SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:2399 3669 srt2:(2020)"

Sökning: L773:2399 3669 > (2020)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Boily, Jean-Francois, et al. (författare)
  • Direct identification of reaction sites on ferrihydrite
  • 2020
  • Ingår i: Communications Chemistry. - : Nature Publishing Group. - 2399-3669. ; 3:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Hydroxyl groups are the cornerstone species driving catalytic reactions on mineral nanoparticles of Earth's crust, water, and atmosphere. Here we directly identify populations of these groups on ferrihydrite, a key yet misunderstood iron oxyhydroxide nanomineral in natural sciences. This is achieved by resolving an enigmatic set of vibrational spectroscopic signatures of reactive hydroxo groups and chemisorbed water molecules embedded in specific chemical environments. We assist these findings by exploring a vast array of configurations of computer-generated nanoparticles. We find that these groups are mainly disposed along rows at edges of sheets of iron octahedra. Molecular dynamics of nanoparticles as large as 10 nm show that the most reactive surface hydroxo groups are predominantly free, yet are hydrogen bond acceptors in an intricate network formed with less reactive groups. The resolved vibrational spectroscopic signatures open new possibilities for tracking catalytic reactions on ferrihydrite, directly from the unique viewpoint of its reactive hydroxyl groups. Ferrihydrite nanoparticles have many hydroxyl sites which can react with environmental contaminants and nutrients, but the surface structure of this common mineral is still not fully understood. Here, a combination of vibrational spectroscopy and molecular simulations identify hydroxyl groups exposed along rows at the edges of sheets of iron octahedra.
  •  
2.
  • Brett, Calvin J., et al. (författare)
  • Revealing structural evolution occurring from photo-initiated polymer network formation
  • 2020
  • Ingår i: Communications Chemistry. - : Springer Science and Business Media LLC. - 2399-3669. ; 3:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Photopolymerization is a key enabling technology offering spatial and temporal control to allow for future functional materials to be made to meet societal needs. However, gaining access to robust experimental techniques to describe the evolution of nanoscale morphology in photo-initiated polymeric systems has proven so far to be a challenging task. Here, we show that these physical transformations can be monitored and quantified at the nanoscale in situ and in real-time. It is demonstrated that the initial structural features of the liquid precursors significantly affect the final morphology and the physical properties of the resulting solid via the occurrence of local heterogeneities in the molecular mobility during the curing transformation. We have made visible how local physical arrestings in the liquid, associated with both cross-linking and vitrification, determine the length scale of the local heterogeneities forming upon curing, found to be in the 10-200nm range. Acomplete account of the structural evolution occurring during photopolymerisation is lacking. Here the physical changes occurring on the nanometer scale during photopolymerisation of acrylates are followed over time by FTIR, X-ray reflectometry, AFM, and GISAXS, offering insight into the mechanism by which initial composition influences the final morphology.
  •  
3.
  • Hakim, Charifa, et al. (författare)
  • Understanding the redox process upon electrochemical cycling of the P2-Na0.78Co1/2Mn1/3Ni1/6O2 electrode material for sodium-ion batteries
  • 2020
  • Ingår i: Communications Chemistry. - : NATURE PUBLISHING GROUP. - 2399-3669. ; 3
  • Tidskriftsartikel (refereegranskat)abstract
    • The inclusion of nickel and manganese in layered sodium metal oxide cathodes for sodium ion batteries is known to improve stability, but the redox behaviour at high voltage is poorly understood. Here in situ X-ray spectroscopy studies show that the redox behaviour of oxygen anions can account for an increase in specific capacity at high voltages. Rechargeable sodium-ion batteries have recently attracted renewed interest as an alternative to Li-ion batteries for electric energy storage applications, because of the low cost and wide availability of sodium resources. Thus, the electrochemical energy storage community has been devoting increased attention to designing new cathode materials for sodium-ion batteries. Here we investigate P2- Na0.78Co1/2Mn1/3Ni1/6O2 as a cathode material for sodium ion batteries. The main focus is to understand the mechanism of the electrochemical performance of this material, especially differences observed in redox reactions at high potentials. Between 4.2 V and 4.5 V, the material delivers a reversible capacity which is studied in detail using advanced analytical techniques. In situ X-ray diffraction reveals the reversibility of the P2-type structure of the material. Combined soft X-ray absorption spectroscopy and resonant inelastic X-ray scattering demonstrates that Na deintercalation at high voltages is charge compensated by formation of localized electron holes on oxygen atoms.
  •  
4.
  • Poronik, Yevgen M., et al. (författare)
  • Deciphering the unusual fluorescence in weakly coupled bis-nitro-pyrrolo[3,2-b]pyrroles
  • 2020
  • Ingår i: Communications Chemistry. - : NATURE RESEARCH. - 2399-3669. ; 3:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Electron-deficient pi-conjugated functional dyes lie at the heart of organic optoelectronics. Adding nitro groups to aromatic compounds usually quenches their fluorescence via inter-system crossing (ISC) or internal conversion (IC). While strong electronic coupling of the nitro groups with the dyes ensures the benefits from these electron-withdrawing substituents, it also leads to fluorescence quenching. Here, we demonstrate how such electronic coupling affects the photophysics of acceptor-donor-acceptor fluorescent dyes, with nitrophenyl acceptors and a pyrrolo[3,2-b]pyrrole donor. The position of the nitro groups and the donor-acceptor distance strongly affect the fluorescence properties of the bis-nitrotetraphenylpyrrolopyrroles. Concurrently, increasing solvent polarity quenches the emission that recovers upon solidifying the media. Intramolecular charge transfer (CT) and molecular dynamics, therefore, govern the fluorescence of these nitro-aromatics. While balanced donor-acceptor coupling ensures fast radiative deactivation and slow ISC essential for large fluorescence quantum yields, vibronic borrowing accounts for medium dependent IC via back CT. These mechanistic paradigms set important design principles for molecular photonics and electronics. Owing to their electron-withdrawing nature, nitro-groups are desirable in the design of electron-deficient light-sensitizing aromatic pi-conjugated molecules, but most nitro-aromatics are not fluorescent. Here, the authors show how balanced donor-acceptor coupling ensures fast radiative deactivation and slow intersystem crossing in bis-nitrotetraphenylpyrrolopyrroles.
  •  
5.
  • Staats, Roxine, et al. (författare)
  • Screening of small molecules using the inhibition of oligomer formation in α-synuclein aggregation as a selection parameter
  • 2020
  • Ingår i: Communications Chemistry. - : Springer Science and Business Media LLC. - 2399-3669. ; 3:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The aggregation of α-synuclein is a central event in Parkinsons’s disease and related synucleinopathies. Since pharmacologically targeting this process, however, has not yet resulted in approved disease-modifying treatments, there is an unmet need of developing novel methods of drug discovery. In this context, the use of chemical kinetics has recently enabled accurate quantifications of the microscopic steps leading to the proliferation of protein misfolded oligomers. As these species are highly neurotoxic, effective therapeutic strategies may be aimed at reducing their numbers. Here, we exploit this quantitative approach to develop a screening strategy that uses the reactive flux toward α-synuclein oligomers as a selection parameter. Using this approach, we evaluate the efficacy of a library of flavone derivatives, identifying apigenin as a compound that simultaneously delays and reduces the formation of α-synuclein oligomers. These results demonstrate a compound selection strategy based on the inhibition of the formation of α-synuclein oligomers, which may be key in identifying small molecules in drug discovery pipelines for diseases associated with α-synuclein aggregation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy