SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Åman J.) srt2:(2015-2019)"

Sökning: WFRF:(Åman J.) > (2015-2019)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • de Graaff, M. A., et al. (författare)
  • Establishment and characterization of a new human myxoid liposarcoma cell line (DL-221) with the FUS-DDIT3 translocation
  • 2016
  • Ingår i: Laboratory Investigation. - : Elsevier BV. - 0023-6837. ; 96:8, s. 885-894
  • Tidskriftsartikel (refereegranskat)abstract
    • Myxoid liposarcoma has the pathognomonic fusion oncogene FUS-DDIT3 encoding a chimeric transcription factor. Metastatic risk is higher with an increased round cell component and has been linked to aberrations involving the IGFR/PI3K/AKT pathway. These molecular insights have yet to translate to targeted therapies, and the lack of experimental models is a major hindrance. We describe the initial in-depth characterization of a new cell line (DL-221) and establishment of a mouse xenograft model. The cell line DL-221 was derived from a metastatic pleural lesion showing myxoid and round cell histology. This newly established cell line was characterized for phenotypic properties and molecular cytogenetic profile, using PCR, COBRA-FISH, and western blot. Next-generation whole-exome sequencing was performed to further characterize the cell line and the parent tumor. NOD-SCID-IL2R gamma knockout mice were xenograft hosts. DL-221 cells grew an adhering monolayer and COBRA-FISH showed an aneuploid karyotype with t(12;16) (q13;p11) and several other rearrangements; RT-PCR demonstrated a FUS-DDIT3 fusion transcript type 1. Both the cell line and the original tumor harbored a TP53 compound heterozygous mutation in exon 4 and 7, and were wild-type for PIK3CA. Moreover, among the 1254 variants called by whole-exome sequencing, there was 77% concordance between the cell line and parent tumor. The recently described hotspot mutation in the TERT promoter region in myxoid liposarcomas was also found at C228T in DL-221. Xenografts suitable for additional preclinical studies were successfully established in mice after subcutaneous injection. The established DL-221 cell line is the only published available myxoid liposarcoma cell line that underwent spontaneous immortalization, without requiring SV40 transformation. The cell line and its xenograft model are unique and helpful tools to study the biology and novel potential-targeted treatment approaches for myxoid liposarcoma.
  •  
2.
  • Sievers, E., et al. (författare)
  • SRC inhibition represents a potential therapeutic strategy in liposarcoma
  • 2015
  • Ingår i: International Journal of Cancer. - : Wiley. - 0020-7136. ; 137:11, s. 2578-2588
  • Tidskriftsartikel (refereegranskat)abstract
    • Liposarcomas (LS) are the most common malignant mesenchymal tumors, with an overall long-term mortality rate of 60%. LS comprise three major subtypes, i.e., well-differentiated/dedifferentiated liposarcoma (WDLS/DDLS), myxoid/round cell liposarcoma (MLS) and pleomorphic liposarcoma (PLS). Aiming at the preclinical identification of novel therapeutic options, we here investigate the functional significance of SRC in primary human LS and in LS-derived cell lines. Immunohistochemical and Western blot analyses reveal relevant levels of activated p-(Tyr416)-SRC in LS of the different subtypes with particular activation in MLS and PLS. Dysregulation of the SRC modifiers CSK and PTP1B was excluded as major reason for the activation of the kinase. Consistent siRNA-mediated knockdown of SRC or inhibition by the SRC inhibitor Dasatinib led to decreased proliferation of LS cell lines of the different subtypes, with MLS cells reacting particularly sensitive in MTT assays. Flow cytometric analyses revealed that this effect was due to a significant decrease in mitotic activity and an induction of apoptosis. SRC inhibition by Dasatinib resulted in dephosphorylation of SRC itself, its interacting partners FAK and IGF-IR as well as its downstream target AKT. Consistent with a particular role of SRC in cell motility, Dasatinib reduced the migratory and invasive potential of MLS cells in Boyden chamber and Matrigel chamber assays. In summary, we provide evidence that SRC activation plays an important role in LS biology and therefore represents a potential therapeutic target, particularly in MLS and PLS.
  •  
3.
  • Dolatabadi, Soheila, et al. (författare)
  • Cell Cycle and Cell Size Dependent Gene Expression Reveals Distinct Subpopulations at Single-Cell Level
  • 2017
  • Ingår i: Frontiers in Genetics. - : Frontiers Media SA. - 1664-8021. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Cell proliferation includes a series of events that is tightly regulated by several checkpoints and layers of control mechanisms. Most studies have been performed on large cell populations, but detailed understanding of cell dynamics and heterogeneity requires single-cell analysis. Here, we used quantitative real-time PCR, profiling the expression of 93 genes in single-cells from three different cell lines. Individual unsynchronized cells from three different cell lines were collected in different cell cycle phases (GO/G1 - S - G2/M) with variable cell sizes. We found that the total transcript level per cell and the expression of most individual genes correlated with progression through the cell cycle, but not with cell size. By applying the random forests algorithm, a supervised machine learning approach, we show how a multi-gene signature that classifies individual cells into their correct cell cycle phase and cell size can be generated. To identify the most predictive genes we used a variable selection strategy. Detailed analysis of cell cycle predictive genes allowed us to define subpopulations with distinct gene expression profiles and to calculate a cell cycle index that illustrates the transition of cells between cell cycle phases. In conclusion, we provide useful experimental approaches and bioinformatics to identify informative and predictive genes at the single-cell level, which opens up new means to describe and understand cell proliferation and subpopulation dynamics.
  •  
4.
  • Trautmann, M., et al. (författare)
  • FUS-DDIT3 Fusion Protein-Driven IGF-IR Signaling is a Therapeutic Target in Myxoid Liposarcoma
  • 2017
  • Ingår i: Clinical Cancer Research. - : American Association for Cancer Research (AACR). - 1078-0432 .- 1557-3265. ; 23:20, s. 6227-6238
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: Myxoid liposarcoma is an aggressive disease with particular propensity to develop hematogenic metastases. Over 90% of myxoid liposarcoma are characterized by a reciprocal t(12;16)(q13;p11) translocation. The resulting chimeric FUS-DDIT3 fusion protein plays a crucial role in myxoid liposarcoma pathogenesis; however, its specific impact on oncogenic signaling pathways remains to be substantiated. We here investigate the functional role of FUS-DDIT3 in IGF-IR/PI3K/Akt signaling driving myxoid liposarcoma pathogenesis. Experimental Design: Immunohistochemical evaluation of key effectors of the IGF-IR/PI3K/Akt signaling axis was performed in a comprehensive cohort of myxoid liposarcoma specimens. FUS-DDIT3 dependency and biological function of the IGF-IR/PI3K/Akt signaling cascade were analyzed using a HT1080 fibrosarcoma-based myxoid liposarcoma tumor model and multiple tumor-derived myxoid liposarcoma cell lines. An established myxoid liposarcoma avian chorioallantoic membrane model was used for in vivo confirmation of the preclinical in vitro results. Results: A comprehensive subset of myxoid liposarcoma specimens showed elevated expression and phosphorylation levels of various IGF-IR/PI3K/Akt signaling effectors. In HT1080 fibrosarcoma cells, overexpression of FUS-DDIT3 induced aberrant IGF-IR/PI3K/Akt pathway activity, which was dependent on transcriptional induction of the IGF2 gene. Conversely, RNAi-mediated FUS-DDIT3 knockdown in myxoid liposarcoma cells led to an inactivation of IGF-IR/PI3K/Akt signaling associated with diminished IGF2 mRNA expression. Treatment of myxoid liposarcoma cell lines with several IGF-IR inhibitors resulted in significant growth inhibition in vitro and in vivo. Conclusions: Our preclinical study substantiates the fundamental role of the IGF-IR/PI3K/Akt signaling pathway in myxoid liposarcoma pathogenesis and provides a mechanism-based rationale for molecular-targeted approaches in myxoid liposarcoma cancer therapy. (C)2017 AACR.
  •  
5.
  • Trautmann, M., et al. (författare)
  • Phosphatidylinositol-3-kinase (PI3K)/Akt Signaling is Functionally Essential in Myxoid Liposarcoma
  • 2019
  • Ingår i: Molecular Cancer Therapeutics. - 1535-7163. ; 18:4, s. 834-844
  • Tidskriftsartikel (refereegranskat)abstract
    • Myxoid liposarcoma (MLS) is an aggressive soft-tissue tumor characterized by a specific reciprocal t(12;16) translocation resulting in expression of the chimeric FUS-DDIT3 fusion protein, an oncogenic transcription factor. Similar to other translocation-associated sarcomas, MLS is characterized by a low frequency of somatic mutations, albeit a subset of MLS has previously been shown to be associated with activating PIK3CA mutations. This study was performed to assess the prevalence of PI3K/Akt signaling alterations in MIS and the potential of PI3Kdirected therapeutic concepts. In a large cohort of MIS, key components of the PI3K/Akt signaling cascade were evaluated by next generation seqeuncing (NGS), fluorescence in situ hybridization (FISH), and immunohistochemistry (IHC). In threevi IS cell lines, PI3K activitywas inhibited by RNAi and the small-molecule PI3 K inhibitor BKM120 (buparlisib) in vitro. An MLS cell line-based avian chorioallantoic membrane model was applied for in vivo confirmation. In total, 26.8% of MLS cases displayed activating alterations in PI3K/Akt signaling components, with PIK3CA gain-of-function mutations representing the most prevalent finding (14.2%). IHC suggested PI3K/Akt activation in a far larger subgroup of MIS, implying alternative mechanisms of pathway activation. P13K-directed therapeutic interference showed that MIS cell proliferation and viability significantly depended on PI3K-mediated signals in vitro and in viva Our predinical study underlines the elementary role of PI3K/Akt signals in MLS tumorigenesis and provides a molecularly based rationale for a PI3K-targeted therapeutic approach which may be particularly effective in the subgroup of tumors carrying activating genetic alterations in P13K/Akt signaling components.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy