SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Önnerfjord Patrik) srt2:(2005-2009)"

Sökning: WFRF:(Önnerfjord Patrik) > (2005-2009)

  • Resultat 1-12 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Smith, Ruben, et al. (författare)
  • Mutant huntingtin interacts with {beta}-tubulin and disrupts vesicular transport and insulin secretion.
  • 2009
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 18:20, s. 3942-3954
  • Tidskriftsartikel (refereegranskat)abstract
    • Huntington's disease is a severe progressive neurodegenerative disorder caused by a CAG-expansion in the IT15 gene, which encodes huntingtin. The disease primarily affects the neostriatum and cerebral cortex and also associates with increased incidence of diabetes. Here, we show that mutant huntingtin disrupts intracellular transport and insulin secretion by direct interference with microtubular beta-tubulin. We demonstrate that mutant huntingtin impairs glucose-stimulated insulin secretion in insulin-producing beta-cells, without altering stored levels of insulin. Using VSVG-YFP, we show that mutant huntingtin retards post-Golgi transport. Moreover, we demonstrate that the speed of insulin vesicle trafficking is reduced. Using immunoprecipitation of mutant and wild-type huntingtin in combination with mass spectrometry, we reveal an enhanced and aberrant interaction between mutant huntingtin and beta-tubulin, implying the underlying mechanism of impaired intracellular transport. Thus, our findings have revealed a novel pathogenetic process by which mutant huntingtin may disrupt hormone exocytosis from beta-cells and possibly impair vesicular transport in any cell that expresses the pathogenic protein.
  •  
2.
  • Danfelter, Mikael, et al. (författare)
  • Fragmentation of proteins in cartilage treated with IL-1. Specific cleavage of type IX collagen by MMP-13 releases the NC4 domain.
  • 2007
  • Ingår i: Journal of Biological Chemistry. - 1083-351X. ; 282:51, s. 36933-36941
  • Tidskriftsartikel (refereegranskat)abstract
    • Degradation of bovine nasal cartilage induced by interleukin-1 (IL-1) was used to study catabolic events in the tissue over 16 days. Culture medium was fractionated by two-dimensional electrophoresis (isoelectric focusing and SDS-PAGE). Identification of components by peptide mass fingerprinting revealed released fragments representing the NC4 domain of the type IX collagen {alpha}1 chain at days 12 and 16. A novel peptide antibody against a near N-terminal epitope of the NC4 domain confirmed the finding and indicated the presence of one of the fragments already at day 9. Mass spectrometric analysis of the two most abundant fragments revealed that the smallest one contained almost the entire NC4 domain cleaved between arginine 258 and isoleucine 259 in the sequence -ETCNELPAR258-COOH NH2-ITP-. A larger fragment contained the NC4 domain and the major part of the COL3 domain with a cleavage site between glycine 400 and threonine 401 in COL3 (-RGPPGPPGPPGPSG400-COOH NH2-TIG-). The presence of multiple collagen {alpha}1 (IX) N-terminal sequences demonstrates that the released molecules were cleaved at sites very close to the original N terminus either prior to or due to IL-1 treatment. Matrix metalloproteinase 13 (MMP-13) is active and cleaves fibromodulin in the time interval studied. Cartilage explants treated with MMP-13 were shown to release collagen {alpha}1 (IX) fragments with the same sizes and with the same cleavage sites as those obtained upon IL-1 treatment. These data describe cleavage by an MMP-13 activity toward non-collagenous and triple helix domains. These potentially important degradation events precede the major loss of type II collagen.
  •  
3.
  • Franzén, Ahnders, et al. (författare)
  • Altered osteoclast development and function in osteopontin deficient mice.
  • 2008
  • Ingår i: Journal of Orthopaedic Research. - : Wiley. - 1554-527X .- 0736-0266. ; 26:5, s. 721-728
  • Tidskriftsartikel (refereegranskat)abstract
    • The role of osteopontin in bone resorption was elucidated by studies of mice with knock out of the osteopontin gene generated by a different approach compared to previous models. Thus, a targeting vector with the promoter region as well as exons 1, 2, and 3 of the osteopontin gene was replaced by a loxP-flanked Neo-TK cassette, and this cassette was eliminated through transient expression of Cre recombinase. The recombined ES cells were used to create mice lacking expression of the osteopontin gene. Tissues from these mice were subjected structural and molecular analyses including morphometry and proteomics. The bone of the null mice contained no osteopontin but showed no significant alterations with regard to other bone proteins. The bone volume was normal in young null animals but in the lower metaphysis, the volume and number of osteoclasts were increased. Notably, the volume and length of the osteoclast ruffled border was several folds lower, indicating a lower resorptive capacity. The null mice did not develop the bone loss characteristic for osteoporosis demonstrated in old wild-type female animals. This quantitative study demonstrates a bone phenotype in the osteopontin null mice of all ages. The data provides further evidence for a role of osteopontin in osteoclast activity. (c) 2007 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res.
  •  
4.
  • Gustafsson, Lotta, et al. (författare)
  • Changes in proteasome structure and function caused by HAMLET in tumor cells.
  • 2009
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 4:4
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Proteasomes control the level of endogenous unfolded proteins by degrading them in the proteolytic core. Insufficient degradation due to altered protein structure or proteasome inhibition may trigger cell death. This study examined the proteasome response to HAMLET, a partially unfolded protein-lipid complex, which is internalized by tumor cells and triggers cell death. METHODOLOGY/PRINCIPAL FINDINGS: HAMLET bound directly to isolated 20S proteasomes in vitro and in tumor cells significant co-localization of HAMLET and 20S proteasomes was detected by confocal microscopy. This interaction was confirmed by co-immunoprecipitation from extracts of HAMLET-treated tumor cells. HAMLET resisted in vitro degradation by proteasomal enzymes and degradation by intact 20S proteasomes was slow compared to fatty acid-free, partially unfolded alpha-lactalbumin. After a brief activation, HAMLET inhibited proteasome activity in vitro and in parallel a change in proteasome structure occurred, with modifications of catalytic (beta1 and beta5) and structural subunits (alpha2, alpha3, alpha6 and beta3). Proteasome inhibition was confirmed in extracts from HAMLET-treated cells and there were indications of proteasome fragmentation in HAMLET-treated cells. CONCLUSIONS/SIGNIFICANCE: The results suggest that internalized HAMLET is targeted to 20S proteasomes, that the complex resists degradation, inhibits proteasome activity and perturbs proteasome structure. We speculate that perturbations of proteasome structure might contribute to the cytotoxic effects of unfolded protein complexes that invade host cells.
  •  
5.
  • Haglund, L, et al. (författare)
  • Proteomic analysis of the LPS-induced stress response in rat chondrocytes reveals induction of innate immune response components in articular cartilage
  • 2008
  • Ingår i: Matrix Biology. - : Elsevier BV. - 1569-1802 .- 0945-053X. ; 27:2, s. 107-118
  • Tidskriftsartikel (refereegranskat)abstract
    • Activation of toll-like receptors (TLR) in articular chondrocytes has been reported to increase the catabolic compartment, leading to matrix degradation, while the main consequence of TLR activation in monocytic cells is the expression and secretion of components of the innate immune response, particularly that of inflammatory cytokines. The objective of the work reported here was to obtain a more complete picture of the response repertoire of articular chondrocytes to TLR activation. Mass spectrometry was used to analyse the secretome of stimulated and unstimulated cells. Characterization of TLR expression in rat articular chondrocytes by RT/PCR indicated that TLR4 was the major receptor form. Exposure of these cells to lipopolysaccharide (LPS), the well-characterized TLR4 ligand, induced production not only of the matrix metalloproteinases MMP3 and 13, but also of components traditionally associated with the innate immune response, such as the complement components C1r, C3 and complement factor B, long pentraxin-3 and osteoglycin. Neither TNF-alpha nor IL-1 was detectable in culture media following exposure to LPS. One of the most prominently-induced proteins was the chitinase-like protein, Chi3L1, linking its expression to the innate immune response repertoire of articular chondrocytes. In intact femoral heads, LPS induced expression of Chi3L1 in chondrocytes close to the articular surface, suggesting that only these cells mount a stress response to LPS. Thus articular chondrocytes have a capacity to respond to TLR activation, which results in the expression of matrix metalloproteases as well as subsets of components of the innate immune response without significant increases in the production of inflammatory cytokines. This could influence the erosive processes leading to cartilage degeneration as well as the repair of damaged matrix.
  •  
6.
  • Holmér, Andreas, et al. (författare)
  • The extracellular matrix and inflammation - Fibromodulin activates the classical pathway of complement by directly binding C1q
  • 2005
  • Ingår i: Journal of Biological Chemistry. - 1083-351X. ; 280:37, s. 32301-32308
  • Tidskriftsartikel (refereegranskat)abstract
    • Components that propagate inflammation in joint disease may be derived from cartilage since the inflammation resolves after joint replacement. We found that the cartilage component fibromodulin has the ability to activate an inflammatory cascade, i.e. complement. Fibromodulin and immunoglobulins cause comparable deposition of C1q, C4b, and C3b from human serum. Using C1q and factor B-deficient sera in combination with varying contents of metal ions, we established that fibromodulin activates both the classical and the alternative pathways of complement. Further studies revealed that fibromodulin binds directly to the globular heads of C1q, leading to activation of C1. However, deposition of the membrane attack complex and C5a release were lower in the presence of fibromodulin as compared with IgG. This can be explained by the fact that fibromodulin also binds complement inhibitor factor H. Factor H and C1q bind to non-overlapping sites on fibromodulin, but none of the interactions is mediated by the negatively charged keratan sulfate substituents of fibromodulin. C1q but not factor H binds to an N-terminal fragment of fibromodulin previously implicated to be affected in cartilage stimulated with the inflammatory cytokine interleukin 1. Taken together our observations indicate fibromodulin as one factor involved in the sustained inflammation of the joint.
  •  
7.
  • Manderson, Gavin, et al. (författare)
  • Interactions of histidine-rich glycoprotein with immunoglobulins and proteins of the complement system.
  • 2009
  • Ingår i: Molecular Immunology. - : Elsevier BV. - 1872-9142 .- 0161-5890. ; Aug 10, s. 3388-3398
  • Tidskriftsartikel (refereegranskat)abstract
    • This study describes how the serum protein histidine-rich glycoprotein (HRG) affects the complement system. We show that HRG binds strongly to several complement proteins: C1q, factor H and C4b-binding protein and that it is found complexed with these proteins in human sera and synovial fluids of rheumatoid arthritis patients. HRG also binds C8 and to a lesser extent mannose-binding lectin, C4 and C3. However, HRG alone neither activates nor inhibits complement. Both HRG and C1q bind to necrotic cells and increase their phagocytosis. We found that C1q competes weakly with HRG for binding to necrotic cells whilst HRG does not compete with C1q. Furthermore, HRG enhances complement activation on necrotic cells measured as deposition of C3b. We show that HRG inhibits the formation of immune complexes of ovalbumin/anti-ovalbumin, whilst the reverse holds for C1q. Immune complexes formed in the presence of HRG show enhanced complement activation, whilst those formed in the presence of C1q show diminished complement activation. Taken together, HRG may assist in the maintenance of normal immune function by mediating the clearance of necrotic material, inhibiting the formation of insoluble immune complexes and enhancing their ability to activate complement, resulting in faster clearance.
  •  
8.
  •  
9.
  • Surmann-Schmitt, C, et al. (författare)
  • UCMA, a novel secreted cartilage-specific protein with implications in osteogenesis
  • 2008
  • Ingår i: Journal of Biological Chemistry. - 1083-351X. ; 283:11, s. 7082-7093
  • Tidskriftsartikel (refereegranskat)abstract
    • Here we report on the structure, expression and function of a novel cartilage-specific gene coding for a 17 kDa small, highly charged and secreted protein that we termed Ucma (Unique Cartilage Matrix Associated protein). The protein is processed by a furin-like protease into an N-terminal peptide of 37 amino acids and a C-terminal fragment (Ucma-C) of 74 amino acids. Ucma is highly conserved between mouse, rat, human, dog, clawed frog, and zebrafish, but has no homology to other known proteins. Remarkable are 1-2 tyrosine sulphate residues per molecule and dense clusters of acidic and basic residues in the C-terminal part. In the developing mouse skeleton Ucma-mRNA is expressed in resting chondrocytes in the distal and peripheral zones of epiphyseal and vertebral cartilage. Ucma is secreted into the extracellular matrix as uncleaved precursor and shows the same restricted distribution pattern in cartilage as Ucma mRNA. In contrast, antibodies prepared against the processed C-terminal fragment located Ucma-C in the entire cartilage matrix, indicating that it either diffuses or is retained until chondrocytes reach hypertrophy. During differentiation of an MC615 chondrocyte subclone in vitro, Ucma expression parallels largely the expression of collagen II, and decreases with maturation towards hypertrophic cells. Recombinant Ucma-C does not affect expression of chondrocyte-specific genes or proliferation of chondrocytes, but interferes with osteogenic differentiation of osteoblast precursors. These findings suggest that Ucma may be involved in the negative control of osteogenic differentiation of osteo-chondrogenic precursor cells in peripheral zones of fetal cartilage and at the cartilage-bone interface.
  •  
10.
  •  
11.
  • Tillgren, Viveka, et al. (författare)
  • The tyrosine sulfate rich domains of the LRR-proteins fibromodulin and osteoadherin bind motifs of basic clusters in a variety of heparin binding proteins including bioactive factors.
  • 2009
  • Ingår i: Journal of Biological Chemistry. - 1083-351X. ; Aug 21, s. 28543-28553
  • Tidskriftsartikel (refereegranskat)abstract
    • The small leucine-rich repeat proteins (SLRPs), fibromodulin and osteoadherin, have N-terminal extensions with a variable number of O-sulfated tyrosine residues. This modification combined with a number of aspartic and glutamic acid residues results in a highly negatively charged domain of less than 30 amino acids. We hypothesized that this domain shares functional properties with heparin regarding binding to proteins and polypeptides containing clusters of basic amino acids. Two other family members, PRELP and chondroadherin, have distinctly different clusters of basic amino acids in their N- and C-termini, respectively and PRELP is known to bind to heparin via this domain. Another heparin binding protein is the cytokine Oncostatin M, with a different cluster of basic amino acids in its C-terminal. We used polypeptides representing these basic domains in solid phase assays and demonstrate interactions with the negatively charged N-terminal domain of fibromodulin and full length osteoadherin. The tyrosine sulfate domains also bound heparin binding proteins such as basic fibroblast growth factor (FGF-2), thrombospondin I (TSP-I), MMP 13, the NC4 domain of collagen IX and IL10. Fibronectin with large heparin binding domains did not bind, neither did CILP containing a heparin binding thrombospondin type I motif without clustered basic amino acids. Affinity depends on the number and position of the sulfated tyrosine residues shown by different binding properties of 10 kDa fragments subfractionated by ion exchange chromatography. These interactions may sequester growth factors, cytokines and MMPs in the extracellular matrix as well as contribute to its organization.
  •  
12.
  • Vincents, Bjarne, et al. (författare)
  • Down-regulation of human extracellular cysteine protease inhibitors by the secreted staphylococcal cysteine proteases, staphopain A and B.
  • 2007
  • Ingår i: Biological Chemistry. - 1437-4315. ; 388:4, s. 437-446
  • Tidskriftsartikel (refereegranskat)abstract
    • Of seven human cystatins investigated, none inhibited the cysteine proteases staphopain A and B secreted by the human pathogen Staphylococcus aureus. Rather, the extracellular cystatins C, D and E/M were hydrolyzed by both staphopains. Based on MALDI-TOF time-course experiments, staphopain A cleavage of cystatin C and D should be physiologically relevant and occur upon S. aureus infection. Staphopain A hydrolyzed the Glyl 1 bond of cystatin C and the Ala10 bond of cystatin D with similar K-m values of approximately 33 and 32 mu m, respectively. Such N-terminal truncation of cystatin C caused > 300-fold lower inhibition of papain, cathepsin B, L and K, whereas the cathepsin H activity was compromised by a factor of ca. 10. Similarly, truncation of cystatin D caused alleviated inhibition of all endogenous target enzymes investigated. The normal activity of the cystatins is thus down-regulated, indicating that the bacterial enzymes can cause disturbance of the host protease-inhibitor balance. To illustrate the in vivo consequences, a mixed cystatin C assay showed release of cathepsin B activity in the presence of staphopain A. Results presented for the specificity of staphopains when interacting with cystatins as natural protein substrates could aid in the development of therapeutic agents directed toward these proteolytic virulence factors.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-12 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy