SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:2399 3669 srt2:(2024)"

Sökning: L773:2399 3669 > (2024)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bettelli, Mercedes A., et al. (författare)
  • Effects of multi-functional additives during foam extrusion of wheat gluten materials
  • 2024
  • Ingår i: Communications Chemistry. - : Springer Nature. - 2399-3669. ; 7:1
  • Tidskriftsartikel (refereegranskat)abstract
    • To broaden the range in structures and properties, and therefore the applicability of sustainable foams based on wheat gluten expanded with ammonium-bicarbonate, we show here how three naturally ocurring multifunctional additives affect their properties. Citric acid yields foams with the lowest density (porosity of ~50%) with mainly closed cells. Gallic acid acts as a radical scavenger, yielding the least crosslinked/ aggregated foam. The use of a low amount of this acid yields foams with the highest uptake of the body-fluid model substance (saline, ~130% after 24 hours). However, foams with genipin show a large and rapid capillary uptake (50% in one second), due to their high content of open cells. The most dense and stiff foam is obtained with one weight percent genipin, which is also the most crosslinked. Overall, the foams show a high energy loss-rate under cyclic compression (84-92% at 50% strain), indicating promising cushioning behaviour. They also show a low compression set, indicating promising sealability. Overall, the work here provides a step towards using protein biofoams as a sustainable alternative to fossil-based plastic/rubber foams in applications where absorbent and/or mechanical properties play a key role.
  •  
2.
  • Dey, Ananta, et al. (författare)
  • Exploiting hot electrons from a plasmon nanohybrid system for the photoelectroreduction of CO2
  • 2024
  • Ingår i: Communications Chemistry. - : Springer Nature. - 2399-3669. ; 7:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Plasmonic materials convert light into hot carriers and heat to mediate catalytic transformation. The participation of hot carriers (photocatalysis) remains a subject of vigorous debate, often argued on the basis that carriers have ultrashort lifetime incompatible with drive photochemical processes. This study utilises plasmon hot electrons directly in the photoelectrocatalytic reduction of CO2 to CO via a Ppasmonic nanohybrid. Through the deliberate construction of a plasmonic nanohybrid system comprising NiO/Au/ReI(phen-NH2)(CO)3Cl (phen-NH2 = 1,10-Phenanthrolin-5-amine) that is unstable above 580 K; it was possible to demonstrate hot electrons are the main culprit in CO2 reduction. The engagement of hot electrons in the catalytic process is derived from many approaches that cover the processes in real-time, from ultrafast charge generation and separation to catalysis occurring on the minute scale. Unbiased in situ FTIR spectroscopy confirmed the stepwise reduction of the catalytic system. This, coupled with the low thermal stability of the ReI(phen-NH2)(CO)3Cl complex, explicitly establishes plasmonic hot carriers as the primary contributors to the process. Therefore, mediating catalytic reactions by plasmon hot carriers is feasible and holds promise for further exploration. Plasmonic nanohybrid systems can leverage plasmon’s unique photophysics and capabilities because they expedite the carrier’s lifetime.
  •  
3.
  • Holmgaard List, Nanna, et al. (författare)
  • Chemical control of excited-state reactivity of the anionic green fluorescent protein chromophore
  • 2024
  • Ingår i: Communications Chemistry. - : Springer Nature. - 2399-3669. ; 7:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Controlling excited-state reactivity is a long-standing challenge in photochemistry, as a desired pathway may be inaccessible or compete with other unwanted channels. An important example is internal conversion of the anionic green fluorescent protein (GFP) chromophore where non-selective progress along two competing torsional modes (P: phenolate and I: imidazolinone) impairs and enables Z-to-E photoisomerization, respectively. Developing strategies to promote photoisomerization could drive new areas of applications of GFP-like proteins. Motivated by the charge-transfer dichotomy of the torsional modes, we explore chemical substitution on the P-ring of the chromophore as a way to control excited-state pathways and improve photoisomerization. As demonstrated by methoxylation, selective P-twisting appears difficult to achieve because the electron-donating potential effects of the substituents are counteracted by inertial effects that directly retard the motion. Conversely, these effects act in concert to promote I-twisting when introducing electron-withdrawing groups. Specifically, 2,3,5-trifluorination leads to both pathway selectivity and a more direct approach to the I-twisted intersection which, in turn, doubles the photoisomerization quantum yield. Our results suggest P-ring engineering as an effective approach to boost photoisomerization of the anionic GFP chromophore. Controlling excited-state reactivity is a long-standing challenge in photochemistry, as desired pathways may be inaccessible or compete with unwanted channels, which is problematic for applications. Here, the authors show that 2,3,5-trifluorination on the phenolate ring of the green fluorescent protein chromophore leads to both pathway selectivity and doubles the photoisomerization quantum yield.
  •  
4.
  • Honda, Satoshi, et al. (författare)
  • Organomediated polymerization
  • 2024
  • Ingår i: Communications Chemistry. - : Springer Nature. - 2399-3669. ; 7:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Communications Chemistry is pleased to introduce a Collection of articles focused on organomediated polymerization. Here, the Guest Editors highlight the themes within and look towards the future of this research field.
  •  
5.
  • Mahdizadeh, Sayyed Jalil, et al. (författare)
  • Different binding modalities of quercetin to inositol-requiring enzyme 1 of S. cerevisiae and human lead to opposite regulation
  • 2024
  • Ingår i: Communications Chemistry. - 2399-3669. ; 7:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The flavonoid Quercetin (Qe) was identified as an activator of Inositol-requiring enzyme 1 (IRE1) in S. cerevisiae (scIre1p), but its impact on human IRE1 (hIRE1) remains controversial due to the absence of a conserved Qe binding site. We have explored the binding modes and effect of Qe on both scIre1p and hIRE1 dimers using in silico and in vitro approaches. The activation site in scIre1p stably accommodates both Qe and its derivative Quercitrin (Qi), thus enhancing the stability of the RNase pocket. However, the corresponding region in hIRE1 does not bind any of the two molecules. Instead, we show that both Qe and Qi block the RNase activity of hIRE1 in vitro, with sub-micromolar IC50 values. Our results provide a rationale for why Qe is an activator in scIre1p but a potent inhibitor in hIRE1. The identification of a new allosteric site in hIRE1 opens a promising window for drug development and UPR modulation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy