SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:2405 8297 srt2:(2022)"

Sökning: L773:2405 8297 > (2022)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kim, Hee Jae, et al. (författare)
  • Lithium dendritic growth inhibitor enabling high capacity, dendrite-free, and high current operation for rechargeable lithium batteries
  • 2022
  • Ingår i: Energy Storage Materials. - : Elsevier. - 2405-8289 .- 2405-8297. ; 46, s. 76-89
  • Tidskriftsartikel (refereegranskat)abstract
    • There is no doubt that lithium-metal batteries (LMBs) are considered as attractive power sources owing to their ex-traordinarily high energy density. However, the formation of lithium dendrites during repeated plating/stripping processes hinders their practical application. Herein, we introduce phosphorous pentoxide (P2O5) as an addi-tive to commercial carbonate-based electrolytes to effectively suppress the dendritic growth on the surface of a lithium-metal anode. Significant improvement of the lifespan and coulombic efficiency of the cell were observed with the addition of P2O5 to the electrolyte in Li || Li, Li || Type 316L SS, Li || Cu, and Li || graphite cells. According to surface analyses and microscopic studies, we found reduction mechanism of the P2O5-induced solid-electrolyte interphase (SEI) formation on Li metal. Namely, electrolytic decomposition product, LiF, reacts with P2O5 addi-tive in electrolyte, so that LiPO2F2 is produced by following reaction: 6LiF + 2P(2)O(5) ->& nbsp;3LiPO(2)F(2) + Li3PO4, of which those products suppress dendritic growth of lithium as visualized by operando Synchrotron tomography. The compatibility and outstanding rate performance of the additive-based electrolyte were also demonstrated in Li || NCM full cells. As a result, this finding confirms an effective way to stabilize SEI layers in LMBs via a facile and inexpensive route.
  •  
2.
  • Pereira de Carvalho, Rodrigo, et al. (författare)
  • Artificial intelligence driven in-silico discovery of novel organic lithium-ion battery cathodes
  • 2022
  • Ingår i: Energy Storage Materials. - : Elsevier. - 2405-8289 .- 2405-8297. ; 44, s. 313-325
  • Tidskriftsartikel (refereegranskat)abstract
    • Organic electrode materials (OEMs) combine key sustainability and versatility properties with the potential to enable the realisation of the next generation of truly green battery technologies. However, for OEMs to become a competitive alternative, challenging issues related to energy density, rate capability and cycling stability need to be overcome. In this work, we have developed and applied an alternative yet systematic methodology to accelerate the discovery of suitable cathode-active OEMs by interplaying artificial intelligence (AI) and quantum mechanics. This AI-kernel has allowed a high-throughput screening of a huge library of organic molecules, leading to the discovery of 459 novel promising OEMs with candidates offering the potential to achieve theoretical energy densities superior to 1000 W h kg(1). Moreover, the machinery accurately identified common molecular functionalities that lead to such higher-voltage electrodes and pointed out an interesting donor-accepter-like effect that may drive the future design of cathode-active OEMs.
  •  
3.
  • Zhao, Yun, et al. (författare)
  • Precise separation of spent lithium-ion cells in water without discharging for recycling
  • 2022
  • Ingår i: Energy Storage Materials. - : Elsevier. - 2405-8289 .- 2405-8297. ; 45, s. 1092-1099
  • Tidskriftsartikel (refereegranskat)abstract
    • New methods for recycling lithium-ion batteries (LIBs) are needed because traditional recycling methods are based on battery pulverization, which requires pre-treatment of tedious and non-eco-friendly discharging and results in low efficiency and high waste generation in post-treatment. Separating the components of recycled LIB cells followed by reuse or conversion of individual components could minimize material cross-contamination while avoiding excessive consumption of energy and chemicals. However, disposing of charged LIB cells is hazardous due to the high reactivity of lithiated graphite towards cathode materials and air, and the toxicity and flammability of the electrolytes. Here we demonstrate that the disassembly of charged jellyroll LIB cells in water with a single main step reveals no emissions from the cells and near perfect recycling efficiencies that exceed the targets of the US Department of Energy and Batteries Europe. The precise non-destructive mechanical method separates the components from jellyroll cell in water, avoiding both uncontrollable reactions from the anode and burning of the electrolyte, while allowing only a limited fraction of the anode lithium to react with water. Recycling in this way allows the recovery of materials with a value of ∼7.14 $ kg−1 cell, which is higher than that of physical separation (∼5.40 $ kg−1 cell) and much greater than the overall revenue achieved using element extraction methods (<1.00 $ kg−1 cell). The precise separation method could thus facilitate the establishment of a circular economy within the LIB industry and build a strong bridge between academia and the battery recycling industry.
  •  
4.
  • Le Pham, Phuong Nam, et al. (författare)
  • Potassium-ion batteries using KFSI/DME electrolytes: Implications of cation solvation on the K + -graphite (co-)intercalation mechanism
  • 2022
  • Ingår i: Energy Storage Materials. - : Elsevier BV. - 2405-8297. ; 45, s. 291-300
  • Tidskriftsartikel (refereegranskat)abstract
    • Recently potassium-ion batteries have been proposed as a promising next generation battery technology owing to cost effectiveness and a wide range of electrode materials as well as electrolytes available. Potassium bis(fluorosulfonyl)imide (KFSI) in monoglyme (DME) is one potential electrolyte, wherein the K+ solvation heavily depends on the salt concentration and strongly affects the electrochemistry. Pure K+ intercalation occurs for highly concentrated electrolytes (HCEs), while co-intercalation is dominant for less concentrated electrolytes. The mechanisms are easily distinguished by their galvanostatic curves as well as by operando XRD. Here Raman spectroscopy coupled with computational chemistry is used to provide in-depth knowledge about the cation solvation for a wide concentration range, all the way up to 5 M KFSI in DME. Starting from pure DME experimental and computed Raman spectra provides a detailed conformational assignment enabling us to calculate the solvation number (SN) of K+ by DME as a function of salt concentration for all the electrolytes. For low to medium KFSI concentrations, the SN is approximately constant, ca. 2.7, and/as there is a surplus of DME solvent available, while for HCEs, with much less DME available, the SN is <2. This reduced SN results in a thermodynamically more favored desolvation at the graphite surface, leading to intercalation, as compared to the higher SN of conventional electrolytes leading to co-intercalation, as observed also by electrochemical cycling.
  •  
5.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy