SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:2169 9097 srt2:(2020-2024)"

Sökning: L773:2169 9097 > (2020-2024)

  • Resultat 1-32 av 32
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Benison, K. C., et al. (författare)
  • Depositional and Diagenetic Sulfates of Hogwallow Flats and Yori Pass, Jezero Crater : Evaluating Preservation Potential of Environmental Indicators and Possible Biosignatures From Past Martian Surface Waters and Groundwaters
  • 2024
  • Ingår i: Journal of Geophysical Research - Planets. - : John Wiley and Sons Inc. - 2169-9097 .- 2169-9100. ; 129:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The Mars 2020 Perseverance rover has examined and sampled sulfate-rich clastic rocks from the Hogwallow Flats member at Hawksbill Gap and the Yori Pass member at Cape Nukshak. Both strata are located on the Jezero crater western fan front, are lithologically and stratigraphically similar, and have been assigned to the Shenandoah formation. In situ analyses demonstrate that these are fine-grained sandstones composed of phyllosilicates, hematite, Ca-sulfates, Fe-Mg-sulfates, ferric sulfates, and possibly chloride salts. Sulfate minerals are found both as depositional grains and diagenetic features, including intergranular cement and vein- and vug-cements. Here, we describe the possibility of various sulfate phases to preserve potential biosignatures and the record of paleoenvironmental conditions in fluid and solid inclusions, based on findings from analog sulfate-rich rocks on Earth. The samples collected from these outcrops, Hazeltop and Bearwallow from Hogwallow Flats, and Kukaklek from Yori Pass, should be examined for such potential biosignatures and environmental indicators upon return to Earth. 
  •  
2.
  •  
3.
  •  
4.
  • Corpolongo, A., et al. (författare)
  • SHERLOC Raman Mineral Class Detections of the Mars 2020 Crater Floor Campaign
  • 2023
  • Ingår i: Journal of Geophysical Research - Planets. - : John Wiley and Sons Inc. - 2169-9097 .- 2169-9100. ; 128:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The goals of NASA's Mars 2020 mission include searching for evidence of ancient life on Mars, studying the geology of Jezero crater, understanding Mars' current and past climate, and preparing for human exploration of Mars. During the mission's first science campaign, the Perseverance rover's SHERLOC deep UV Raman and fluorescence instrument collected microscale, two-dimensional Raman and fluorescence images on 10 natural (unabraded) and abraded targets on two different Jezero crater floor units: Séítah and Máaz. We report SHERLOC Raman measurements collected during the Crater Floor Campaign and discuss their implications regarding the origin and history of Séítah and Máaz. The data support the conclusion that Séítah and Máaz are mineralogically distinct igneous units with complex aqueous alteration histories and suggest that the Jezero crater floor once hosted an environment capable of supporting microbial life and preserving evidence of that life, if it existed. 
  •  
5.
  • de Pater, Imke, et al. (författare)
  • An Energetic Eruption With Associated SO 1.707 Micron Emissions at Io's Kanehekili Fluctus and a Brightening Event at Loki Patera Observed by JWST
  • 2023
  • Ingår i: Journal of Geophysical Research - Planets. - : American Geophysical Union (AGU). - 2169-9097 .- 2169-9100. ; 128:8
  • Tidskriftsartikel (refereegranskat)abstract
    • We observed Io with the James Webb Space Telescope (JWST) while the satellite was in eclipse, and detected thermal emission from several volcanoes. The data were taken as part of our JWST-ERS program #1373 on 15 November 2022. Kanehekili Fluctus was exceptionally bright, and Loki Patera had most likely entered a new brightening phase. Spectra were taken with NIRSpec/IFU at a resolving power R ≈ 2,700 between 1.65 and 5.3 µm. The spectra were matched by a combination of blackbody curves that showed that the highest temperature, ∼1,200 K, for Kanehekili Fluctus originated from an area ∼0.25 km2 in size, and for Loki Patera this high temperature was confined to an area of ∼0.06 km2. Lower temperatures, down to 300 K, cover areas of ∼2,000 km2 for Kanehekili Fluctus, and ∼5,000 km2 for Loki Patera. We further detected the a1Δ ⇒ X3Σ− 1.707 µm rovibronic forbidden SO emission band complex over the southern hemisphere, which peaked at the location of Kanehekili Fluctus. This is the first time this emission has been seen above an active volcano, and suggests that the origin of such emissions is ejection of SO molecules directly from the vent in an excited state, after having been equilibrated at temperatures of ∼1,500 K below the surface, as was previously hypothesized.
  •  
6.
  • Gebhardt, C., et al. (författare)
  • Characterizing Dust‐Radiation Feedback and Refining the Horizontal Resolution of the MarsWRF Model down to 0.5 Degree
  • 2021
  • Ingår i: Journal of Geophysical Research - Planets. - : John Wiley & Sons. - 2169-9097 .- 2169-9100. ; 126:3
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, three simulations by the Mars Weather Research and Forecasting (MarsWRF) model are compared: two 10 Martian Year (MY) 2° × 2° simulations with (i) fully radiatively‐active dust and (ii) a prescribed dust scenario, and a (iii) 1 MY 0.5° × 0.5° simulation with prescribed dust as in (ii). From comparing (i) and (ii), we found that the impact of dust‐radiation feedback is individually different for any region. The most striking evidence are major dust lifting activities to the south of Chryse Planitia (S‐CP) seen in (i) but not in (ii). By contrast, dust lifting and deposition on the southern slopes and inside the Hellas Basin are similar in both simulations. The latter, in turn, points towards a similar near‐surface atmospheric circulation. In (iii), the total global amount of wind stress lifted dust is by a factor of ∼8 higher than in (ii), with S‐CP being a major lifting region as in (i). Nonetheless, the surface dust lifting by wind stress in (iii) may be also reduced regionally, as seen at the peak of Elysium Mons because of its unique topography. The zonal mean circulation in (i) is generally of a comparable strength to that in (ii), with exceptions in global dust storm years, when it is clearly stronger in (i), in line with a dustier atmosphere. The differences in the zonal mean circulation between (ii) and (iii) are mostly at lower altitudes, and may arise due to differences in the representation of the topography.
  •  
7.
  • Gebhardt, C., et al. (författare)
  • Fully Interactive and Refined Resolution Simulations of the Martian Dust Cycle by the MarsWRF Model
  • 2020
  • Ingår i: Journal of Geophysical Research - Planets. - : John Wiley & Sons. - 2169-9097 .- 2169-9100. ; 125:9
  • Tidskriftsartikel (refereegranskat)abstract
    • The MarsWRF model is set up with fully interactive dust at 5° × 5° and 2° × 2 resolution. The latter allows for a better representation of topography and other surface properties. An infinite reservoir of surface dust is assumed for both resolutions. For 5° × 5°, surface dust lifting by wind stress takes place over broad areas, occurring in about 20% of the model’s grid cells. For 2° × 2°, it is more spatially restricted, occurring in less than 5% of the grid cells, and somewhat reminiscent of the corridors Acidalia‐Chryse, Utopia‐Isidis, and Arcadia‐West of Tharsis. The onset times of major dust storms ‐ large regional storms or global dust storm events (GDEs) ‐ do not exhibit much inter‐annual variability, typically occurring at around Ls 260°. However, their magnitude does show significant inter‐annual variability ‐ with only small regional storms in some years, large regional storms in others, and some years with GDEs ‐ owing to the interaction between major dust lifting regions at low latitudes. The latter is consistent with observed GDEs having several active dust lifting centers. The model’s dust distribution is found to better agree with observation‐based albedo and dust cover index maps for the 2° × 2° run. For the latter, there is also significant surface dust lifting by wind stress in the aphelion season that is largely confined to the Hellas basin. It has a recurring time pattern of 2‐7 sols, possibly resulting from the interaction between mid‐latitude baroclinic systems and local downslope flows.
  •  
8.
  • Guzewich, Scott D., et al. (författare)
  • 3D Simulations of the Early Martian Hydrological Cycle Mediated by a H-2-CO2 Greenhouse
  • 2021
  • Ingår i: Journal of Geophysical Research - Planets. - : American Geophysical Union (AGU). - 2169-9097 .- 2169-9100. ; 126:7
  • Tidskriftsartikel (refereegranskat)abstract
    • For decades, the scientific community has been trying to reconcile abundant evidence for fluvial activity on Noachian and early Hesperian Mars with the faint young Sun and reasonable constraints on ancient atmospheric pressure and composition. Recently, the investigation of H-2-CO2 collision-induced absorption has opened up a new avenue to warm Noachian Mars. We use the ROCKE-3D global climate model to simulate plausible states of the ancient Martian climate with this absorptive warming and reasonable constraints on surface paleopressure. We find that 1.5-2 bar CO2-dominated atmospheres with >= 3% H-2 can produce global mean surface temperatures above freezing, while also providing sufficient warming to avoid surface atmospheric CO2 condensation at 0 degrees-45 degrees obliquity. Simulations conducted with both modern topography and a paleotopography, before Tharsis formed, highlight the importance of Tharsis as a cold trap for water on the planet. Additionally, we find that low obliquity (modern and 0 degrees) is more conducive to rainfall over valley network locations than high (45 degrees) obliquity.
  •  
9.
  • Hausrath, E. M., et al. (författare)
  • An Examination of Soil Crusts on the Floor of Jezero Crater, Mars
  • 2023
  • Ingår i: Journal of Geophysical Research: Planets. - : American Geophysical Union (AGU). - 2169-9097 .- 2169-9100. ; 128:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Martian soils are critically important for understanding the history of Mars, past potentially habitable environments, returned samples, and future human exploration. This paper examines soil crusts on the floor of Jezero crater encountered during initial phases of the Mars 2020 mission. Soil surface crusts have been observed on Mars at other locations, starting with the two Viking Lander missions. Rover observations show that soil crusts are also common across the floor of Jezero crater, revealed in 45 of 101 locations where rover wheels disturbed the soil surface, 2 out of 7 helicopter flights that crossed the wheel tracks, and 4 of 8 abrasion/drilling sites. Most soils measured by the SuperCam laser-induced breakdown spectroscopy (LIBS) instrument show high hydrogen content at the surface, and fine-grained soils also show a visible/near infrared (VISIR) 1.9 µm H2O absorption feature. The Planetary Instrument for X-ray Lithochemistry (PIXL) and SuperCam observations suggest the presence of salts at the surface of rocks and soils. The correlation of S and Cl contents with H contents in SuperCam LIBS measurements suggests that the salts present are likely hydrated. On the “Naltsos” target, magnesium and sulfur are correlated in PIXL measurements, and Mg is tightly correlated with H at the SuperCam points, suggesting hydrated Mg-sulfates. Mars Environmental Dynamics Analyzer (MEDA) observations indicate possible frost events and potential changes in the hydration of Mg-sulfate salts. Jezero crater soil crusts may therefore form by salts that are hydrated by changes in relative humidity and frost events, cementing the soil surface together.
  •  
10.
  • Honing, Dennis, et al. (författare)
  • Early Habitability and Crustal Decarbonation of a Stagnant-Lid Venus
  • 2021
  • Ingår i: Journal of Geophysical Research - Planets. - : American Geophysical Union (AGU). - 2169-9097 .- 2169-9100. ; 126:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Little is known about the early evolution of Venus and a potential habitable period during the first 1 billion years. In particular, it remains unclear whether or not plate tectonics and an active carbonate-silicate cycle were present. In the presence of liquid water but without plate tectonics, weathering would have been limited to freshly produced basaltic crust, with an early carbon cycle restricted to the crust and atmosphere. With the evaporation of surface water, weathering would cease. With ongoing volcanism, carbonate sediments would be buried and sink downwards. Thereby, carbonates would heat up until they become unstable and the crust would become depleted in carbonates. With CO2 supply to the atmosphere the surface temperature rises further, the depth below which decarbonation occurs decreases, causing the release of even more CO2. We assess the habitable period of an early stagnant-lid Venus by employing a coupled interior-atmosphere evolution model accounting for CO2 degassing, weathering, carbonate burial, and crustal decarbonation. We find that if initial surface conditions allow for liquid water, weathering can keep the planet habitable for up to 900 Myr, followed by evaporation of water and rapid crustal carbonate depletion. For the atmospheric CO2 of stagnant-lid exoplanets, we predict a bimodal distribution, depending on whether or not these planets experienced a runaway greenhouse in their history. Planets with high atmospheric CO2 could be associated with crustal carbonate depletion as a consequence of a runaway greenhouse, whereas planets with low atmospheric CO2 would indicate active silicate weathering and thereby a habitable climate.
  •  
11.
  •  
12.
  • Martell, J., et al. (författare)
  • Combined Neutron and X-Ray Tomography-A Versatile and Non-Destructive Tool in Planetary Geosciences
  • 2024
  • Ingår i: Journal of Geophysical Research - Planets. - : American Geophysical Union (AGU). - 2169-9097 .- 2169-9100. ; 129:2
  • Forskningsöversikt (refereegranskat)abstract
    • With several upcoming sample return missions, such as the Mars Sample Return Campaign, non-destructive methods will be key to maximizing their scientific output. In this study, we demonstrate that the combination of neutron and X-ray tomography provides an important tool for the characterization of such valuable samples. These methods allow quantitative analyses of internal sample features and also provide a guide for further destructive analyses with little to no sample treatment, which maintains sample integrity, including minimizing the risk of potential contamination. Here, we present and review the results from four case studies of terrestrial impactites and meteorites along with their analytical setup. Using combined X-ray and neutron tomography, a Ni-Fe silicide spherule, that is, projectile material, was located within a Libyan Desert Glass sample and the distribution of hydrous phases was pinpointed in selected impactite samples from the Chicxulub IODP-ICDP Expedition 364 drill core and the Luizi impact structure, as well as in the Miller Range 03346 Martian meteorite. Neutron and X-ray tomography give complementary three-dimensional information about the distribution of different phases within a geologic sample. We demonstrate that these two methods can be successfully used to locate meteoritic material (i.e., from the impacting object) and hydrous components in terrestrial impactites and meteorites. This can help shed light on aqueous processes in the Solar System as well as the impact cratering process. Non-destructive methods like these will be important for up-coming sample return missions to characterize the returned samples and guide further destructive analyses. Combined neutron and X-ray imaging was used to locate projectile material and hydrous phases in meteorites and terrestrial impactites Locating and identifying projectile material can shed light on the impact cratering process Combined neutron/X-ray tomography can serve as a fundamental method for the characterization of material from (future) sample return missions
  •  
13.
  • Marzok, A., et al. (författare)
  • Mapping the Brightness of Ganymede's Ultraviolet Aurora Using Hubble Space Telescope Observations
  • 2022
  • Ingår i: Journal of Geophysical Research - Planets. - : American Geophysical Union (AGU). - 2169-9097 .- 2169-9100. ; 127:6
  • Tidskriftsartikel (refereegranskat)abstract
    • We analyze Hubble Space Telescope observations of Ganymede made with the Space Telescope Imaging Spectrograph between 1998 and 2017 to generate a brightness map of Ganymede's oxygen emission at 1,356 angstrom. Our Mercator projected map demonstrates that the brightness along Ganymede's northern and southern auroral ovals strongly varies with longitude. To quantify this variation around Ganymede, we investigate the brightness averaged over 36 degrees-wide longitude corridors centered around the sub-Jovian (0 degrees W), leading (90 degrees W), anti-Jovian (180 degrees W), and trailing (270 degrees W) central longitudes. In the northern hemisphere, the brightness of the auroral oval is 3.7 +/- 0.4 times lower in the sub-Jovian and anti-Jovian corridors compared to the trailing and leading corridors. The southern oval is overall brighter than the northern oval, and only 2.5 +/- 0.2 times fainter on the sub- and anti-Jovian corridors compared to the trailing and leading corridors. This demonstrates that Ganymede's auroral ovals are strongly structured in auroral crescents on the leading side (plasma downstream side) and on the trailing side (plasma upstream side). We also find that the brightness is not symmetric with respect to the 270 degrees meridian, but shifted by similar to 20 degrees towards the Jovian-facing hemisphere. Our map will be useful for subsequent studies to understand the processes that generate the aurora in Ganymede's non-rotationally driven, sub-Alfvenic magnetosphere.
  •  
14.
  • Mogan, Shane R. Carberry R., et al. (författare)
  • Callisto's Atmosphere : First Evidence for H-2 and Constraints on H2O
  • 2022
  • Ingår i: Journal of Geophysical Research - Planets. - : American Geophysical Union (AGU). - 2169-9097 .- 2169-9100. ; 127:11
  • Tidskriftsartikel (refereegranskat)abstract
    • We explore the parameter space for the contribution to Callisto's H corona observed by the Hubble Space Telescope from sublimated H2O and radiolytically produced H-2 using the Direct Simulation Monte Carlo method. The spatial morphology of this corona produced via photoelectron and magnetospheric electron-impact-induced dissociation is described by tracking the motion of and simulating collisions between the hot H atoms and thermal molecules including a near-surface O-2 component. Our results indicate that sublimated H2O produced from the surface ice, whether assumed to be intimately mixed with or distinctly segregated from the dark nonice or ice-poor regolith, cannot explain the observed structure of the H corona. On the other hand, a global H-2 component can reproduce the observation, and is also capable of producing the enhanced electron densities observed at high altitudes by Galileo's plasma-wave instrument, providing the first evidence of H-2 in Callisto's atmosphere. The range of H-2 surface densities explored, under a variety of conditions, that are consistent with these observations is similar to(0.4-1) x 10(8) cm(-3). The simulated H-2 escape rates and estimated lifetimes suggest that Callisto has a neutral H-2 torus. We also place a rough upper limit on the peak H2O number density (less than or similar to 10(8) cm(-3)), column density (less than or similar to 10(15) cm(-2)), and sublimation flux (less than or similar to 10(12) cm(-2) s(-1)), all of which are 1-2 orders of magnitude less than that assumed in previous models. Finally, we discuss the implications of these results, as well as how they compare to Europa and Ganymede.
  •  
15.
  • Persson, Moa, et al. (författare)
  • The Venusian Atmospheric Oxygen Ion Escape : Extrapolation to the Early Solar System
  • 2020
  • Ingår i: Journal of Geophysical Research - Planets. - : American Geophysical Union (AGU). - 2169-9097 .- 2169-9100. ; 125:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The present atmosphere of Venus contains almost no water, but recent measurements indicate that in its early history, Venus had an Earth-like ocean. Understanding how the Venusian atmosphere evolved is important not only for Venus itself but also for understanding the evolution of other planetary atmospheres. In this study, we quantify the escape rates of oxygen ions from the present Venus to infer the past of the Venusian atmosphere. We show that an extrapolation of the current escape rates back in time leads to the total escape of 0.02-0.6 m of a global equivalent layer of water. This implies that the loss of ions to space, inferred from the present state, cannot account for the loss of an historical Earth-like ocean. We find that the O+ escape rate increases with solar wind energy flux, where more energy available leads to a higher escape rate. Oppositely, the escape rate decreases slightly with increased extreme ultraviolet radiation (EUV) flux, though the small variation of EUV flux over the measured solar cycle may explain the weak dependency. These results indicate that there is not enough energy transferred from the solar wind to Venus' upper atmosphere that can lead to the escape of the atmosphere over the past 3.9 billion years. This means that the Venusian atmosphere did not have as much water in its atmosphere as previously assumed or the present-day escape rates do not represent the historical escape rates at Venus. Otherwise, some other mechanisms have acted to more effectively remove the water from the Venusian atmosphere. Plain Language Summary Today, Venus only has small amounts of water in its atmosphere. In its early history, Venus presumably contained an Earth-like ocean of several meters. The evolution of the atmosphere may have been caused by escape of atmospheric content to space. In this study, we investigate how much the escape of oxygen ions to space could have affected the atmospheric evolution for Venus from measurements of the present-day escape rates. Using measurements of oxygen ions in the vicinity of Venus, we show that the amount of energy available in the solar wind to be transferred to the upper atmosphere of Venus determines how much of the atmosphere escapes. From the evolution of the energy in the solar wind over the past 3.9 billion years, together with the relation between the solar wind energy and oxygen ion escape, we show that in total, about 0.02-0.6 m of water depth, if spread equally over the entire Venusian surface, was lost. This indicates that either Venus did not have as much water as previously assumed or the current escape rates are not representative of the historical escape rates. Otherwise, some other mechanisms must have acted to more effectively remove the water from Venus.
  •  
16.
  • Siljeström, Sandra, et al. (författare)
  • Evidence of Sulfate-Rich Fluid Alteration in Jezero Crater Floor, Mars
  • 2024
  • Ingår i: Journal of Geophysical Research - Planets. - : John Wiley and Sons Inc. - 2169-9097 .- 2169-9100. ; 129:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Sulfur plays a major role in martian geochemistry and sulfate minerals are important repositories of water. However, their hydration states on Mars are poorly constrained. Therefore, understanding the hydration and distribution of sulfate minerals on Mars is important for understanding its geologic, hydrologic, and atmospheric evolution as well as its habitability potential. NASA's Perseverance rover is currently exploring the Noachian-age Jezero crater, which hosts a fan-delta system associated with a paleolake. The crater floor includes two igneous units (the Séítah and Máaz formations), both of which contain evidence of later alteration by fluids including sulfate minerals. Results from the rover instruments Scanning Habitable Environments with Raman and Luminescence for Organics and Chemistry and Planetary Instrument for X-ray Lithochemistry reveal the presence of a mix of crystalline and amorphous hydrated Mg-sulfate minerals (both MgSO4·[3–5]H2O and possible MgSO4·H2O), and anhydrous Ca-sulfate minerals. The sulfate phases within each outcrop may have formed from single or multiple episodes of water activity, although several depositional events seem likely for the different units in the crater floor. Textural and chemical evidence suggest that the sulfate minerals most likely precipitated from a low temperature sulfate-rich fluid of moderate pH. The identification of approximately four waters puts a lower constraint on the hydration state of sulfate minerals in the shallow subsurface, which has implications for the martian hydrological budget. These sulfate minerals are key samples for future Mars sample return.
  •  
17.
  • Simon, J. I., et al. (författare)
  • Samples Collected From the Floor of Jezero Crater With the Mars 2020 Perseverance Rover
  • 2023
  • Ingår i: Journal of Geophysical Research - Planets. - : John Wiley and Sons Inc. - 2169-9097 .- 2169-9100. ; 128:6
  • Tidskriftsartikel (refereegranskat)abstract
    • The first samples collected by the Mars 2020 mission represent units exposed on the Jezero Crater floor, from the potentially oldest Séítah formation outcrops to the potentially youngest rocks of the heavily cratered Máaz formation. Surface investigations reveal landscape-to-microscopic textural, mineralogical, and geochemical evidence for igneous lithologies, some possibly emplaced as lava flows. The samples contain major rock-forming minerals such as pyroxene, olivine, and feldspar, accessory minerals including oxides and phosphates, and evidence for various degrees of aqueous activity in the form of water-soluble salt, carbonate, sulfate, iron oxide, and iron silicate minerals. Following sample return, the compositions and ages of these variably altered igneous rocks are expected to reveal the geophysical and geochemical nature of the planet's interior at the time of emplacement, characterize martian magmatism, and place timing constraints on geologic processes, both in Jezero Crater and more widely on Mars. Petrographic observations and geochemical analyses, coupled with geochronology of secondary minerals, can also reveal the timing of aqueous activity as well as constrain the chemical and physical conditions of the environments in which these minerals precipitated, and the nature and composition of organic compounds preserved in association with these phases. Returned samples from these units will help constrain the crater chronology of Mars and the global evolution of the planet's interior, for understanding the processes that formed Jezero Crater floor units, and for constraining the style and duration of aqueous activity in Jezero Crater, past habitability, and cycling of organic elements in Jezero Crater.
  •  
18.
  • Sturkell, Erik, 1962, et al. (författare)
  • The Proximal Ejecta Around the Marine-Target Lockne Impact Structure, Sweden
  • 2023
  • Ingår i: JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS. - 2169-9097 .- 2169-9100. ; 128:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Very few impact craters on Earth have preserved proximal ejecta (ejecta blanket), which when present help us to better understand the cratering processes when asteroid hits Earth. The 458 Ma old Lockne impact structure consists of a 7.5-km wide nested crater in the crystalline basement surrounded by an approximately 3-km wide brim developed in the upper sedimentary target. The asteroid struck a marine environment with 500 m sea water, 50-m lithified limestone, and 30 m of Cambrian clay covering a peneplainized crystalline basement. The transient crater that developed in rock and water obtained a "soup-plate" shape and reached about 7 km from the impact crater center, the farthest on the down-range side. The brim of the soup-plate was partially stripped of Ordovician limestone and water before the emplacement of inner impact crater ejecta. Most of the ejecta rest upon the Cambrian clay (today shale). The asteroid struck obliquely from the east, which is reflected in the ejecta distribution. The proximal ejecta field is divided into two crescent-shaped areas to the northwest and southwest of the nested crater and covers 26 km(2). Resistivity profiles, mapping, and core drilling show that the thickness of the ejecta masses range between 30 and 50 m with a total volume of about 1 km(3). They were not re-worked by the resurge. They represent roughly 26 vol% of the calculated excavated volume of crystalline rocks. Thus, it can be concluded that the Lockne impact crater has a well-preserved ejecta blanket.
  •  
19.
  • Sun, Vivian Z., et al. (författare)
  • Overview and Results From the Mars 2020 Perseverance Rover's First Science Campaign on the Jezero Crater Floor
  • 2023
  • Ingår i: Journal of Geophysical Research: Planets. - : John Wiley and Sons Inc. - 2169-9097 .- 2169-9100. ; 128:6
  • Tidskriftsartikel (refereegranskat)abstract
    • The Mars 2020 Perseverance rover landed in Jezero crater on 18 February 2021. After a 100-sol period of commissioning and the Ingenuity Helicopter technology demonstration, Perseverance began its first science campaign to explore the enigmatic Jezero crater floor, whose igneous or sedimentary origins have been much debated in the scientific community. This paper describes the campaign plan developed to explore the crater floor's Máaz and Séítah formations and summarizes the results of the campaign between sols 100–379. By the end of the campaign, Perseverance had traversed more than 5 km, created seven abrasion patches, and sealed nine samples and a witness tube. Analysis of remote and proximity science observations show that the Máaz and Séítah formations are igneous in origin and composed of five and two geologic members, respectively. The Séítah formation represents the olivine-rich cumulate formed from differentiation of a slowly cooling melt or magma body, and the Máaz formation likely represents a separate series of lava flows emplaced after Séítah. The Máaz and Séítah rocks also preserve evidence of multiple episodes of aqueous alteration in secondary minerals like carbonate, Fe/Mg phyllosilicates, sulfates, and perchlorate, and surficial coatings. Post-emplacement processes tilted the rocks near the Máaz-Séítah contact and substantial erosion modified the crater floor rocks to their present-day expressions. Results from this crater floor campaign, including those obtained upon return of the collected samples, will help to build the geologic history of events that occurred in Jezero crater and provide time constraints on the formation of the Jezero delta.
  •  
20.
  • Szabo, P.S., et al. (författare)
  • Energetic neutral atom (ENA) emission characteristics at the moon and mercury from 3D regolith simulations of solar wind reflection
  • 2023
  • Ingår i: Journal of Geophysical Research - Planets. - : American Geophysical Union (AGU). - 2169-9097 .- 2169-9100. ; 128:9
  • Tidskriftsartikel (refereegranskat)abstract
    • The reflection of solar wind protons as energetic neutral atoms (ENAs) from the lunar surface has regularly been used to study the plasma-surface interaction at the Moon. However, there still exists a fundamental lack of knowledge of the scattering process. ENA emission from the surface is expected to similarly occur at Mercury and will be studied by BepiColombo. Understanding this solar wind backscattering will allow studies of both Mercury's plasma environment as well as properties of the hermean surface itself. Here, we expand on previous simulation studies of the solar-wind-regolith interaction with 3D grains in SDTrimSP-3D to compare the predicted scattering energies and angles to ENA measurements from the Moon by the Chandrayaan-1 and IBEX missions. The simulations reproduce a backward emission toward the Sun, which can be connected to the geometry of the regolith grain stacking. In contrast, the ENA energy distribution and its Maxwellian shape is mostly connected to the solar wind velocity. Our simulations also correctly describe a lunar ENA albedo between 10% and 20% and support its decrease with solar wind velocity. We further expand our studies to illustrate how BepiColombo will be able to observe ENAs at Mercury using hybrid simulations of Mercury's magnetosphere as an input for the complex surface precipitation patterns. We demonstrate that the variable ion precipitation will directly influence ENA emission from the surface. The orbits of BepiColombo's Mercury Planetary Orbiter and Mercury Magnetospheric Orbiter/Mio spacecraft are shown to be suitable to observe ENA emission patterns both on a local and a global scale.
  •  
21.
  • Szabo, P. S., et al. (författare)
  • Experimental Insights Into Space Weathering of Phobos : Laboratory Investigation of Sputtering by Atomic and Molecular Planetary Ions
  • 2020
  • Ingår i: Journal of Geophysical Research - Planets. - : AMER GEOPHYSICAL UNION. - 2169-9097 .- 2169-9100. ; 125:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Investigating the space weathering of the Martian moon Phobos represents an important step toward understanding the development from its origin to its present-day appearance. Depending on Phobos' orbital position, its surface is continuously sputtered by the solar wind and planetary ions that originate in the Martian atmosphere. Based on Mars Atmosphere and Volatile Evolution measurements, it has been proposed that sputtering by planetary O+ and O-2(+) ions dominates in the Martian tail region, where the planet mostly shadows Phobos from the solar wind. In these models, uncertainties for sputtering yield inputs still exist due to the lack of sufficient analog experiments. Therefore, sputtering measurements with O+, O-2(+), C+, and CO2+ ions between 1 and 5 keV were performed using augite samples as Phobos analogs. The experimental results for O+ irradiations show smaller mass changes than predicted by SDTrimSP simulations, which probably can be attributed to O implantation enabled by the Fe content of the target. Sputtering with O-2(+) and CO2+ in the low keV range shows no deviations in the sputtering yields attributable to molecular effects. Therefore, CO2+ ions will most likely be negligible for the sputtering of Phobos according to the current understanding of ion fluxes on the Martian moon. Ultimately, our experiments suggest that the sputtering contribution on Phobos by O ions is about 50% smaller than previously assumed. This does not change the qualitative outcome from previous modeling stating that planetary O ions are by far the dominant sputtering contribution on Phobos in the Martian tail region.
  •  
22.
  • Vaughan, A., et al. (författare)
  • Regolith of the Crater Floor Units, Jezero Crater, Mars : Textures, Composition, and Implications for Provenance
  • 2023
  • Ingår i: Journal of Geophysical Research - Planets. - : John Wiley and Sons Inc. - 2169-9097 .- 2169-9100. ; 128:3
  • Tidskriftsartikel (refereegranskat)abstract
    • A multi-instrument study of the regolith of Jezero crater floor units by the Perseverance rover has identified three types of regolith: fine-grained, coarse-grained, and mixed-type. Mastcam-Z, Wide Angle Topographic Sensor for Operations and eNgineering, and SuperCam Remote Micro Imager were used to characterize the regolith texture, particle size, and roundedness where possible. Mastcam-Z multispectral and SuperCam laser-induced breakdown spectroscopy data were used to constrain the composition of the regolith types. Fine-grained regolith is found surrounding bedrock and boulders, comprising bedforms, and accumulating on top of rocks in erosional depressions. Spectral and chemical data show it is compositionally consistent with pyroxene and a ferric-oxide phase. Coarse-grained regolith consists of 1–2 mm well-sorted gray grains that are found concentrated around the base of boulders and bedrock, and armoring bedforms. Its chemistry and spectra indicate it is olivine-bearing, and its spatial distribution and roundedness indicate it has been transported, likely by saltation-induced creep. Coarse grains share similarities with the olivine grains observed in the Séítah formation bedrock, making that unit a possible source for these grains. Mixed-type regolith contains fine- and coarse-grained regolith components and larger rock fragments. The rock fragments are texturally and spectrally similar to bedrock within the Máaz and Séítah formations, indicating origins by erosion from those units, although they could also be a lag deposit from erosion of an overlying unit. The fine- and coarse-grained types are compared to their counterparts at other landing sites to inform global, regional, and local inputs to regolith formation within Jezero crater. The regolith characterization presented here informs the regolith sampling efforts underway by Perseverance. © 2023. The Authors.
  •  
23.
  • Way, Michael J., et al. (författare)
  • Venusian Habitable Climate Scenarios : Modeling Venus Through Time and Applications to Slowly Rotating Venus-Like Exoplanets
  • 2020
  • Ingår i: Journal of Geophysical Research - Planets. - 2169-9097 .- 2169-9100. ; 125:5
  • Tidskriftsartikel (refereegranskat)abstract
    • One popular view of Venus' climate history describes a world that has spent much of its life with surface liquid water, plate tectonics, and a stable temperate climate. Part of the basis for this optimistic scenario is the high deuterium to hydrogen ratio from the Pioneer Venus mission that was interpreted to imply Venus had a shallow ocean's worth of water throughout much of its history. Another view is that Venus had a long‐lived (∼100 million years) primordial magma ocean with a CO2 and steam atmosphere. Venus' long‐lived steam atmosphere would sufficient time to dissociate most of the water vapor, allow significant hydrogen escape, and oxidize the magma ocean. A third scenario is that Venus had surface water and habitable conditions early in its history for a short period of time (<1 Gyr), but that a moist/runaway greenhouse took effect because of a gradually warming Sun, leaving the planet desiccated ever since. Using a general circulation model, we demonstrate the viability of the first scenario using the few observational constraints available. We further speculate that large igneous provinces and the global resurfacing hundreds of millions of years ago played key roles in ending the clement period in its history and presenting the Venus we see today. The results have implications for what astronomers term “the habitable zone,” and if Venus‐like exoplanets exist with clement conditions akin to modern Earth, we propose to place them in what we term the “optimistic Venus zone.”
  •  
24.
  • Xiao, Haifeng, et al. (författare)
  • Spatio-Temporal Level Variations of the Martian Seasonal North Polar Cap From Co-Registration of MOLA Profiles
  • 2022
  • Ingår i: Journal of Geophysical Research - Planets. - : John Wiley & Sons. - 2169-9097 .- 2169-9100. ; 127:10
  • Tidskriftsartikel (refereegranskat)abstract
    • The seasonal deposition and sublimation of CO2 constitute a major element in Martian volatile cycles. We reprocess the Mars Orbiter Laser Altimeter (MOLA) data and apply co-registration procedures to obtain spatio-temporal variations in levels of the Seasonal North Polar Cap (SNPC). The maximum level over the Residual North Polar Cap (RNPC) is 1.3 m, approximately half of that at the south pole (2.5 m). However, the maximum level in the dune fields at Olympia Undae can be up to 3.8 m. Furthermore, off-season decreases up to 3 m during the northern winter at Olympia Undae are observed. These are likely due to metamorphism effects accentuated by the reduced snowfall at this period. Meanwhile, off-season increases of up to 2 m during the northern spring are noted, the cause of which remains to be explored. The volume of the SNPC peaks at the end of northern winter and is estimated to be approximately 9.6 × 1012 m3, which is 2% more than that of the Seasonal South Polar Cap. The bulk density of the SNPC can go through phased decreases in accordance with phased accumulation at northern high-latitudes. These findings can put important constraints on the Martian volatile cycling models.
  •  
25.
  • Xiao, Haifeng, et al. (författare)
  • Spatio‐temporal level variations of the Martian Seasonal South Polar Cap from co‐registration of MOLA profiles
  • 2022
  • Ingår i: Journal of Geophysical Research - Planets. - : John Wiley & Sons. - 2169-9097 .- 2169-9100. ; 127:7
  • Tidskriftsartikel (refereegranskat)abstract
    • The seasonal deposition and sublimation of CO2 represents a major element in the Martian volatile cycle. Here, co-registration strategies are applied to Mars Orbiter Laser Altimeter (MOLA) profiles to obtain spatio-temporal variations in snow/ice level of the Seasonal South Polar Cap (SSPC), in grid elements of 0.5° in latitude from 60°S to 87°S and 10° in longitude. The maximum snow/ice level in the range of 2 m to 2.5 m is observed over the Residual South Polar Cap. Peak level at the Residual South Polar Cap in Martian Year 25 (MY25) are found to be typically ∼0.5 m higher than those in MY24. The total volume is estimated to peak at approximately 9.4× 1012 m3. In addition, a map of average bulk density of the SSPC during its recession is derived. It implies much more snowfall-like precipitation at the Residual South Polar Cap and its surroundings than elsewhere on Mars.
  •  
26.
  • Alwmark, S., et al. (författare)
  • Diverse Lava Flow Morphologies in the Stratigraphy of the Jezero Crater Floor
  • 2023
  • Ingår i: Journal of Geophysical Research: Planets. - 2169-9097. ; 128:7
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a combined geomorphologic, multispectral, and geochemical analysis of crater floor rocks in Jezero crater based on data obtained by the Mast Camera Zoom and SuperCam instruments onboard the NASA Mars 2020 Perseverance rover. The combined data from this analysis together with the results of a comparative study with geologic sites on Earth allows us to interpret the origins of rocks exposed along the Artuby ridge, a ∼900 m long scarp of lower Máaz formation rocks. The ridge exposes rocks belonging to two morphologically distinct members, Artuby and Rochette, both of which have basaltic composition and are spectrally indistinguishable in our analysis. Artuby rocks consist of morphologically distinct units that alternate over the ridge, bulbous, hummocky, layers with varying thicknesses that in places appear to have flowed over underlying strata, and sub-planar thinner laterally continuous layers with variable friability. The Rochette member has a massive appearance with pronounced pitting and sub-horizontal partings. Our findings are most consistent with a primary igneous emplacement as lava flows, through multiple eruptions, and we propose that the thin layers result either from preferential weathering, interbedded ash/tephra layers, ʻaʻā clinker layers, or aeolian deposition. Our analyses provide essential geologic context for the Máaz formation samples that will be returned to Earth and highlight the diversity and complexity of geologic processes on Mars not visible from orbit.
  •  
27.
  • Alwmark, S. (författare)
  • Tying Shock Features to Impact Conditions : The Significance of Shear Deformation During Impact Cratering
  • 2023
  • Ingår i: Journal of Geophysical Research: Planets. - 2169-9097. ; 128:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Impact cratering is associated with extreme physical conditions with temperatures and pressures far exceeding conditions otherwise prevailing at the surfaces of terrestrial planets. As a consequence, shock-metamorphosed rocks contain unique deformation features such as planar deformation features in quartz, high-pressure mineral polymorphs and melted rock. While the physical conditions of formation for impact-induced melting following the highest pressure and temperature conditions is relatively well understood, aspects of the formation of melt-veins in otherwise seemingly relatively low shock material has been the topic of discussion. In a new study, Hamann et al. (2023, https://doi.org/10.1029/2023JE007742) are able to largely reproduce the current classification of progressive shock metamorphism of felsic rocks using a modern experimental set up that eliminates multiple shock wave reflections at sample containers and excavation and ejection of target material. Importantly, however, they find that shear deformation results in the formation of melt veins at pressures as low as 6 GPa. The authors recover stishovite in melt veins formed at low-moderate (<18 GPa) shock pressure, lower than most previous studies. These results have bearing on our understanding of the conditions of progressive shock metamorphism at terrestrial impact structures. However, since the results are similar to data obtained from experiments on basaltic rocks, the results also have broader implications for understanding the shock histories of meteorite parent bodies. Hamann et al. show the importance of experimental impact cratering for bridging the gap between observations in shocked rocks from terrestrial impact structures, in meteorites, and in returned samples, and their formational conditions.
  •  
28.
  • Holm-Alwmark, S., et al. (författare)
  • Stratigraphic Relationships in Jezero Crater, Mars : Constraints on the Timing of Fluvial-Lacustrine Activity From Orbital Observations
  • 2021
  • Ingår i: Journal of Geophysical Research: Planets. - 2169-9097. ; 126:7
  • Tidskriftsartikel (refereegranskat)abstract
    • On February 18, 2021 NASA's Perseverance rover landed in Jezero crater, located at the northwestern edge of the Isidis basin on Mars. The uppermost surface of the present-day crater floor is dominated by a distinct geologic assemblage previously referred to as the dark-toned floor. It consists of a smooth, dark-toned unit overlying and variably covering light-toned, roughly eroded deposits showing evidence of discrete layers. In this study, we investigated the stratigraphic relations between materials that comprise this assemblage, the main western delta deposit, as well as isolated mesas located east of the main delta body that potentially represent delta remnants. A more detailed classification and differentiation of crater floor units in Jezero and determination of their relative ages is vital for the understanding of the geologic evolution of the crater system, and determination of the potential timeline and environments of habitability. We have investigated unit contacts using topographic profiles and DEMs as well as the distribution of small craters and fractures on the youngest portions of the crater floor. Our results indicate that at least some of the deltaic deposition in Jezero postdates emplacement of the uppermost surface of the crater floor assemblage. The inferred age of the floor assemblage can therefore help to constrain the timing of the Jezero fluviolacustrine system, wherein at least some lake activity postdates the age of the uppermost crater floor. We present hypotheses that can be tested by Perseverance and can be used to advance our knowledge of the geologic evolution of the area.
  •  
29.
  • Horgan, Briony, et al. (författare)
  • Mineralogy, Morphology, and Emplacement History of the Maaz Formation on the Jezero Crater Floor From Orbital and Rover Observations
  • 2023
  • Ingår i: Journal of Geophysical Research: Planets. - 2169-9097. ; 128:8
  • Tidskriftsartikel (refereegranskat)abstract
    • The first samples collected by the Perseverance rover on the Mars 2020 mission were from the Maaz formation, a lava plain that covers most of the floor of Jezero crater. Laboratory analysis of these samples back on Earth would provide important constraints on the petrologic history, aqueous processes, and timing of key events in Jezero crater. However, interpreting these samples requires a detailed understanding of the emplacement and modification history of the Maaz formation. Here we synthesize rover and orbital remote sensing data to link outcrop-scale interpretations to the broader history of the crater, including Mastcam-Z mosaics and multispectral images, SuperCam chemistry and reflectance point spectra, Radar Imager for Mars' subsurface eXperiment ground penetrating radar, and orbital hyperspectral reflectance and high-resolution images. We show that the Maaz formation is composed of a series of distinct members corresponding to basaltic to basaltic-andesite lava flows. The members exhibit variable spectral signatures dominated by high-Ca pyroxene, Fe-bearing feldspar, and hematite, which can be tied directly to igneous grains and altered matrix in abrasion patches. Spectral variations correlate with morphological variations, from recessive layers that produce a regolith lag in lower Maaz, to weathered polygonally fractured paleosurfaces and crater-retaining massive blocky hummocks in upper Maaz. The Maaz members were likely separated by one or more extended periods of time, and were subjected to variable erosion, burial, exhumation, weathering, and tectonic modification. The two unique samples from the Maaz formation are representative of this diversity, and together will provide an important geochronological framework for the history of Jezero crater.
  •  
30.
  • Quantin-Nataf, C., et al. (författare)
  • The Complex Exhumation History of Jezero Crater Floor Unit and Its Implication for Mars Sample Return
  • 2023
  • Ingår i: Journal of Geophysical Research: Planets. - 2169-9097. ; 128:6
  • Tidskriftsartikel (refereegranskat)abstract
    • During the first year of NASA's Mars 2020 mission, Perseverance rover has investigated the dark crater floor unit of Jezero crater and four samples of this unit have been collected. The focus of this paper is to assess the potential of these samples to calibrate the crater-based Martian chronology. We first review the previous estimation of crater-based model age of this unit. Then, we investigate the impact crater density distribution across the floor unit. It reveals that the crater density is heterogeneous from areas which have been exposed to the bombardment during the last 3 Ga to areas very recently exposed to bombardment. It suggests a complex history of exposure to impact cratering. We also display evidence of several remnants of deposits on the top of the dark floor unit across Jezero below which the dark floor unit may have been buried. We propose the following scenario of burying/exhumation: the dark floor unit would have been initially buried below a unit that was a few tens of meters thick. This unit then gradually eroded away due to Aeolian processes from the northeast to the west, resulting in uneven exposure to impact bombardment over 3 Ga. A cratering model reproducing this scenario confirms the feasibility of this hypothesis. Due to the complexity of its exposure history, the Jezero dark crater floor unit will require additional detailed analysis to understand how the Mars 2020 mission samples of the crater floor can be used to inform the Martian cratering chronology.
  •  
31.
  • Stack, K. M., et al. (författare)
  • Sedimentology and Stratigraphy of the Shenandoah Formation, Western Fan, Jezero Crater, Mars
  • 2024
  • Ingår i: Journal of Geophysical Research: Planets. - 2169-9097. ; 129:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Sedimentary fans are key targets of exploration on Mars because they record the history of surface aqueous activity and habitability. The sedimentary fan extending from the Neretva Vallis breach of Jezero crater's western rim is one of the Mars 2020 Perseverance rover's main exploration targets. Perseverance spent ∼250 sols exploring and collecting seven rock cores from the lower ∼25 m of sedimentary rock exposed within the fan's eastern scarp, a sequence informally named the “Shenandoah” formation. This study describes the sedimentology and stratigraphy of the Shenandoah formation at two areas, “Cape Nukshak” and “Hawksbill Gap,” including a characterization, interpretation, and depositional framework for the facies that comprise it. The five main facies of the Shenandoah formation include: laminated mudstone, laminated sandstone, low-angle cross stratified sandstone, thin-bedded granule sandstone, and thick-bedded granule-pebble sandstone and conglomerate. These facies are organized into three facies associations (FA): FA1, comprised of laminated and soft sediment-deformed sandstone interbedded with broad, unconfined coarser-grained granule and pebbly sandstone intervals; FA2, comprised predominantly of laterally extensive, soft-sediment deformed laminated, sulfate-bearing mudstone with lenses of low-angle cross-stratified and scoured sandstone; and FA3, comprised of dipping planar, thin-bedded sand-gravel couplets. The depositional model favored for the Shenandoah formation involves the transition from a sand-dominated distal alluvial fan setting (FA1) to a stable, widespread saline lake (FA2), followed by the progradation of a river delta system (FA3) into the lake basin. This sequence records the initiation of a relatively long-lived, habitable lacustrine and deltaic environment within Jezero crater.
  •  
32.
  • Udry, A., et al. (författare)
  • A Mars 2020 Perseverance SuperCam Perspective on the Igneous Nature of the Máaz Formation at Jezero Crater and Link With Séítah, Mars
  • 2023
  • Ingår i: Journal of Geophysical Research: Planets. - 2169-9097. ; 128:7
  • Tidskriftsartikel (refereegranskat)abstract
    • The Máaz formation consists of the first lithologies in Jezero crater analyzed by the Mars 2020 Perseverance rover. This formation, investigated from Sols (Martian days) 1 to 201 and from Sols 343 to 382, overlies the Séítah formation (previously described as an olivine-rich cumulate) and was initially suggested to represent an igneous crater floor unit based on orbital analyses. Using SuperCam data, we conducted a detailed textural, chemical, and mineralogical analyses of the Máaz formation and the Content member of the Séítah formation. We conclude that the Máaz formation and the Content member are igneous and consist of different lava flows and/or possibly pyroclastic flows with complex textures, including vesicular and non-vesicular rocks with different grain sizes. The Máaz formation rocks exhibit some of the lowest Mg# (=molar 100 × MgO/MgO + FeO) of all Martian igneous rocks analyzed so far (including meteorites and surface rocks) and show similar basaltic to basaltic-andesitic compositions. Their mineralogy is dominated by Fe-rich augite to possibly ferrosilite and plagioclase, and minor phases such as Fe-Ti oxides and Si-rich phases. They show a broad diversity of both compositions and textures when compared to Martian meteorites and other surface rocks. The different Máaz and Content lava or pyroclastic flows all originate from the same parental magma and/or the same magmatic system, but are not petrogenetically linked to the Séítah formation. The study of returned Máaz samples in Earth-based laboratories will help constrain the formation of these rocks, calibrate Martian crater counting, and overall, improve our understanding of magmatism on Mars. © 2022. American Geophysical Union. All Rights Reserved.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-32 av 32

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy