SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:2198 3844 OR L773:2198 3844 srt2:(2020)"

Sökning: L773:2198 3844 OR L773:2198 3844 > (2020)

  • Resultat 1-15 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Andersson, Olof, 1978-, et al. (författare)
  • Scalable Electronic Ratchet with Over 10% Rectification Efficiency
  • 2020
  • Ingår i: Advanced Science. - : Wiley-VCH Verlagsgesellschaft. - 2198-3844. ; 7:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Electronic ratchets use a periodic potential with broken inversion symmetry to rectify undirected (electromagnetic, EM) forces and can in principle be a complement to conventional diode-based designs. Unfortunately, ratchet devices reported to date have low or undetermined power conversion efficiencies, hampering applicability. Combining experiments and numerical modeling, field-effect transistor-based ratchets are investigated in which the driving signal is coupled into the accumulation layer via interdigitated finger electrodes that are capacitively coupled to the field effect transistor channel region. The output current-voltage curves of these ratchets can have a fill factor amp;gt;amp;gt; 0.25 which is highly favorable for the power output. Experimentally, a maximum power conversion efficiency well over 10% at 5 MHz, which is the highest reported value for an electronic ratchet, is determined. Device simulations indicate this number can be increased further by increasing the device asymmetry. A scaling analysis shows that the frequency range of optimal performance can be scaled to the THz regime, and possibly beyond, while adhering to technologically realistic parameters. Concomitantly, the power output density increases from approximate to 4 W m(-2) to approximate to 1 MW m(-2). Hence, this type of ratchet device can rectify high-frequency EM fields at reasonable efficiencies, potentially paving the way for actual use as energy harvester.
  •  
2.
  •  
3.
  • Gjorgjieva, Tamara, et al. (författare)
  • Loss of beta-Actin Leads to Accelerated Mineralization and Dysregulation of Osteoblast-Differentiation Genes during Osteogenic Reprogramming
  • 2020
  • Ingår i: Advanced Science. - : Wiley. - 2198-3844. ; 7:23
  • Tidskriftsartikel (refereegranskat)abstract
    • Actin plays fundamental roles in both the cytoplasm and the cell nucleus. In the nucleus, beta-actin regulates neuronal reprogramming by consolidating a heterochromatin landscape required for transcription of neuronal gene programs, yet it remains unknown whether it has a role in other differentiation models. To explore the potential roles of beta-actin in osteogenesis, beta-actin wild-type (WT) and beta-actin knockout (KO) mouse embryonic fibroblasts (MEFs) are reprogrammed to osteoblast-like cells using small molecules in vitro. It is discovered that loss of beta-actin leads to an accelerated mineralization phenotype (hypermineralization), accompanied with enhanced formation of extracellular hydroxyapatite microcrystals, which originate in the mitochondria in the form of microgranules. This phenotype is a consequence of rapid upregulation of mitochondrial genes including those involved in oxidative phosphorylation (OXPHOS) in reprogrammed KO cells. It is further found that osteogenic gene programs are differentially regulated between WT and KO cells, with clusters of genes exhibiting different temporal expression patterns. A novel function for beta-actin in osteogenic reprogramming through a mitochondria-based mechanism that controls cell-mediated mineralization is proposed.
  •  
4.
  • Gladisch, Johannes, et al. (författare)
  • Reversible Electronic Solid-Gel Switching of a Conjugated Polymer
  • 2020
  • Ingår i: ADVANCED SCIENCE. - : WILEY. - 2198-3844. ; 7:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Conjugated polymers exhibit electrically driven volume changes when included in electrochemical devices via the exchange of ions and solvent. So far, this volumetric change is limited to 40% and 100% for reversible and irreversible systems, respectively, thus restricting potential applications of this technology. A conjugated polymer that reversibly expands by about 300% upon addressing, relative to its previous contracted state, while the first irreversible actuation can achieve values ranging from 1000-10 000%, depending on the voltage applied is reported. From experimental and theoretical studies, it is found that this large and reversible volumetric switching is due to reorganization of the polymer during swelling as it transforms between a solid-state phase and a gel, while maintaining percolation for conductivity. The polymer is utilized as an electroactive cladding to reduce the void sizes of a porous carbon filter electrode by 85%.
  •  
5.
  • Kajtez, Janko, et al. (författare)
  • 3D-Printed Soft Lithography for Complex Compartmentalized Microfluidic Neural Devices
  • 2020
  • Ingår i: Advanced Science. - : Wiley. - 2198-3844. ; 7:16
  • Tidskriftsartikel (refereegranskat)abstract
    • Compartmentalized microfluidic platforms are an invaluable tool in neuroscience research. However, harnessing the full potential of this technology remains hindered by the lack of a simple fabrication approach for the creation of intricate device architectures with high-aspect ratio features. Here, a hybrid additive manufacturing approach is presented for the fabrication of open-well compartmentalized neural devices that provides larger freedom of device design, removes the need for manual postprocessing, and allows an increase in the biocompatibility of the system. Suitability of the method for multimaterial integration allows to tailor the device architecture for the long-term maintenance of healthy human stem-cell derived neurons and astrocytes, spanning at least 40 days. Leveraging fast-prototyping capabilities at both micro and macroscale, a proof-of-principle human in vitro model of the nigrostriatal pathway is created. By presenting a route for novel materials and unique architectures in microfluidic systems, the method provides new possibilities in biological research beyond neuroscience applications.
  •  
6.
  • Khan, Ziyauddin, et al. (författare)
  • Can Hybrid Na-Air Batteries Outperform Nonaqueous Na-O-2 Batteries?
  • 2020
  • Ingår i: Advanced Science. - : Wiley-VCH Verlagsgesellschaft. - 2198-3844. ; 7:5
  • Tidskriftsartikel (refereegranskat)abstract
    • In recent years, there has been an upsurge in the study of novel and alternative energy storage devices beyond lithium-based systems due to the exponential increase in price of lithium. Sodium (Na) metal-based batteries can be a possible alternative to lithium-based batteries due to the similar electrochemical voltage of Na and Li together with the thousand times higher natural abundance of Na compared to Li. Though two different kinds of Na-O-2 batteries have been studied specifically based on electrolytes until now, very recently, a hybrid Na-air cell has shown distinctive advantage over nonaqueous cell systems. Hybrid Na-air batteries provide a fundamental advantage due to the formation of highly soluble discharge product (sodium hydroxide) which leads to low overpotentials for charge and discharge processes, high electrical energy efficiency, and good cyclic stability. Herein, the current status and challenges associated with hybrid Na-air batteries are reported. Also, a brief description of nonaqueous Na-O-2 batteries and its close competition with hybrid Na-air batteries are provided.
  •  
7.
  • Klementieva, Oxana, et al. (författare)
  • Super‐Resolution Infrared Imaging of Polymorphic Amyloid Aggregates Directly in Neurons
  • 2020
  • Ingår i: Advanced Science. - : Wiley. - 2198-3844.
  • Tidskriftsartikel (refereegranskat)abstract
    • Loss of memory during Alzheimer's disease (AD), a fatal neurodegenerative disorder, is associated with neuronal loss and the aggregation of amyloid proteins into neurotoxic β‐sheet enriched structures. However, the mechanism of amyloid protein aggregation is still not well understood due to many challenges when studying the endogenous amyloid structures in neurons or in brain tissue. Available methods either require chemical processing of the sample or may affect the amyloid protein structure itself. Therefore, new approaches, which allow studying molecular structures directly in neurons, are urgently needed. A novel approach is tested, based on label‐free optical photothermal infrared super‐resolution microspectroscopy, to study AD‐related amyloid protein aggregation directly in the neuron at sub‐micrometer resolution. Using this approach, amyloid protein aggregates are detected at the subcellular level, along the neurites and strikingly, in dendritic spines, which has not been possible until now. Here, a polymorphic nature of amyloid structures that exist in AD transgenic neurons is reported. Based on the findings of this work, it is suggested that structural polymorphism of amyloid proteins that occur already in neurons may trigger different mechanisms of AD progression.
  •  
8.
  • Liu, Chaolong, et al. (författare)
  • "Two Birds with One Stone" Ruthenium(II) Complex Probe for Biothiols Discrimination and Detection In Vitro and In Vivo
  • 2020
  • Ingår i: Advanced Science. - : Wiley. - 2198-3844. ; 7:14
  • Tidskriftsartikel (refereegranskat)abstract
    • In this work, a two birds with one stone ruthenium(II) complex probe, Ru-NBD, is proposed as an effective tool for biothiols detection and discrimination in vitro and in vivo. Ru-NBD is nonluminescent due to the quenching of Ru(II) complex emission by photoinduced electron transfer (PET) from Ru(II) center to NBD and the quenching of NBD emission through 4-substitution with O ether bond. Ru-NBD is capable of reacting with Cys/Hcy to form long-lived red-emitting Ru-OH and short-lived green-emitting NBD-NR, while reacting with GSH to produce Ru-OH and nonemissive NBD-SR. The long lifetime emission of Ru(II) complex allows elimination of short lifetime background and NBD-NR fluorescence for total biothiols detection (bird one) by time-gated luminescence (TGL) analysis, and the remarkable difference in luminescence color response allows discrimination GSH and Cys/Hcy (bird two) through steady-state luminescence analysis. Ru-NBD features high sensitivity and selectivity, rapid luminescence response, and low cytotoxicity, which enables it to be used as the probe for luminescence and background-free TGL detection and visualization of biothiols in live cells, zebrafish, and mice. The successful development of this probe is anticipated to contribute to the future biological studies of biothiols roles in various diseases.
  •  
9.
  •  
10.
  • Méhes, Gábor, et al. (författare)
  • Organic Microbial Electrochemical Transistor Monitoring Extracellular Electron Transfer
  • 2020
  • Ingår i: Advanced Science. - : WILEY. - 2198-3844. ; 7:15
  • Tidskriftsartikel (refereegranskat)abstract
    • Extracellular electron transfer (EET) denotes the process of microbial respiration with electron transfer to extracellular acceptors and has been exploited in a range of microbial electrochemical systems (MESs). To further understand EET and to optimize the performance of MESs, a better understanding of the dynamics at the microscale is needed. However, the real-time monitoring of EET at high spatiotemporal resolution would require sophisticated signal amplification. To amplify local EET signals, a miniaturized bioelectronic device, the so-called organic microbial electrochemical transistor (OMECT), is developed, which includes Shewanella oneidensis MR-1 integrated onto organic electrochemical transistors comprising poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) combined with poly(vinyl alcohol) (PVA). Bacteria are attached to the gate of the transistor by a chronoamperometric method and the successful attachment is confirmed by fluorescence microscopy. Monitoring EET with the OMECT configuration is achieved due to the inherent amplification of the transistor, revealing fast time-responses to lactate. The limits of detection when using microfabricated gates as charge collectors are also investigated. The work is a first step toward understanding and monitoring EET in highly confined spaces via microfabricated organic electronic devices, and it can be of importance to study exoelectrogens in microenvironments, such as those of the human microbiome.
  •  
11.
  •  
12.
  • Rodrigues, Artur Filipe, et al. (författare)
  • Size-Dependent Pulmonary Impact of Thin Graphene Oxide Sheets in Mice : Toward Safe-by-Design
  • 2020
  • Ingår i: Advanced Science. - : Wiley. - 2198-3844. ; 7:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Safety assessment of graphene-based materials (GBMs) including graphene oxide (GO) is essential for their safe use across many sectors of society. In particular, the link between specific material properties and biological effects needs to be further elucidated. Here, the effects of lateral dimensions of GO sheets in acute and chronic pulmonary responses after single intranasal instillation in mice are compared. Micrometer-sized GO induces stronger pulmonary inflammation than nanometer-sized GO, despite reduced translocation to the lungs. Genome-wide RNA sequencing also reveals distinct size-dependent effects of GO, in agreement with the histopathological results. Although large GO, but not the smallest GO, triggers the formation of granulomas that persists for up to 90 days, no pulmonary fibrosis is observed. These latter results can be partly explained by Raman imaging, which evidences the progressive biotransformation of GO into less graphitic structures. The findings demonstrate that lateral dimensions play a fundamental role in the pulmonary response to GO, and suggest that airborne exposure to micrometer-sized GO should be avoided in the production plant or applications, where aerosolized dispersions are likely to occur. These results are important toward the implementation of a safer-by-design approach for GBM products and applications, for the benefit of workers and end-users.
  •  
13.
  • Silva Barreto, Isabella, et al. (författare)
  • Multiscale Characterization of Embryonic Long Bone Mineralization in Mice
  • 2020
  • Ingår i: Advanced Science. - : Wiley. - 2198-3844 .- 2198-3844. ; 7:21
  • Tidskriftsartikel (refereegranskat)abstract
    • Long bone mineralization occurs through endochondral ossification, where a cartilage template mineralizes into bone-like tissue with a hierarchical organization from the whole bone-scale down to sub-nano scale. Whereas this process has been extensively studied at the larger length scales, it remains unexplored at some of the smaller length scales. In this study, the changes in morphology, composition, and structure during embryonic mineralization of murine humeri are investigated using a range of high-resolution synchrotron-based imaging techniques at several length scales. With micro- and nanometer spatial resolution, the deposition of elements and the shaping of mineral platelets are followed. Rapid mineralization of the humeri occurs over approximately four days, where mineral to matrix ratio and calcium content in the most mineralized zone reach adult values shortly before birth. Interestingly, zinc is consistently found to be localized at the sites of ongoing new mineralization. The mineral platelets in the most recently mineralized regions are thicker, longer, narrower, and less aligned compared to those further into the mineralized region. In summary, this study demonstrates a specific spatial distribution of zinc, with highest concentration where new mineral is being deposited and that the newly formed mineral platelets undergo slight reshaping and reorganization during embryonic development.
  •  
14.
  • Thurakkal, Shameel, 1988, et al. (författare)
  • Recent Advances in Chemical Functionalization of 2D Black Phosphorous Nanosheets
  • 2020
  • Ingår i: Advanced Science. - : Wiley. - 2198-3844 .- 2198-3844. ; 7:2, s. 1902359-
  • Forskningsöversikt (refereegranskat)abstract
    • Owing to their tunable direct bandgap, high charge carrier mobility, and unique in-plane anisotropic structure, black phosphorus nanosheets (BPNSs) have emerged as one of the most important candidates among the 2D materials beyond graphene. However, the poor ambient stability of black phosphorus limits its practical application, due to the chemical degradation of phosphorus atoms to phosphorus oxides in the presence of oxygen and/or water. Chemical functionalization is demonstrated as an efficient approach to enhance the ambient stability of BPNSs. Herein, various covalent strategies including radical addition, nitrene addition, nucleophilic substitution, and metal coordination are summarized. In addition, efficient noncovalent functionalization methods such as van der Waals interactions, electrostatic interactions, and cation–π interactions are described in detail. Furthermore, the preparations, characterization, and diverse applications of functionalized BPNSs in various fields are recapped. The challenges faced and future directions for the chemical functionalization of BPNSs are also highlighted.
  •  
15.
  • Tseng, Chiao-Wei, et al. (författare)
  • Synergy of Ionic and Dipolar Effects by Molecular Design for pH Sensing beyond the Nernstian Limit
  • 2020
  • Ingår i: Advanced Science. - : Wiley. - 2198-3844. ; 7:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Knowledge of interfacial interactions between analytes and functionalized sensor surfaces, from where the signal originates, is key to the development and application of electronic sensors. The present work explores the tunability of pH sensitivity by the synergy of surface charge and molecular dipole moment induced by interfacial proton interactions. This synergy is demonstrated on a silicon‐nanoribbon field‐effect transistor (SiNR‐FET) by functionalizing the sensor surface with properly designed chromophore molecules. The chromophore molecules can interact with protons and lead to appreciable changes in interface dipole moment as well as in surface charge state. In addition, the dipole moment can be tuned not only by the substituent on the chromophore but also by the anion in the electrolyte interacting with the protonated chromophore. By designing surface molecules to enhance the surface dipole moment upon protonation, an above‐Nernstian pH sensitivity is achieved on the SiNR‐FET sensor. This finding may bring an innovative strategy for tailoring the sensitivity of the SiNR‐FET‐based pH sensor toward a wide range of applications.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-15 av 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy