SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:2198 3844 OR L773:2198 3844 srt2:(2024)"

Sökning: L773:2198 3844 OR L773:2198 3844 > (2024)

  • Resultat 1-23 av 23
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Chaudhary, Richa, 1988, et al. (författare)
  • Structural Positive Electrodes Engineered for Multifunctionality
  • 2024
  • Ingår i: Advanced Science. - 2198-3844 .- 2198-3844. ; In Press
  • Tidskriftsartikel (refereegranskat)abstract
    • Multifunctional structural batteries are of high and emerging interest in a wide variety of high-strength and lightweight applications. Structural batteries typically use pristine carbon fiber as the negative electrode, functionalized carbon fiber as the positive electrode, and a mechanically robust lithium-ion transporting electrolyte. However, electrochemical cycling of carbon fibre-based positive electrodes is still limited to tests in liquid electrolytes, which does not allow for to introduction of multifunctionality in real terms. To overcome these limitations, structural batteries with a structural battery electrolyte (SBE) are developed. This approach offers massless energy storage. The electrodes are manufactured using economically friendly, abundant, cheap, and non-toxic iron-based materials like olivine LiFePO4. Reduced graphene oxide, renowned for its high surface area and electrical conductivity, is incorporated to enhance the ion transport mechanism. Furthermore, a vacuum-infused solid-liquid electrolyte is cured to bolster the mechanical strength of the carbon fibers and provide a medium for lithium-ion migration. Electrophoretic deposition is selected as a green process to manufacture the structural positive electrodes with homogeneous mass loading. A specific capacity of 112 mAh g−1 can be reached at C/20, allowing the smooth transport of Li-ion in the presence of SBE. The modulus of positive electrodes exceeded 80 GPa. Structural battery-positive half-cells are demonstrated across various mass-loadings, enabling them to be tailored for a diverse array of applications in consumer technology, electric vehicles, and aerospace sectors.
  •  
3.
  • Chen, Shiqian, et al. (författare)
  • Ultrafast metal-free microsupercapacitor arrays directly store instantaneous high-voltage electricity from mechanical energy harvesters
  • 2024
  • Ingår i: Advanced Science. - : Wiley. - 2198-3844. ; 11:22
  • Tidskriftsartikel (refereegranskat)abstract
    • Harvesting renewable mechanical energy is envisioned as a promising and sustainable way for power generation. Many recent mechanical energy harvesters are able to produce instantaneous (pulsed) electricity with a high peak voltage of over 100 V. However, directly storing such irregular high-voltage pulse electricity remains a great challenge. The use of extra power management components can boost storage efficiency but increase system complexity. Here utilizing the conducting polymer PEDOT:PSS, high-rate metal-free micro-supercapacitor (MSC) arrays are successfully fabricated for direct high-efficiency storage of high-voltage pulse electricity. Within an area of 2.4 × 3.4 cm2 on various paper substrates, large-scale MSC arrays (comprising up to 100 cells) can be printed to deliver a working voltage window of 160 V at an ultrahigh scan rate up to 30 V s−1. The ultrahigh rate capability enables the MSC arrays to quickly capture and efficiently store the high-voltage (≈150 V) pulse electricity produced by a droplet-based electricity generator at a high efficiency of 62%, significantly higher than that (<2%) of the batteries or capacitors demonstrated in the literature. Moreover, the compact and metal-free features make these MSC arrays excellent candidates for sustainable high-performance energy storage in self-charging power systems.
  •  
4.
  • Chong, Hui, et al. (författare)
  • Organo-ptii complexes for potent photodynamic inactivation of multi-drug resistant bacteria and the influence of configuration
  • 2024
  • Ingår i: Advanced Science. - : John Wiley & Sons. - 2198-3844. ; 11:14
  • Tidskriftsartikel (refereegranskat)abstract
    • PtII based organometallic photosensitizers (PSs) have emerged as novel potent photodynamic inactivation (PDI) reagents through their enhanced intersystem crossing (ISC) processes. Currently, few PtII PSs have been investigated as antibacterial materials, with relatively poor performances reported and with structure-activity relationships not well described. Herein, a pair of configurational isomers are reported of Bis-BODIPY (4,4-difluoro-boradizaindacene) embedded PtII PSs. The cis-isomer (cis-BBP) displayed enhanced 1O2 generation and better bacterial membrane anchoring capability as compared to the trans-isomer (trans-BBP). The effective PDI concentrations (efficiency > 99.9%) for cis-BBP in Acinetobacter baumannii (multi-drug resistant (MDR)) and Staphylococcus aureus are 400 nM (12 J cm−2) and 100 nM (18 J cm−2), respectively; corresponding concentrations and light doses for trans-BBP in the two bacteria are 2.50 µM (30 J cm−2) and 1.50 µM (18 J cm−2), respectively. The 50% and 90% minimum inhibitory concentration (MIC50 and MIC90) ratio of trans-BBP to cis-BBP is 22.22 and 24.02 in A. baumannii (MDR); 21.29 and 22.36 in methicillin resistant S. aureus (MRSA), respectively. Furthermore, cis-BBP displays superior in vivo antibacterial performance, with acceptable dark and photoinduced cytotoxicity. These results demonstrate cis-BBP is a robust light-assisted antibacterial reagent at sub-micromolecular concentrations. More importantly, configuration of PtII PSs should be an important issue to be considered in further PDI reagents design.
  •  
5.
  •  
6.
  • Enrico, Alessandro, et al. (författare)
  • Cleanroom-Free Direct Laser Micropatterning of Polymers for Organic Electrochemical Transistors in Logic Circuits and Glucose Biosensors
  • 2024
  • Ingår i: Advanced Science. - : Wiley. - 2198-3844.
  • Tidskriftsartikel (refereegranskat)abstract
    • Organic electrochemical transistors (OECTs) are promising devices for bioelectronics, such as biosensors. However, current cleanroom-based microfabrication of OECTs hinders fast prototyping and widespread adoption of this technology for low-volume, low-cost applications. To address this limitation, a versatile and scalable approach for ultrafast laser microfabrication of OECTs is herein reported, where a femtosecond laser to pattern insulating polymers (such as parylene C or polyimide) is first used, exposing the underlying metal electrodes serving as transistor terminals (source, drain, or gate). After the first patterning step, conducting polymers, such as poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS), or semiconducting polymers, are spin-coated on the device surface. Another femtosecond laser patterning step subsequently defines the active polymer area contributing to the OECT performance by disconnecting the channel and gate from the surrounding spin-coated film. The effective OECT width can be defined with high resolution (down to 2 mu m) in less than a second of exposure. Micropatterning the OECT channel area significantly improved the transistor switching performance in the case of PEDOT:PSS-based transistors, speeding up the devices by two orders of magnitude. The utility of this OECT manufacturing approach is demonstrated by fabricating complementary logic (inverters) and glucose biosensors, thereby showing its potential to accelerate OECT research. Ultrafast focused femtosecond laser has been introduced for the direct micropatterning of organic electrochemical transistors (OECTs), providing high resolution (2 mu m), selective cleanroom-free patterning of insulating and conjugated polymer layers while preserving device operation, and high flexibility in device design. The approach has been validated in the fabrication of complementary inverters and glucose biosensors.image
  •  
7.
  • Iakunkov, Artem, et al. (författare)
  • Swelling of Ti3C2Tx mxene in water and methanol at extreme pressure conditions
  • 2024
  • Ingår i: Advanced Science. - : John Wiley & Sons. - 2198-3844. ; 11:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Pressure-induced swelling has been reported earlier for several hydrophilic layered materials. MXene Ti3C2Tx is also a hydrophilic layered material composed by 2D sheets but so far pressure-induced swelling is reported for this material only under conditions of shear stress at MPa pressures. Here, high-pressure experiments are performed with MXenes prepared by two methods known to provide “clay-like” materials. MXene synthesized by etching MAX phase with HCl+LiF demonstrates the effect of pressure-induced swelling at 0.2 GPa with the insertion of additional water layer. The transition is incomplete with two swollen phases (ambient with d(001) = 16.7Å and pressure-induced with d(001) = 19.2Å at 0.2 GPa) co-existing up to the pressure point of water solidification. Therefore, the swelling transition corresponds to change from two-layer water intercalation (2L-phase) to a never previously observed three-layer water intercalation (3L-phase) of MXene. Experiments with MXene prepared by LiCl+HF etching have not revealed pressure-induced swelling in liquid water. Both MXenes also show no anomalous compressibility in liquid methanol. The presence of pressure-induced swelling only in one of the MXenes indicates that the HCl+LiF synthesis method is likely to result in higher abundance of hydrophilic functional groups terminating 2D titanium carbide.
  •  
8.
  • Jain, Saumey, et al. (författare)
  • On-Chip Neural Induction Boosts Neural Stem Cell Commitment : Toward a Pipeline for iPSC-Based Therapies
  • 2024
  • Ingår i: Advanced science (Weinheim, Baden-Wurttemberg, Germany). - : Wiley-VCH Verlagsgesellschaft. - 2198-3844.
  • Tidskriftsartikel (refereegranskat)abstract
    • The clinical translation of induced pluripotent stem cells (iPSCs) holds great potential for personalized therapeutics. However, one of the main obstacles is that the current workflow to generate iPSCs is expensive, time-consuming, and requires standardization. A simplified and cost-effective microfluidic approach is presented for reprogramming fibroblasts into iPSCs and their subsequent differentiation into neural stem cells (NSCs). This method exploits microphysiological technology, providing a 100-fold reduction in reagents for reprogramming and a ninefold reduction in number of input cells. The iPSCs generated from microfluidic reprogramming of fibroblasts show upregulation of pluripotency markers and downregulation of fibroblast markers, on par with those reprogrammed in standard well-conditions. The NSCs differentiated in microfluidic chips show upregulation of neuroectodermal markers (ZIC1, PAX6, SOX1), highlighting their propensity for nervous system development. Cells obtained on conventional well plates and microfluidic chips are compared for reprogramming and neural induction by bulk RNA sequencing. Pathway enrichment analysis of NSCs from chip showed neural stem cell development enrichment and boosted commitment to neural stem cell lineage in initial phases of neural induction, attributed to a confined environment in a microfluidic chip. This method provides a cost-effective pipeline to reprogram and differentiate iPSCs for therapeutics compliant with current good manufacturing practices.
  •  
9.
  • Ji, Fuxiang, et al. (författare)
  • Amine Gas-Induced Reversible Optical Bleaching of Bismuth-Based Lead-Free Perovskite Thin Films
  • 2024
  • Ingår i: Advanced Science. - : Wiley-VCH Verlagsgesellschaft. - 2198-3844. ; 11:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Reversible optical property changes in lead-free perovskites have recently received great interest due to their potential applications in smart windows, sensors, data encryption, and various on-demand devices. However, it is challenging to achieve remarkable color changes in their thin films. Here, methylamine gas (CH3NH2, MA0) induced switchable optical bleaching of bismuth (Bi)-based perovskite films is demonstrated for the first time. By exposure to an MA0 atmosphere, the color of Cs2AgBiBr6 (CABB) films changes from yellow to transparent, and the color of Cs3Bi2I9 (CBI) films changes from dark red to transparent. More interestingly, the underlying reason is found to be the interactions between MA0 and Bi3+ with the formation of an amorphous liquefied transparent intermediate phase, which is different from that of lead-based perovskite systems. Moreover, the generality of this approach is demonstrated with other amine gases, including ethylamine (C2H5NH2, EA0) and butylamine (CH3(CH2)3NH2, BA0), and another compound, Cs3Sb2I9, by observing a similar reversible optical bleaching phenomenon. The potential for the application of CABB and CBI films in switchable smart windows is investigated. This study provides valuable insights into the interactions between amine gases and lead-free perovskites, opening up new possibilities for high-efficiency optoelectronic and stimuli-responsive applications of these emerging Bi-based materials.
  •  
10.
  • Ma, Le Anh, 1992-, et al. (författare)
  • Fundamental Understanding and Quantification of Capacity Losses Involving the Negative Electrode in Sodium-Ion Batteries
  • 2024
  • Ingår i: Advanced Science. - : Wiley-VCH Verlagsgesellschaft. - 2198-3844. ; 11:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Knowledge about capacity losses related to the solid electrolyte interphase (SEI) in sodium-ion batteries (SIBs) is still limited. One major challenge in SIBs is that the solubility of SEI species in liquid electrolytes is comparatively higher than the corresponding species formed in Li-ion batteries. This study sheds new light on the associated capacity losses due to initial SEI formation, SEI dissolution and subsequent SEI reformation, charge leakage via SEI and subsequent SEI growth, and diffusion-controlled sodium trapping in electrode particles. By using a variety of electrochemical cycling protocols, synchrotron-based X-ray photoelectron spectroscopy (XPS), gas chromatography coupled with mass spectrometry (GC-MS), and proton nuclear magnetic resonance (1H-NMR) spectroscopy, capacity losses due to changes in the SEI layer during different open circuit pause times are investigated in nine different electrolyte solutions. It is shown that the amount of capacity lost depends on the interplay between the electrolyte chemistry and the thickness and stability of the SEI layer. The highest capacity loss is measured in NaPF6 in ethylene carboante mixed with diethylene carbonate electrolyte (i.e., 5 µAh h−1/2pause or 2.78 mAh g·h−1/2pause) while the lowest value is found in NaTFSI in ethylene carbonate mixed with dimethoxyethance electrolyte (i.e., 1.3 µAh h−1/2pause or 0.72 mAh g·h−1/2pause).
  •  
11.
  • Maqsood, Ayman, et al. (författare)
  • The Future of Material Scientists in an Age of Artificial Intelligence
  • 2024
  • Ingår i: Advanced Science. - : WILEY. - 2198-3844.
  • Tidskriftsartikel (refereegranskat)abstract
    • Material science has historically evolved in tandem with advancements in technologies for characterization, synthesis, and computation. Another type of technology to add to this mix is machine learning (ML) and artificial intelligence (AI). Now increasingly sophisticated AI-models are seen that can solve progressively harder problems across a variety of fields. From a material science perspective, it is indisputable that machine learning and artificial intelligence offer a potent toolkit with the potential to substantially accelerate research efforts in areas such as the development and discovery of new functional materials. Less clear is how to best harness this development, what new skill sets will be required, and how it may affect established research practices. In this paper, those question are explored with respect to increasingly more sophisticated ML/AI-approaches. To structure the discussion, a conceptual framework of an AI-ladder is introduced. This AI-ladder ranges from basic data-fitting techniques to more advanced functionalities such as semi-autonomous experimentation, experimental design, knowledge generation, hypothesis formulation, and the orchestration of specialized AI modules as stepping-stones toward general artificial intelligence. This ladder metaphor provides a hierarchical framework for contemplating the opportunities, challenges, and evolving skill sets required to stay competitive in the age of artificial intelligence. In this perspective, the implications of adopting increasingly advanced AI technologies in materials science are discussed. It is considered how to best utilize AI technologies, identify the necessary new skills, and examine the impact they may have on traditional research methodologies. Central to the discussion is a conceptual AI ladder that spans from elementary data fitting to general artificial intelligence. image
  •  
12.
  • Matter, Lukas, 1995, et al. (författare)
  • Bioelectronic Direct Current Stimulation at the Transition Between Reversible and Irreversible Charge Transfer
  • 2024
  • Ingår i: Advanced Science. - : John Wiley & Sons. - 2198-3844. ; 11:27
  • Tidskriftsartikel (refereegranskat)abstract
    • Many biological processes rely on endogenous electric fields (EFs), including tissue regeneration, cell development, wound healing, and cancer metastasis. Mimicking these biological EFs by applying external direct current stimulation (DCS) is therefore the key to many new therapeutic strategies. During DCS, the charge transfer from electrode to tissue relies on a combination of reversible and irreversible electrochemical processes, which may generate toxic or bio-altering substances, including metal ions and reactive oxygen species (ROS). Poly(3,4-ethylenedioxythiophene) (PEDOT) based electrodes are emerging as suitable candidates for DCS to improve biocompatibility compared to metals. This work addresses whether PEDOT electrodes can be tailored to favor reversible biocompatible charge transfer. To this end, different PEDOT formulations and their respective back electrodes are studied using cyclic voltammetry, chronopotentiometry, and direct measurements of H2O2 and O2. This combination of electrochemical methods sheds light on the time dynamics of reversible and irreversible charge transfer and the relationship between capacitance and ROS generation. The results presented here show that although all electrode materials investigated generate ROS, the onset of ROS can be delayed by increasing the electrode's capacitance via PEDOT coating, which has implications for future bioelectronic devices that allow longer reversibly driven pulse durations during DCS.
  •  
13.
  •  
14.
  • Ren, Junkai, et al. (författare)
  • Carbon dots : a review with focus on sustainability
  • 2024
  • Ingår i: Advanced Science. - : Wiley-VCH Verlagsgesellschaft. - 2198-3844.
  • Forskningsöversikt (refereegranskat)abstract
    • Carbon dots (CDs) are an emerging class of nanomaterials with attractive optical properties, which promise to enable a variety of applications. An important and timely question is whether CDs can become a functional and sustainable alternative to incumbent optical nanomaterials, notably inorganic quantum dots. Herein, the current CD literature is comprehensively reviewed as regards to their synthesis and function, with a focus on sustainability aspects. The study quantifies why it is attractive that CDs can be synthesized with biomass as the sole starting material and be free from toxic and precious metals and critical raw materials. It further describes and analyzes employed pretreatment, chemical-conversion, purification, and processing procedures, and highlights current issues with the usage of solvents, the energy and material efficiency, and the safety and waste management. It is specially shown that many reported synthesis and processing methods are concerningly wasteful with the utilization of non-sustainable solvents and energy. It is finally recommended that future studies should explicitly consider and discuss the environmental influence of the selected starting material, solvents, and generated byproducts, and that quantitative information on the required amounts of solvents, consumables, and energy should be provided to enable an evaluation of the presented methods in an upscaled sustainability context.
  •  
15.
  • Romero-Castillo, Laura, et al. (författare)
  • Human MHC Class II and Invariant Chain Knock-in Mice Mimic Rheumatoid Arthritis with Allele Restriction in Immune Response and Arthritis Association
  • 2024
  • Ingår i: Advanced Science. - 2198-3844.
  • Tidskriftsartikel (refereegranskat)abstract
    • Transgenic mice expressing human major histocompatibility complex class II (MHCII) risk alleles are widely used in autoimmune disease research, but limitations arise due to non-physiologic expression. To address this, physiologically relevant mouse models are established via knock-in technology to explore the role of MHCII in diseases like rheumatoid arthritis. The gene sequences encoding the ectodomains are replaced with the human DRB1*04:01 and 04:02 alleles, DRA, and CD74 (invariant chain) in C57BL/6N mice. The collagen type II (Col2a1) gene is modified to mimic human COL2. Importantly, DRB1*04:01 knock-in mice display physiologic expression of human MHCII also on thymic epithelial cells, in contrast to DRB1*04:01 transgenic mice. Humanization of the invariant chain enhances MHCII expression on thymic epithelial cells, increases mature B cell numbers in spleen, and improves antigen presentation. To validate its functionality, the collagen-induced arthritis (CIA) model is used, where DRB1*04:01 expression led to a higher susceptibility to arthritis, as compared with mice expressing DRB1*04:02. In addition, the humanized T cell epitope on COL2 allows autoreactive T cell-mediated arthritis development. In conclusion, the humanized knock-in mouse faithfully expresses MHCII, confirming the DRB1*04:01 alleles role in rheumatoid arthritis and being also useful for studying MHCII-associated diseases.
  •  
16.
  • Tang, Xiaopeng, et al. (författare)
  • Detecting abnormality of battery lifetime from first-cycle data using few-shot learning
  • 2024
  • Ingår i: Advanced Science. - 2198-3844 .- 2198-3844. ; 11:69
  • Tidskriftsartikel (refereegranskat)abstract
    • The service life of large battery packs can be significantly influenced by only one or two abnormal cells with faster aging rates. However, the early-stage identification of lifetime abnormality is challenging due to the low abnormal rate and imperceptible initial performance deviations. This work proposes a lifetime abnormality detection method for batteries based on few-shot learning and using only the first-cycle aging data. Verified with the largest known dataset with 215 commercial lithium-ion batteries, the method can identify all abnormal batteries, with a false alarm rate of only 3.8%. It is also found that any capacity and resistance-based approach can easily fail to screen out a large proportion of the abnormal batteries, which should be given enough attention. This work highlights the opportunities to diagnose lifetime abnormalities via “big data” analysis, without requiring additional experimental effort or battery sensors, thereby leading to extended battery life, increased cost-benefit, and improved environmental friendliness.
  •  
17.
  • Tidefelt, Mattias, et al. (författare)
  • In Situ Mapping of Phase Evolutions in Rapidly Heated Zr-Based Bulk Metallic Glass with Oxygen Impurities
  • 2024
  • Ingår i: Advanced Science. - : John Wiley & Sons. - 2198-3844. ; 11:16
  • Tidskriftsartikel (refereegranskat)abstract
    • Metallic glasses exhibit unique mechanical properties. For metallic glass composites (MGC), composed of dispersed nanocrystalline phases in an amorphous matrix, these properties can be enhanced or deteriorated depending on the volume fraction and size distribution of the crystalline phases. Understanding the evolution of crystalline phases during devitrification of bulk metallic glasses upon heating is key to realizing the production of these composites. Here, results are presented from a combination of in situ small- and wide-angle X-ray scattering (SAXS and WAXS) measurements during heating of Zr-based metallic glass samples at rates ranging from 102 to 104 Ks-1 with a time resolution of 4ms. By combining a detailed analysis of scattering experiments with numerical simulations, for the first time, it is shown how the amount of oxygen impurities in the samples influences the early stages of devitrification and changes the dominant nucleation mechanism from homogeneous to heterogeneous. During melting, the oxygen rich phase becomes the dominant crystalline phase whereas the main phases dissolve. The approach used in this study is well suited for investigation of rapid phase evolution during devitrification, which is important for the development of MGC. Oxygen impurities impact on phase-transformations during rapid heating of Zr-based metallic glass Zr59.3Cu28.8Al10.4Nb1.5 is thoroughly investigated using a multi-technique approach. During devitrification, the extracted phase evolutions reveal that the phase fraction hierarchy correlates with the oxygen impurity concentration. Numerical simulations with a heterogeneous nucleation mode capture the experimental observations. During melting, the oxygen-rich phase becomes the dominant phase. image
  •  
18.
  •  
19.
  •  
20.
  • Wang, Yongfu, et al. (författare)
  • Macroscale Superlubricity on Nanoscale Graphene Moiré Structure-Assembled Surface via Counterface Hydrogen Modulation
  • 2024
  • Ingår i: Advanced Science. - : John Wiley and Sons Inc. - 2198-3844. ; 11:19
  • Tidskriftsartikel (refereegranskat)abstract
    • Interlayer incommensurateness slippage is an excellent pathway to realize superlubricity of van der Waals materials; however, it is instable and heavily depends on twisted angle and super-smooth substrate which pose great challenges for the practical application of superlubricity. Here, macroscale superlubricity (0.001) is reported on countless nanoscale graphene moiré structure (GMS)-assembled surface via counterface hydrogen (H) modulation. The GMS-assembled surface is formed on grinding balls via sphere-triggered strain engineering. By the H modulation of counterface diamond-like carbon (25 at.% H), the wear of GMS-assembled surface is significantly reduced and a steadily superlubric sliding interface between them is achieved, based on assembly face charge depletion and H-induced assembly edge weakening. Furthermore, the superlubricity between GMS-assembled and DLC25 surfaces holds true in wide ranges of normal load (7–11 N), sliding velocity (0.5–27 cm −1s), contact area (0.4×104–3.7×104 µm2), and contact pressure (0.19–1.82 GPa). Atomistic simulations confirm the preferential formation of GMS on a sphere, and demonstrate the superlubricity on GMS-assembled surface via counterface H modulation. The results provide an efficient tribo-pairing strategy to achieve robust superlubricity, which is of significance for the engineering application of superlubricity.
  •  
21.
  • Yang, Chen, 1993-, et al. (författare)
  • Nanofibrous Porous Organic Polymers and Their Derivatives : From Synthesis to Applications
  • 2024
  • Ingår i: Advanced Science. - 2198-3844.
  • Forskningsöversikt (refereegranskat)abstract
    • Engineering porous organic polymers (POPs) into 1D morphology holds significant promise for diverse applications due to their exceptional processability and increased surface contact for enhanced interactions with guest molecules. This article reviews the latest developments in nanofibrous POPs and their derivatives, encompassing porous organic polymer nanofibers, their composites, and POPs-derived carbon nanofibers. The review delves into the design and fabrication strategies, elucidates the formation mechanisms, explores their functional attributes, and highlights promising applications. The first section systematically outlines two primary fabrication approaches of nanofibrous POPs, i.e., direct bulk synthesis and electrospinning technology. Both routes are discussed and compared in terms of template utilization and post-treatments. Next, performance of nanofibrous POPs and their derivatives are reviewed for applications including water treatment, water/oil separation, gas adsorption, energy storage, heterogeneous catalysis, microwave absorption, and biomedical systems. Finally, highlighting existent challenges and offering future prospects of nanofibrous POPs and their derivatives are concluded.
  •  
22.
  •  
23.
  • Zhang, Liping, et al. (författare)
  • MXene-Stabilized VS2 Nanostructures for High-Performance Aqueous Zinc Ion Storage
  • 2024
  • Ingår i: Advanced Science. - : WILEY. - 2198-3844.
  • Tidskriftsartikel (refereegranskat)abstract
    • Aqueous zinc-ion batteries (AZIBs) based on vanadium oxides or sulfides are promising candidates for large-scale rechargeable energy storage due to their ease of fabrication, low cost, and high safety. However, the commercial application of vanadium-based electrode materials has been hindered by challenging problems such as poor cyclability and low-rate performance. To this regard, sophisticated nanostructure engineering technology is used to adeptly incorporate VS2 nanosheets into the MXene interlayers to create a stable 2D heterogeneous layered structure. The MXene nanosheets exhibit stable interactions with VS2 nanosheets, while intercalation between nanosheets effectively increases the interlayer spacing, further enhancing their stability in AZIBs. Benefiting from the heterogeneous layered structure with high conductivity, excellent electron/ion transport, and abundant reactive sites, the free-standing VS2/Ti(3)C(2)Tz composite film can be used as both the cathode and the anode of AZIBs. Specifically, the VS2/Ti3C2Tz cathode presents a high specific capacity of 285 mAh g(-1) at 0.2 A g(-1). Furthermore, the flexible Zn-metal free in-plane VS2/Ti3C2Tz//MnO2/CNT AZIBs deliver high operation voltage (2.0 V) and impressive long-term cycling stability (with a capacity retention of 97% after 5000 cycles) which outperforms almost all reported Vanadium-based electrodes for AZIBs. The effective modulation of the material structure through nanocomposite engineering effectively enhances the stability of VS2, which shows great potential in Zn2+ storage. This work will hasten and stimulate further development of such composite material in the direction of energy storage.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-23 av 23
Typ av publikation
tidskriftsartikel (21)
forskningsöversikt (2)
Typ av innehåll
refereegranskat (23)
Författare/redaktör
Herland, Anna (2)
Yuan, L. (1)
Kohonen, P (1)
Espinosa, A. (1)
Lienert, Ulrich (1)
Huang, Z. (1)
visa fler...
Liu, Xianjie (1)
Malm, B. Gunnar, 197 ... (1)
Lauschke, VM (1)
Wang, W. (1)
Zhang, Yu (1)
Jia, Y (1)
Tang, Shi (1)
Edman, Ludvig, 1967- (1)
Nymark, P (1)
Svensson, C (1)
Boschloo, Gerrit (1)
Holmdahl, Rikard (1)
Zhao, XY (1)
Younesi, Reza (1)
Rosén, Johanna (1)
Steffensen, KR (1)
Donzel-Gargand, Oliv ... (1)
Yuan, Jiayin, 1979- (1)
Buyanova, Irina A, 1 ... (1)
Zeglio, Erica (1)
Chen, Chen (1)
Barakat, M. (1)
Lindgren, E. (1)
Hennings, Viktoria (1)
Ekwall, Olov, 1968 (1)
Alemany, S. (1)
Asp, Leif, 1966 (1)
Su, Yingchun (1)
Zhang, Bin (1)
Richter-Dahlfors, A (1)
Nyholm, Leif, 1961- (1)
Stemme, Göran, 1958 (1)
Johansson, MH (1)
Huang, H. (1)
Treuter, E (1)
Eriksson, G. (1)
Burkhardt, Harald (1)
Asplund, Maria (1)
Wang, Xiaoyu (1)
Li, Zheng (1)
Fisk, Martin, 1981- (1)
Falk, Anna (1)
Sahlberg, Martin (1)
Xu, Johanna, 1989 (1)
visa färre...
Lärosäte
Karolinska Institutet (9)
Chalmers tekniska högskola (4)
Umeå universitet (3)
Kungliga Tekniska Högskolan (3)
Linköpings universitet (3)
Uppsala universitet (2)
visa fler...
Luleå tekniska universitet (2)
Stockholms universitet (2)
Lunds universitet (2)
Göteborgs universitet (1)
Malmö universitet (1)
visa färre...
Språk
Engelska (23)
Forskningsämne (UKÄ/SCB)
Teknik (11)
Naturvetenskap (9)
Medicin och hälsovetenskap (3)
År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy