicochemical methods (X-ray fluorescence spectroscopy (XRF), X-ray diffraction (XRD), Raman spectroscopy (mu RS), X-ray photoelectron spectroscopy (XPS), nitrogen adsorption analyzed with Brunaer-Emmett-Teller theory (N-2-BET), work function measurements (WF)), as well as aberration-corrected scanning transmission electron microscopy (STEM) coupled with energy-dispersive X-ray spectroscopy (EDX) and electron energy-loss spectroscopy (EELS). The optimal bismuth promoter content was found to be 6.6 wt %, which remarkably enhanced the performance of the cobalt spinel catalyst, shifting the N2O decomposition (deN(2)O) temperature window (T-50%) down from approximately 400 degrees C (for Co3O4) to 240 degrees C (for the 6.6 wt % Bi-Co3O4 catalyst). The high-resolution STEM images revealed that the high activity of the 6.6 wt % Bi-Co3O4 catalyst can be associated with an even, atomic-level dispersion (3.5 at. nm(-2)) of bismuth over the surface of cobalt spinel nanocrystals. The improvement in catalytic activity was accompanied by an observed increase in the work function. We concluded that Bi promoted mostly the oxygen recombination step of a deN(2)O reaction, thus demonstrating for the first time the key role of the atomic-level dispersion of a surface promoter in deN(2)O reactions.
  •  
38.
  • Yang, Xiaoyong, et al. (author)
  • Recent Advancements and Future Prospects in Ultrathin 2D Semiconductor-Based Photocatalysts for Water Splitting
  • 2020
  • In: Catalysts. - : MDPI. - 2073-4344. ; 10:10
  • Research review (peer-reviewed)abstract
    • Ultrathin two-dimensional (2D) semiconductor-mediated photocatalysts have shown their compelling potential and have arguably received tremendous attention in photocatalysis because of their superior thickness-dependent physical, chemical, mechanical and optical properties. Although numerous comprehensions about 2D semiconductor photocatalysts have been amassed up to now, low cost efficiency, degradation, kinetics of charge transfer along with recycling are still the big challenges to realize a wide application of 2D semiconductor-based photocatalysis. At present, most photocatalysts still need rare or expensive noble metals to improve the photocatalytic activity, which inhibits their commercial-scale application extremely. Thus, developing less costly, earth-abundant semiconductor-based photocatalysts with efficient conversion of sunlight energy remains the primary challenge. In this review, it begins with a brief description of the general mechanism of overall photocatalytic water splitting. Then a concise overview of different types of 2D semiconductor-mediated photocatalysts is given to figure out the advantages and disadvantages for mentioned semiconductor-based photocatalysis, including the structural property and stability, synthesize method, electrochemical property and optical properties for H2/O2 production half reaction along with overall water splitting. Finally, we conclude this review with a perspective, marked on some remaining challenges and new directions of 2D semiconductor-mediated photocatalysts.
  •  
39.
  • Zhang, Siyuan, et al. (author)
  • Structural Evolution of Ni-Based Co-Catalysts on [Ca2Nb3O10](-) Nanosheets during Heating and Their Photocatalytic Properties
  • 2020
  • In: Catalysts. - : MDPI. - 2073-4344. ; 10:1
  • Journal article (peer-reviewed)abstract
    • Nickel compounds are among the most frequently used co-catalysts for photocatalytic water splitting. By loading Ni(II) precursors, submonolayer Ni(OH)(2) was uniformly distributed onto photocatalytic [Ca2Nb3O10](-) nanosheets. Further heating of the nanocomposite was studied both ex situ in various gas environments and in situ under vacuum in the scanning transmission electron microscope. During heating in non-oxidative environments including H-2, argon and vacuum, Ni nanoparticles form at >= 200 degrees C, and they undergo Ostwald ripening at >= 500 degrees C. High resolution imaging and electron energy loss spectroscopy revealed a NiO shell around the Ni core. Ni loading of up to 3 wt% was demonstrated to enhance the rates of photocatalytic hydrogen evolution. After heat treatment, a further increase in the reaction rate can be achieved thanks to the Ni core/NiO shell nanoparticles and their large separation.
  •  
40.
  • Amin, Mohammed A., et al. (author)
  • Non-Covalent Functionalization of Graphene Oxide-Supported 2-Picolyamine-Based Zinc(II) Complexes as Novel Electrocatalysts for Hydrogen Production
  • 2022
  • In: Catalysts. - : MDPI AG. - 2073-4344. ; 12:4
  • Journal article (peer-reviewed)abstract
    • Three mononuclear 2-picolylamine-containing zinc(III) complexes viz [(2-PA)2ZnCl]2(ZnCl4)] (Zn1), [(2-PA)2Zn(H2O)](NO3)2] (Zn2) and [Zn(2-PA)2(OH)]NO3] (Zn3) were synthesized and fully characterized. Spectral and X-ray structural characteristics showed that the Zn1 complex has a square-pyramidal coordination environment around a zinc(II) core. The hydroxide complex Zn3 was non-covalently functionalized with few layers of graphene oxide (GO) sheets, formed by exfoliation of GO in water. The resulting Zn3/GO hybrid material was characterized by FT-IR, TGA-DSC, SEM-EDX and X-ray powder diffraction. The way of interaction of Zn3 with GO has been established through density functional theory (DFT) calculations. Both experimental and theoretical findings indicate that, on the surface of GO, the complex Zn3 forms a complete double-sided adsorption layer. Zn3 and its hybrid form Zn3/GO have been individually investigated as electrocatalysts for the hydrogen evolution reaction. The hybrid heterogenized form Zn3/GO was supported on glassy carbon (GC) with variable loading densities of Zn3 (0.2, 0.4 and 0.8 mg cm−2) to form electrodes. These electrodes have been tested as molecular electrocatalysts for the hydrogen evolution reaction (HER) using linear sweep voltammetry (LSV) and electrochemical impedance spectroscopy (EIS) in 0.1 M KOH. Results showed that both GC-Zn3 and GC-Zn3/GO catalysts for the HER are highly active, and with increase of the catalyst’s loading density, this catalytic activity enhances. The high catalytic activity of HER with a low onset potential of −140 mV vs. RHE and a high exchange current density of 0.22 mA cm−2 is achieved with the highest loading density of Zn3 (0.8 mg cm−2). To achieve a current density of 10 mA cm−2, an overpotential of 240 mV was needed.
  •  
41.
  • Bashari, Mohanad, et al. (author)
  • Fabrication and Characterization of Dextranase Nano-Entrapped Enzymes in Polymeric Particles Using a Novel Ultrasonication-Microwave Approach
  • 2023
  • In: Catalysts. - : MDPI. - 2073-4344. ; 13:1
  • Journal article (peer-reviewed)abstract
    • In the current study, a novel method to improve the nano-entrapment of enzymes into Ca-alginate gel was investigated to determine the synergistic effects of ultrasound combined with microwave shock (UMS). The effects of UMS treatment on dextranase enzymes loading effectiveness (LE) and immobilization yield (IY) were investigated. By using FT-IR spectra and SEM, the microstructure of the immobilized enzyme (IE) was characterized. Additionally, the free enzyme was used as a control to compare the reusability and enzyme-kinetics characteristics of IEs produced with and without UMS treatments. The results demonstrated that the highest LE and IY were obtained when the IE was produced with a US of 40 W at 25 kHz for 15 min combined with an MS of 60 W at a shock rate of 20 s/min for 20 min, increasing the LE and the IY by 97.32 and 78.25%, respectively, when compared with an immobilized enzyme prepared without UMS treatment. In comparison with the control, UMS treatment dramatically raised the Vmax, KM, catalytic, and specificity constant values for the IE. The outcomes suggested that a microwave shock and ultrasound combination would be an efficient way to improve the immobilization of enzymes in biopolymer gel.
  •  
42.
  • Birgersson, Simon, et al. (author)
  • Flexibility and Function of Distal Substrate-Binding Tryptophans in the Blue Mussel β-Mannanase MeMan5A and Their Role in Hydrolysis and Transglycosylation
  • 2023
  • In: Catalysts. - 2073-4344. ; 13:9
  • Journal article (peer-reviewed)abstract
    • β-Mannanases hydrolyze β-mannans, important components of plant and microalgae cell walls. Retaining β-mannanases can also catalyze transglycosylation, forming new β-mannosidic bonds that are applicable for synthesis. This study focused on the blue mussel (Mytilus edulis) GH5_10 β-mannanase MeMan5A, which contains two semi-conserved tryptophans (W240 and W281) in the distal subsite +2 of its active site cleft. Variants of MeMan5A were generated by replacing one or both tryptophans with alanines. The substitutions reduced the enzyme’s catalytic efficiency (kcat/Km using galactomannan) by three-fold (W281A), five-fold (W240A), or 20-fold (W240A/W281A). Productive binding modes were analyzed by 18O labeling of hydrolysis products and mass spectrometry. Results show that the substitution of both tryptophans was required to shift away from the dominant binding mode of mannopentaose (spanning subsites −3 to +2), suggesting that both tryptophans contribute to glycan binding. NMR spectroscopy and molecular dynamics simulations were conducted to analyze protein flexibility and glycan binding. We suggest that W240 is rigid and contributes to +2 subsite mannosyl specificity, while W281 is flexible, which enables stacking interactions in the +2 subsite by loop movement to facilitate binding. The substitutions significantly reduced or eliminated transglycosylation with saccharides as glycosyl acceptors but had no significant effect on reactions with alcohols.
  •  
43.
  • Carreiro, Elisabete P., et al. (author)
  • Stereoselective Catalytic Synthesis of Bioactive Compounds in Natural Deep Eutectic Solvents (NADESs) : A Survey across the Catalytic Spectrum
  • 2024
  • In: Catalysts. - : Multidisciplinary Digital Publishing Institute (MDPI). - 2073-4344. ; 14:3
  • Journal article (peer-reviewed)abstract
    • Deep eutectic solvents (DESs) are a mixture of two or more components, and at a particular composition, they become liquids at room temperature. When the compounds that constitute the DESs are primary metabolites namely, amino acids, organic acids, sugars, or choline derivatives, the DESs are called natural deep eutectic solvents (NADESs). NADESs fully represent green chemistry principles. These solvents are highly welcome, as they are obtained from renewable resources, and gratifyingly are biodegradable and biocompatible. They are an alternative to room-temperature ionic liquids (RTILs). From the pharmaceutical industry’s point of view, they are highly desirable, but they unfortunately have been rarely used despite their enormous potential. In this review, we look at their impact on the asymmetric catalytic synthesis of key target molecules via metal-based catalysis, biocatalysis, and organocatalysis. In many cases, the NADESs that have been used are chiral and can even promote enantioselective reactions; this crucial and very exciting aspect is also discussed and analyzed. © 2024 by the authors.
  •  
44.
  • Chanda Nagarajan, Pratheeba, 1978, et al. (author)
  • Numerical Assessment of Flow Pulsation Effects on Reactant Conversion in Automotive Monolithic Reactors
  • 2022
  • In: Catalysts. - : MDPI AG. - 2073-4344. ; 12:6
  • Journal article (peer-reviewed)abstract
    • Highly transient engine-out emissions imply significant challenges for the optimization and control of automotive aftertreatment systems, motivating studies of the effects of flow pulsations on the system behavior. In this work, an axisymmetric aftertreatment system with a first-order reaction in the monolith section is chosen to demonstrate the role of pulsations on the time-averaged conversion at the exit. Reactive computational fluid dynamics simulations under transient conditions are performed by applying the SST k-ω turbulence model along with a reactant species balance equation and a porous medium description of the catalyst. Four different types of temporal velocity variations (constant, step-like, sawtooth and sinusoidal) are applied at the inlet. Additionally, the corresponding fluctuations driven by a prescribed inlet pressure are also investigated. It was found that the fluctuations in the incoming flow affect the transient response of the monolith, the time-averaged conversion, the evolution of the flow uniformity index and the dispersion downstream of the catalyst. It is also shown that the retention time distribution is modulated by the pulsations and that the mixed-cup conversion span is different for geometrically identical systems having the same velocity span if the fluctuation characteristics are different. In conclusion, simulations of phenomena that depend on time-resolved boundary conditions from experiments require proper characterization of fluctuations present in the real-world systems; otherwise, the method of recreating the signal at the boundary may influence the obtained results.
  •  
45.
  • Gebremariam, Goitom K., et al. (author)
  • Hydrogen Evolution Volcano(es)-From Acidic to Neutral and Alkaline Solutions
  • 2022
  • In: Catalysts. - : MDPI AG. - 2073-4344. ; 12:12
  • Journal article (peer-reviewed)abstract
    • As the global energy crisis continues, efficient hydrogen production is one of the hottest topics these days. In this sense, establishing catalytic trends for hydrogen production is essential for choosing proper H-2 generation technology and catalytic material. Volcano plots for hydrogen evolution in acidic media are well-known, while a volcano plot in alkaline media was constructed ten years ago using theoretically calculated hydrogen binding energies. Here, for the first time, we show that the volcano-type relationships are largely maintained in a wide range of pH values, from acidic to neutral and alkaline solutions. We do this using theoretically calculated hydrogen binding energies on clean metallic surfaces and experimentally measured hydrogen evolution overpotentials. When metallic surfaces are exposed to high anodic potentials, hydrogen evolution can be boosted or significantly impeded, depending on the type of metal and the electrolyte in which the reaction occurs. Such effects are discussed here and can be used to properly tailor catalytic materials for hydrogen production via different water electrolysis technologies.
  •  
46.
  • Gericke, Sabrina Maria, et al. (author)
  • In Situ H2 Reduction of Al2O3-Supported Ni- and Mo-Based Catalysts
  • 2022
  • In: Catalysts. - : MDPI. - 2073-4344. ; 12:7
  • Journal article (peer-reviewed)abstract
    • Nickel (Ni)-promoted Molybdenum (Mo)-based catalysts are used for hydrotreatment processes in the chemical industry where the catalysts are exposed to high-pressure H2 at elevated temperature. In this environment, the catalyst transforms into the active phase, which involves the reduction of the oxide. Here, we report on the first in situ study on the reduction of alumina supported Ni- and Mo-based catalysts in 1 mbar H2 using ambient-pressure X-ray photoelectron spectroscopy (APXPS). The study confirms that mixing Ni and Mo lowers the reduction temperature of both Ni- and Mo-oxide as compared to the monometallic catalysts and shows that the MoO3 reduction starts at a lower temperature than the reduction of NiO in NiMo/Al2O3 catalysts. Additionally, the reduction of Ni and Mo foil was directly compared to the reduction of the Al2O3-supported catalysts and it was observed that the reduction of the supported catalysts is more gradual than the reduction of the foils, indicating a strong interaction between the Ni/Mo and the alumina support. © 2022 by the authors.
  •  
47.
  • Heinks, Tobias, et al. (author)
  • Biosynthesis of Furfurylamines in Batch and Continuous Flow by Immobilized Amine Transaminases
  • 2023
  • In: Catalysts. - : MDPI AG. - 2073-4344. ; 13:5, s. 875-
  • Journal article (peer-reviewed)abstract
    • Building blocks with amine functionality are crucial in the chemical industry. Biocatalytic syntheses and chemicals derived from renewable resources are increasingly desired to achieve sustainable production of these amines. As a result, renewable materials such as furfurals, especially furfurylamines like 5-(hydroxymethyl)furfurylamine (HMFA) and 2,5-di(aminomethyl)furan (DAF), are gaining increasing attention. In this study, we identified four different amine transaminases (ATAs) that catalyze the reductive amination of 5-(hydroxymethyl)furfural (HMF) and 2,5-diformylfuran (DFF). We successfully immobilized these ATAs on glutaraldehyde-functionalized amine beads using multiple binding and on amine beads by site-selective binding of the unique Ca-formylglycine within an aldehyde tag. All immobilized ATAs were efficiently reused in five repetitive cycles of reductive amination of HMF with alanine as co-substrate, while the ATA from Silicibacter pomeroyi (ATA-Spo) also exhibited high stability for reuse when isopropylamine was used as an amine donor. Additionally, immobilized ATA-Spo yielded high conversion in the batch syntheses of HMFA and DAF using alanine (87% and 87%, respectively) or isopropylamine (99% and 98%, respectively) as amine donors. We further demonstrated that ATA-Spo was effective for the reductive amination of HMF with alanine or isopropylamine in continuous-flow catalysis with high conversion up to 12 days (48% and 41%, respectively).
  •  
48.
  • Manna, Srimanta (author)
  • Copper-Catalyzed Diastereo- and Enantioselective Borylative Cyclization
  • 2022
  • In: Catalysts. - : MDPI AG. - 2073-4344. ; 12:7
  • Research review (peer-reviewed)abstract
    • Copper-catalyzed enantioselective borylative cyclization with various electrophiles via difunctionalization of unsaturated hydrocarbons is a powerful tool for the generation of interesting boron-containing carbocycles and heterocycles processes involving a chiral organocopper intermediate. Alkenes, allenes, and alkynes are versatile and easily accessible substrates that can be subjected to a wide range of reactions to produce densely functionalized, enantioenriched products. In this chapter, I discuss copper-catalyzed alkenes, allenes, and alkynes borofunctionalization and enantioselective cyclization via chiral organocopper intermediate. Copper-catalyzed enantioselective borylative cyclization and regiodivergent functionalization of alkenes, allenes, and alkynes, as well as the current mechanistic understanding of such processes, are given special attention in this review.
  •  
49.
  • Marks, Kess, 1987-, et al. (author)
  • Naphthalene Dehydrogenation on Ni(111) in the Presence of Chemisorbed Oxygen and Nickel Oxide
  • 2024
  • In: Catalysts. - : MDPI AG. - 2073-4344. ; 14:2
  • Journal article (peer-reviewed)abstract
    • Catalyst passivation through carbon poisoning is a common and costly problem as it reduces the lifetime and performance of the catalyst. Adding oxygen to the feed stream could reduce poisoning but may also affect the activity negatively. We have studied the dehydrogenation, decomposition, and desorption of naphthalene co-adsorbed with oxygen on Ni(111) by combining temperature-programmed desorption (TPD), sum frequency generation spectroscopy (SFG), photoelectron spectroscopy (PES), and density functional theory (DFT). Chemisorbed oxygen reduces the sticking of naphthalene and shifts H2 production and desorption to higher temperatures by blocking active Ni sites. Oxygen increases the production of CO and reduces carbon residues on the surface. Chemisorbed oxygen is readily removed when naphthalene is decomposed. Oxide passivates the surface and reduces the sticking coefficient. But it also increases the production of CO dramatically and reduces the carbon residues. Ni2O3 is more active than NiO.
  •  
50.
  • Sjölin, Mikael, et al. (author)
  • Investigating the Inhibitory Factors of Sucrose Hydrolysis in Sugar Beet Molasses with Yeast and Invertase
  • 2024
  • In: Catalysts. - 2073-4344. ; 14:5
  • Journal article (peer-reviewed)abstract
    • Sugar beet molasses is a low-value byproduct from the sugar industry. It contains significant amounts of sucrose (approx. 50% (w/w)), which can be used for many different applications, for example, as feedstock for the production of fuel (as ethanol) and biobased chemicals such as 5-hydoxymethyl furfural (HMF). To produce platform chemicals, sucrose is hydrolyzed into its monomeric C6 sugars: glucose and fructose. When comparing the hydrolysis rates of molasses with a pure sucrose solution, the specific reaction rate is much slower (Qp/x,60min = 93 and 70 gprod L−1 h−1 gcell−1 for pure sucrose and crude molasses, respectively) at the same sucrose concentration (300 g/L) and process conditions. To clarify why molasses inhibits the enzymatic hydrolysis rate, the influence of its viscosity and inorganic and organic composition was investigated. Also, the effects of molasses and treated molasses on pure enzymes, invertase (from Saccharomyces cerevisiae, 0.05 mg/mL), compared with hydrolysis using whole cells of Baker’s yeast (3 mg/mL), were tested. The results indicate an inhibitory effect of potassium (Qp/x,60min = 76 gprod L−1 h−1 gcell−1), generally at high salt concentrations (Qp/x,60min = 67 gprod L−1 h−1 gcell−1), which could be correlated to the solution’s high salt concentrations and possibly the synergistic effects of different ions when applying concentrations that were four times that in the molasses. Also, the viscosity and sucrose purity seem to have an effect, where pure sucrose solutions and thick juice from the sugar mill yielded higher hydrolysis rates (Qp/x,60min = 97 gprod L−1 h−1 gcell−1) than molasses-type solutions with a higher viscosity (Qp/x,60min = 70–74 gprod L−1 h−1 gcell−1). Attempting to further understand the effects of different components on the invertase activity, an in silico investigation was performed, indicating that high salt concentrations affected the binding of sucrose to the active site of the enzyme, which can result in a lower reaction rate. This knowledge is important for future scale-up of the hydrolysis process, since reduced hydrolysis rates require larger volumes to provide a certain productivity, requiring larger process equipment and thereby higher investment costs.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-50 of 54
Type of publication
journal article (48)
research review (6)
Type of content
peer-reviewed (53)
other academic/artistic (1)
Author/Editor
Skoglundh, Magnus, 1 ... (5)
Mikkola, Jyri-Pekka (5)
Olsson, Louise, 1974 (4)
Salmi, Tapio (4)
Hulteberg, Christian (3)
Carlsson, Per-Anders ... (3)
show more...
Tolvanen, Pasi (3)
Eränen, Kari (3)
Pettersson, Lars (2)
Ahuja, Rajeev, 1965- (2)
Hatti-Kaul, Rajni (2)
Larsson, Mats (2)
Sundström, Villy (1)
Berglund, Per (1)
Zetterberg, Johan (1)
El-Seedi, Hesham R. (1)
Naqvi, Muhammad, 198 ... (1)
Mersal, Gaber A. M. (1)
Sá, Jacinto (1)
Szlachetko, Jakub (1)
Zhang, Baozhong (1)
Grönbeck, Henrik, 19 ... (1)
Thersleff, Thomas (1)
Chábera, Pavel (1)
Martinelli, Anna, 19 ... (1)
Hedin, Niklas (1)
Zhang, Peng (1)
Wågberg, Thomas, 197 ... (1)
Grey, Carl (1)
Rissler, Jenny (1)
Persson, Petter (1)
Yartsev, Arkady (1)
Scheu, Christina (1)
Bernin, Diana, 1979 (1)
Creaser, Derek, 1966 (1)
Ho, Hoang Phuoc, 198 ... (1)
Merte, Lindsay Richa ... (1)
Hellman, Anders, 197 ... (1)
Stålbrand, Henrik (1)
Samikannu, Ajaikumar (1)
Tesfalidet, Solomon (1)
Boman, Johan, 1955 (1)
Kotarba, Andrzej (1)
Ott, Sascha (1)
Österlund, Lars, 196 ... (1)
Göthelid, Mats (1)
Akhtar, Farid (1)
Wiemann, Mathias (1)
Bernfur, Katja (1)
Linares-Pastén, Javi ... (1)
show less...
University
Royal Institute of Technology (14)
Lund University (10)
Chalmers University of Technology (10)
Uppsala University (7)
Stockholm University (7)
Umeå University (5)
show more...
RISE (2)
University of Gothenburg (1)
Luleå University of Technology (1)
Linköping University (1)
Malmö University (1)
Karlstad University (1)
show less...
Language
English (54)
Research subject (UKÄ/SCB)
Natural sciences (38)
Engineering and Technology (32)
Medical and Health Sciences (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view