SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ådén Jörgen 1980 ) srt2:(2007-2009)"

Sökning: WFRF:(Ådén Jörgen 1980 ) > (2007-2009)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Wallgren, Marcus, 1978-, et al. (författare)
  • Extreme temperature tolerance of a hyperthermophilic protein coupled to residual structure in the unfolded state
  • 2008
  • Ingår i: Journal of Molecular Biology. - : Elsevier BV. - 0022-2836 .- 1089-8638. ; 379:4, s. 845-858
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding the mechanisms that dictate protein stability is of large relevance, for instance, to enable design of temperature-tolerant enzymes with high enzymatic activity over a broad temperature interval. In an effort to identify such mechanisms, we have performed a detailed comparative study of the folding thermodynamics and kinetics of the ribosomal protein S16 isolated from a mesophilic (S16meso) and hyperthermophilic (S16thermo) bacterium by using a variety of biophysical methods. As basis for the study, the 2.0 Å X-ray structure of S16thermo was solved using single wavelength anomalous dispersion phasing. Thermal unfolding experiments yielded midpoints of 59 and 111 °C with associated changes in heat capacity upon unfolding (ΔCp0) of 6.4 and 3.3 kJ mol− 1 K− 1, respectively. A strong linear correlation between ΔCp0 and melting temperature (Tm) was observed for the wild-type proteins and mutated variants, suggesting that these variables are intimately connected. Stopped-flow fluorescence spectroscopy shows that S16meso folds through an apparent two-state model, whereas S16thermo folds through a more complex mechanism with a marked curvature in the refolding limb indicating the presence of a folding intermediate. Time-resolved energy transfer between Trp and N-(4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-yl)methyl iodoacetamide of proteins mutated at selected positions shows that the denatured state ensemble of S16thermo is more compact relative to S16meso. Taken together, our results suggest the presence of residual structure in the denatured state ensemble of S16thermo that appears to account for the large difference in quantified ΔCp0 values and, in turn, parts of the observed extreme thermal stability of S16thermo. These observations may be of general importance in the design of robust enzymes that are highly active over a wide temperature span.
  •  
2.
  • Rundqvist, Louise, et al. (författare)
  • Noncooperative folding of subdomains in Adenylate Kinase
  • 2009
  • Ingår i: Biochemistry. - : ACS Publications. - 0006-2960 .- 1520-4995. ; 48:9, s. 1911-1927
  • Tidskriftsartikel (refereegranskat)abstract
    • Conformational change is regulating the biological activity of a large number of proteins and enzymes. Efforts in structural biology have provided molecular descriptions of the interactions that stabilize the stable ground states on the reaction trajectories during conformational change. Less is known about equilibrium thermodynamic stabilities of the polypeptide segments that participate in structural changes and whether the stabilities are relevant for the reaction pathway. Adenylate kinase (Adk) is composed of three subdomains: CORE, ATPlid, and AMPbd. ATPlid and AMPbd are flexible nucleotide binding subdomains where large-scale conformational changes are directly coupled to catalytic activity. In this report, the equilibrium thermodynamic stabilities of Adk from both mesophilic and hyperthermophilic bacteria were investigated using solution state NMR spectroscopy together with protein engineering experiments. Equilibrium hydrogen to deuterium exchange experiments indicate that the flexible subdomains are of significantly lower thermodynamic stability compared to the CORE subdomain. Using site-directed mutagenesis, parts of ATPlid and AMPbd could be selectively unfolded as a result of perturbation of hydrophobic clusters located in these respective subdomains. Analysis of the perturbed Adk variants using NMR spin relaxation and Cα chemical shifts shows that the CORE subdomain can fold independently of ATPlid and AMPbd; consequently, folding of the two flexible subdomains occurs independently of each other. Based on the experimental results it is apparent that the flexible subdomains fold into their native structure in a noncooperative manner with respect to the CORE subdomain. These results are discussed in light of the catalytically relevant conformational change of ATPlid and AMPbd.
  •  
3.
  • Ådén, Jörgen, 1980-, et al. (författare)
  • NMR identification of transient complexes critical to adenylate kinase catalysis
  • 2007
  • Ingår i: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 0002-7863 .- 1520-5126. ; 129:45, s. 14003-12
  • Tidskriftsartikel (refereegranskat)abstract
    • A fundamental question in protein chemistry is how the native energy landscape of enzymes enables efficient catalysis of chemical reactions. Adenylate kinase is a small monomeric enzyme that catalyzes the reversible conversion of AMP and ATP into two ADP molecules. Previous structural studies have revealed that substrate binding is accompanied by large rate-limiting spatial displacements of both the ATP and AMP binding motifs. In this report a solution-state NMR approach was used to probe the native energy landscape of adenylate kinase in its free form, in complex with its natural substrates, and in the presence of a tight binding inhibitor. Binding of ATP induces a dynamic equilibrium in which the ATP binding motif populates both the open and the closed conformations with almost equal populations. A similar scenario is observed for AMP binding, which induces an equilibrium between open and closed conformations of the AMP binding motif. These ATP- and AMP-bound structural ensembles represent complexes that exist transiently during catalysis. Simultaneous binding of AMP and ATP is required to force both substrate binding motifs to close cooperatively. In addition, a previously unknown unidirectional energetic coupling between the ATP and AMP binding sites was discovered. On the basis of these and previous results, we propose that adenylate kinase belongs to a group of enzymes whose substrates act to shift pre-existing equilibria toward catalytically active states.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy