SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:2296 6463 srt2:(2017)"

Sökning: L773:2296 6463 > (2017)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Kienholz, Christian, et al. (författare)
  • Mass Balance Evolution of Black Rapids Glacier, Alaska, 1980-2100, and Its Implications for Surge Recurrence
  • 2017
  • Ingår i: Frontiers in Earth Science. - : Frontiers Media SA. - 2296-6463. ; 5
  • Tidskriftsartikel (refereegranskat)abstract
    • Surge-type Black Rapids Glacier, Alaska, has undergone strong retreat since it last surged in 1936-1937. To assess its evolution during the late Twentieth and Twenty-first centuries and determine potential implications for surge likelihood, we run a simplified glacier model over the periods 1980-2015 (hindcasting) and 2015-2100 (forecasting). The model is forced by daily temperature and precipitation fields, with downscaled reanalysis data used for the hindcasting. A constant climate scenario and an RCP 8.5 scenario based on the GFDL-CM3 climate model are employed for the forecasting. Debris evolution is accounted for by a debris layer time series derived from satellite imagery (hindcasting) and a parametrized debris evolution model (forecasting). A retreat model accounts for the evolution of the glacier geometry. Model calibration, validation and parametrization rely on an extensive set of in situ and remotely sensed observations. To explore uncertainties in our projections, we run the glacier model in a Monte Carlo fashion, varying key model parameters and input data within plausible ranges. Our results for the hindcasting period indicate a negative mass balance trend, caused by atmospheric warming in the summer, precipitation decrease in the winter and surface elevation lowering (climate-elevation feedback), which exceed the moderating effects from increasing debris cover and glacier retreat. Without the 2002 rockslide deposits on Black Rapids' lower reaches, the mass balances would be more negative, by similar to 20% between the 2003 and 2015 mass-balance years. Despite its retreat, Black Rapids Glacier is substantially out of balance with the current climate. By 2100, similar to 8% of Black Rapids' 1980 area are projected to vanish under the constant climate scenario and similar to 73% under the RCP 8.5 scenario. For both scenarios, the remaining glacier portions are out of balance, suggesting continued retreat after 2100. Due to mass starvation, a surge in the Twenty-first century is unlikely. The projected retreat will affect the glacier's runoff and change the landscape in the Black Rapids area markedly.
  •  
3.
  • Kätterer, Thomas (författare)
  • Pyrogenic Carbon Lacks Long-Term Persistence in Temperate Arable Soils
  • 2017
  • Ingår i: Frontiers in Earth Science. - : Frontiers Media SA. - 2296-6463. ; 5
  • Tidskriftsartikel (refereegranskat)abstract
    • Pyrogenic organic carbon (PyOC) derived from incomplete burning of biomass is considered the most persistent fraction of soil organic carbon (SOC), being expected to remain in soil for centuries. However, PyOC persistence has seldom been evaluated under field conditions. Based on a unique set of soils from five European long-term bare fallows (LTBF), i.e., vegetation-free field experiments, we provide the first direct comparison between PyOC and SOC persistence in temperate arable soils. We found that soil PyOC contents decreased more rapidly than expected from current concepts, the mean residence time (MRT) of native PyOC being just 1.6 times longer than that of SOC. At the oldest experimental site, 55% of the initial PyOC remained after 80 years of bare fallow. Our results suggest that while the potential for long-term C storage exists, the persistence of PyOC in soil may currently be overestimated.
  •  
4.
  • Marchenko, Sergey, et al. (författare)
  • Parameterizing deep water percolation improves subsurface temperature simulations by a multilayer firn model
  • 2017
  • Ingår i: Frontiers in Earth Science. - : Frontiers Media SA. - 2296-6463. ; 5:16
  • Tidskriftsartikel (refereegranskat)abstract
    • Deep preferential percolation of melt water in snow and firn brings water lower along the vertical profile than a laterally homogeneous wetting front. This widely recognized process is an important source of uncertainty in simulations of subsurface temperature, density, and water content in seasonal snow and in firn packs on glaciers and ice sheets. However, observation and quantification of preferential flow is challenging and therefore it is not accounted for by most of the contemporary snow/firn models. Here we use temperature measurements in the accumulation zone of Lomonosovfonna, Svalbard, done in April 2012-2015 using multiple thermistor strings to describe the process of water percolation in snow and firn. Effects of water flow through the snow and firn profile are further explored using a coupled surface energy balance - firn model forced by the output of the regional climate model WRF. In situ air temperature, radiation, and surface height change measurements are used to constrain the surface energy and mass fluxes. To account for the effects of preferential water flow in snow and firn we test a set of depth-dependent functions allocating a certain fraction of the melt water available at the surface to each snow/firn layer. Experiments are performed for a range of characteristic percolation depths and results indicate a reduction in root mean square difference between the modeled and measured temperature by up to a factor of two compared to the results from the default water infiltration scheme. This illustrates the significance of accounting for preferential water percolation to simulate subsurface conditions. The suggested approach to parameterization of the preferential water flow requires low additional computational cost and can be implemented in layered snow/ firn models applied both at local and regional scales, for distributed domains with multiple mesh points.
  •  
5.
  • Mostovaya, Alina, 1985-, et al. (författare)
  • Molecular determinants of dissolved organic matter reactivity in lake water
  • 2017
  • Ingår i: Frontiers in Earth Science. - : Frontiers Media S.A.. - 2296-6463. ; 5
  • Tidskriftsartikel (refereegranskat)abstract
    • Lakes in the boreal region have been recognized as the biogeochemical hotspots, yet many questions regarding the regulators of organic matter processing in these systems remain open. Molecular composition can be an important determinant of dissolved organic matter (DOM) fate in freshwater systems, but many aspects of this relationship remain unclear due to the complexity of DOM and its interactions in the natural environment. Here, we combine ultrahigh resolution mass spectrometry (FT-ICR-MS) with kinetic modeling of decay of \textgreater1,300 individual DOM molecular formulae identified by mass spectrometry, to evaluate the role of specific molecular characteristics in decomposition of lake water DOM. Our data is derived from a 4 months microbial decomposition experiment, carried out on water from three Swedish lakes, with the set-up including natural lake water, as well as the lake water pretreated with UV light. The relative decay rate of every molecular formula was estimated by fitting a single exponential model to the change in FT-ICR-MS signal intensities over decomposition time.We found a continuous range of exponential decay coefficients (kexp)within different groups of compounds and show that for highly unsaturated and phenolic compounds the distribution of kexp was shifted toward the lowest values. Contrary to this general trend, plant-derived polyphenols and polycondensed aromatics were on average more reactive than compounds with an intermediate aromaticity. The decay rate of aromatic compounds increased with increasing nominal oxidation state of carbon, and molecular mass in some cases showed an inverse relationship with kexp in the UV-manipulated treatment. Further, we observe an increase in formulae-specific kexp as a result of the UV pretreatment. General trends in reactivity identified among major compound groups emphasize the importance of the intrinsic controllers of lake water DOMdecay. However, we additionally indicate that each compound group contained a wide spectrum of reactivities, suggesting that high resolution is needed to further ascertain the complex reasons behind DOM reactivity in lake water.
  •  
6.
  • Seidel, Michael, et al. (författare)
  • Composition and Transformation of Dissolved Organic Matter in the Baltic Sea
  • 2017
  • Ingår i: Frontiers in Earth Science. - : Frontiers Media SA. - 2296-6463. ; 5
  • Tidskriftsartikel (refereegranskat)abstract
    • The processing of terrestrial dissolved organic matter (DOM) in coastal shelf seas is an important part of the global carbon cycle, yet, it is still not well understood. One of the largest brackish shelf seas, the Baltic Sea in northern Europe, is characterized by high freshwater input from sub-arctic rivers and limited water exchange with the Atlantic Ocean via the North Sea. We studied the molecular and isotopic composition and turnover of solid-phase extractable (SPE) DOM and its transformation along the salinity and redox continuum of the Baltic Sea during spring and autumn. We applied ultrahigh-resolution mass spectrometry and other geochemical and biological approaches. Our data demonstrate a large influx of terrestrial riverine DOM, especially into the northern part of the Baltic Sea. The DOM composition in the central Baltic Sea changed seasonally and was mainly related to autochthonous production by phytoplankton in spring. Especially in the northern, river-dominated basins, a major fraction of riverine DOM was removed, likely by bio- and photo-degradation. We estimate that the removal rate of terrestrial DOM in the Baltic Sea (Bothnian Bay to the Danish Straits/Kattegat area) is 1.6-1.9 Tg C per year which is 43-51% of the total riverine input. The export of terrestrial DOM from the Danish Straits/Kattegat area toward the North Sea is 1.8-2.1 Tg C per year. Due to the long residence time of terrestrial DOMin the Baltic Sea (total of ca. 12 years), seasonal variations caused by bio- and photo-transformations and riverine discharge are dampened, resulting in a relatively invariant DOM molecular and isotopic signature exported to the North Sea. In the deep stagnant basins of the Baltic Sea, the DOM composition and dissolved organic nitrogen concentrations changed seasonally, likely because of vertical particle transport and subsequent degradation releasing DOM. DOM in the deep anoxic basins was also enriched in sulfur-containing organic molecules, pointing to abiotic sulfurization of DOM under sulfidic conditions.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy