SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:2197 7364 srt2:(2019)"

Sökning: L773:2197 7364 > (2019)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bebbington, Natalie A., et al. (författare)
  • A Nordic survey of CT doses in hybrid PET/CT and SPECT/CT examinations
  • 2019
  • Ingår i: EJNMMI Physics. - : Springer Science and Business Media LLC. - 2197-7364. ; 6:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Computed tomography (CT) scans are routinely performed in positron emission tomography (PET) and single photon emission computed tomography (SPECT) examinations globally, yet few surveys have been conducted to gather national diagnostic reference level (NDRL) data for CT radiation doses in positron emission tomography/computed tomography (PET/CT) and single photon emission computed tomography/computed tomography (SPECT/CT). In this first Nordic-wide study of CT doses in hybrid imaging, Nordic NDRL CT doses are suggested for PET/CT and SPECT/CT examinations specific to the clinical purpose of CT, and the scope for optimisation is evaluated. Data on hybrid imaging CT exposures and clinical purpose of CT were gathered for 5 PET/CT and 8 SPECT/CT examinations via designed booklet. For each included dataset for a given facility and scanner type, the computed tomography dose index by volume (CTDIvol) and dose length product (DLP) was interpolated for a 75-kg person (referred to as CTDIvol,75kg and DLP75kg). Suggested NDRL (75th percentile) and achievable doses (50th percentile) were determined for CTDIvol,75kg and DLP75kg according to clinical purpose of CT. Differences in maximum and minimum doses (derived for a 75-kg patient) between facilities were also calculated for each examination and clinical purpose. Results: Data were processed from 83 scanners from 43 facilities. Data were sufficient to suggest Nordic NDRL CT doses for the following: PET/CT oncology (localisation/characterisation, 15 systems); infection/inflammation (localisation/characterisation, 13 systems); brain (attenuation correction (AC) only, 11 systems); cardiac PET/CT and SPECT/CT (AC only, 30 systems); SPECT/CT lung (localisation/characterisation, 12 systems); bone (localisation/characterisation, 30 systems); and parathyroid (localisation/characterisation, 13 systems). Great variations in dose were seen for all aforementioned examinations. Greatest differences in DLP75kg for each examination, specific to clinical purpose, were as follows: SPECT/CT lung AC only (27.4); PET/CT and SPECT/CT cardiac AC only (19.6); infection/inflammation AC only (18.1); PET/CT brain localisation/characterisation (16.8); SPECT/CT bone localisation/characterisation (10.0); PET/CT oncology AC only (9.0); and SPECT/CT parathyroid localisation/characterisation (7.8). Conclusions: Suggested Nordic NDRL CT doses are presented according to clinical purpose of CT for PET/CT oncology, infection/inflammation, brain, PET/CT and SPECT/CT cardiac, and SPECT/CT lung, bone, and parathyroid. The large variation in doses suggests great scope for optimisation in all 8 examinations.
  •  
2.
  • Bjöersdorff, Mimmi, et al. (författare)
  • Impact of penalizing factor in a block-sequential regularized expectation maximization reconstruction algorithm for 18 F-fluorocholine PET-CT regarding image quality and interpretation
  • 2019
  • Ingår i: EJNMMI Physics. - : Springer Science and Business Media LLC. - 2197-7364. ; 6:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Recently, the block-sequential regularized expectation maximization (BSREM) reconstruction algorithm was commercially introduced (Q.Clear, GE Healthcare, Milwaukee, WI, USA). However, the combination of noise-penalizing factor (β), acquisition time, and administered activity for optimal image quality has not been established for 18 F-fluorocholine (FCH). The aim was to compare image quality and diagnostic performance of different reconstruction protocols for patients with prostate cancer being examined with 18 F-FCH on a silicon photomultiplier-based PET-CT. Thirteen patients were included, injected with 4 MBq/kg, and images were acquired after 1 h. Images were reconstructed with frame durations of 1.0, 1.5, and 2.0 min using β of 150, 200, 300, 400, 500, and 550. An ordered subset expectation maximization (OSEM) reconstruction with a frame duration of 2.0 min was used for comparison. Images were quantitatively analyzed regarding standardized uptake values (SUV) in metastatic lymph nodes, local background, and muscle to obtain contrast-to-noise ratios (CNR) as well as the noise level in muscle. Images were analyzed regarding image quality and number of metastatic lymph nodes by two nuclear medicine physicians. Results: The highest median CNR was found for BSREM with a β of 300 and a frame duration of 2.0 min. The OSEM reconstruction had the lowest median CNR. Both the noise level and lesion SUV max decreased with increasing β. For a frame duration of 1.5 min, the median quality score was highest for β 400-500, and for a frame duration of 2.0 min the score was highest for β 300-500. There was no statistically significant difference in the number of suspected lymph node metastases between the different image series for one of the physicians, and for the other physician the number of lymph nodes differed only for one combination of image series. Conclusions: To achieve acceptable image quality at 4 MBq/kg 18 F-FCH, we propose using a β of 400-550 with a frame duration of 1.5 min. The lower β should be used if a high CNR is desired and the higher if a low noise level is important.
  •  
3.
  • Sandgren, Kristina, et al. (författare)
  • Radiation dosimetry of [Ga-68]PSMA-11 in low-risk prostate cancer patients
  • 2019
  • Ingår i: EJNMMI Physics. - : Springer. - 2197-7364. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: 68Ga-labeled Glu-NH-CO-NH-Lys(Ahx)-HBED-CC ([68Ga]PSMA-11) has been increasingly used to image prostate cancer using positron emission tomography (PET)/computed tomography (CT) both during diagnosis and treatment planning. It has been shown to be of clinical value for patients both in the primary and secondary stages of prostate cancer. The aim of this study was to determine the effective dose and organ doses from injection of [68Ga]PSMA-11 in a cohort of low-risk prostate cancer patients.Methods: Six low-risk prostate cancer patients were injected with 133–178 MBq [68Ga]PSMA-11 and examined with four PET/CT acquisitions from injection to 255 min post-injection. Urine was collected up to 4 h post-injection, and venous blood samples were drawn at 45 min, 85 min, 175 min, and 245 min post-injection. Kidneys, liver, lungs, spleen, salivary and lacrimal glands, and total body where delineated, and cumulated activities and absorbed organ doses calculated. The software IDAC-Dose 2.1 was used to calculate absorbed organ doses according to the International Commission on Radiological Protection (ICRP) publication 107 using specific absorbed fractions published in ICRP 133 and effective dose according to ICRP Publication 103. We also estimated the absorbed dose to the eye lenses using Monte Carlo methods.Results: [68Ga]PSMA-11 was rapidly cleared from the blood and accumulated preferentially in the kidneys and the liver. The substance has a biological half-life in blood of 6.5 min (91%) and 4.4 h (9%). The effective dose was calculated to 0.022 mSv/MBq. The kidneys received approximately 40 mGy after an injection with 160 MBq [68Ga]PSMA-11 while the lacrimal glands obtained an absorbed dose of 0.12 mGy per administered MBq. Regarding the eye lenses, the absorbed dose was low (0.0051 mGy/MBq).Conclusion: The effective dose for [68Ga]PSMA-11 is 0.022 mSv/MBq, where the kidneys and lacrimal glands receiving the highest organ dose.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy