SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Önnerfjord Patrik) srt2:(2015-2019)"

Sökning: WFRF:(Önnerfjord Patrik) > (2015-2019)

  • Resultat 1-16 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ali, Mohamad N., et al. (författare)
  • Osteopontin Expression in Small Airway Epithelium in Copd is Dependent on Differentiation and Confined to Subsets of Cells
  • 2019
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Osteopontin (OPN) plays a role in inflammation via recruitment of neutrophils and tissue remodeling. In this study, we investigated the distribution of OPN-expressing cells in the airway epithelium of normal lung tissue and that from patients with chronic obstructive pulmonary disease (COPD). OPN was detected on the epithelial cell surface of small airways and in scattered cells within the epithelial cell layer. Staining revealed higher OPN concentrations in tissue showing moderate to severe COPD compared to that in controls. In addition, OPN expression was confined to goblet and club cells, and was absent from ciliated and basal cells as detected via immunohistochemistry. However, OPN expression was up-regulated in submerged basal cells cultures exposed to cigarette smoke (CS) extract. Cell fractioning of air-liquid interface cultures revealed increased OPN production from basal compartment cells compared to that in luminal fraction cells. Furthermore, both constitutive and CS-induced expression of OPN decreased during differentiation. In contrast, cultures stimulated with interleukin (IL)-13 to promote goblet cell hyperplasia showed increased OPN production in response to CS exposure. These results indicate that the cellular composition of the airway epithelium plays an important role in OPN expression and that these levels may reflect disease endotypes in COPD.
  •  
2.
  • Boeth, Heide, et al. (författare)
  • Association between changes in molecular biomarkers of cartilage matrix turnover and changes in knee articular cartilage : a longitudinal pilot study
  • 2019
  • Ingår i: Journal of Experimental Orthopaedics. - : Springer Science and Business Media LLC. - 2197-1153. ; 6:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: An early detection of Osteoarthritis is urgently needed and still not possible until today. The aim of the study was to assess whether molecular biomarkers of cartilage turnover are associated with longitudinal change in knee cartilage thickness during a 2 year period in individuals with increased risk of developing knee osteoarthritis. A secondary aim was to assess whether prior knee injury or subjective patient-reported outcomes at baseline (BL) were associated with articular cartilage changes. Nineteen volleyball players (mean age 46.5 ± 4.9 years, 47% male) with a 30-year history of regular high impact training were recruited. The serum biomarkers Cpropeptide of type II procollagen (CPII), cartilage oligomeric matrix protein (COMP), collagenase generated carboxy-terminal neoepitope of type II collagen (sC2C), cartilage intermediate layer protein 2 (CILP-2), and the urine biomarkers C-telopeptide of type II collagen (CTX-II) and collagenase-generated peptide(s) of type II collagen (C2C-HUSA) were assessed at BL and at 2 year follow up (FU). Femorotibial cartilage thinning, thickening and absolute thickness change between BL and FU was evaluated from magnetic resonance imaging. Subjective clinical status at BL was evaluated by the International Knee Documentation Committee Subjective Knee Form and the Short-Form 36 Physical Component Score. Results: CILP-2 was significantly higher at FU and linearly associated with the absolute cartilage thickness change during the experimental period. Prior injury was a predictor of increased absolute cartilage thickness change. Conclusion: Measuring the change in the cartilage biomarker CILP-2 might be a valid and sensitive method to detect early development of knee osteoarthritis as CILP-2 appears to be related to cartilage thickness loss in certain individuals with increased risk of developing knee osteoarthritis. Prior knee injury may be predictive of increased articular cartilage thickness change.
  •  
3.
  • Folkesson, Elin, et al. (författare)
  • Differential protein expression in human knee articular cartilage and medial meniscus using two different proteomic methods : A pilot analysis
  • 2018
  • Ingår i: BMC Musculoskeletal Disorders. - : Springer Science and Business Media LLC. - 1471-2474. ; 19:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Proteomics is an emerging field in the study of joint disease. Our two aims with this pilot analysis were to compare healthy human knee articular cartilage with meniscus, two tissues both known to become affected in the osteoarthritic disease process, and to compare two mass spectrometry (MS)-based methods: data-dependent acquisition (DDA) and data-independent acquisition (DIA). Methods: Healthy knee articular cartilage taken from the medial tibial condyle and medial meniscus samples taken from the body region were obtained from three adult forensic medicine cases. Proteins were extracted from tissue pieces and prepared for MS analysis. Each sample was subjected to liquid chromatography (LC)-MS/MS analysis using an Orbitrap mass spectrometer, and run in both DDA and DIA mode. Linear mixed effects models were used for statistical analysis. Results: A total of 653 proteins were identified in the DDA analysis, of which the majority was present in both tissue types. Only proteins with quantitation information in both tissues (n = 90) were selected for more detailed analysis, of which the majority did not statistically significantly differ in abundance between the two tissue types, in either of the MS analyses. However, 21 proteins were statistically significantly different (p < 0.05) between meniscus and cartilage in the DIA analysis. Out of these, 11 proteins were also significantly different in the DDA analysis. Aggrecan core protein was the most abundant protein in articular cartilage and significantly differed between the two tissues in both methods. The corresponding protein in meniscus was serum albumin. Dermatopontin exhibited the highest meniscus vs articular cartilage ratio among the statistically significant proteins. The DIA method led to narrower confidence intervals for the abundance differences between the two tissue types than DDA. Conclusions: Although articular cartilage and meniscus had similar proteomic composition, we detected several differences by MS. Between the two analyses, DIA yielded more precise estimates and more statistically significant different proteins than DDA, and had no missing values, which makes it preferable for future LC-MS/MS analyses.
  •  
4.
  • Hosseininia, Shahrzad, et al. (författare)
  • Targeted proteomics of hip articular cartilage in OA and fracture patients
  • 2019
  • Ingår i: Journal of Orthopaedic Research. - : Wiley. - 0736-0266 .- 1554-527X. ; 37:1, s. 131-135
  • Tidskriftsartikel (refereegranskat)abstract
    • Osteoarthritis (OA) is a common chronic disease, causing joint pain and reduced physical function. OA progresses slowly over a period of several years; to avoid an exacerbation of symptoms, it is critical to able to diagnose the disease as early as possible. The identification of disease-specific biomarkers may enable such an early diagnosis. The aim of this study was to investigate potential biomarkers of cartilage metabolism in OA using a targeted multiplex approach by single reaction monitoring. Intact looking cartilage of femoral heads from patients with OA (n = 9) or femoral neck fractures (n = 12) was examined. Variations and relative quantifications of 35 selected extracellular matrix (ECM) proteins were analyzed using nano-LC coupled to tandem mass spectrometry. Our study showed statistically significantly increased levels of asporin (ASPN), mimecan (MIME), matrilin-3 (MATN3), cartilage intermediate layer protein 2 (CILP-2), collagen VI, collagen II, and collagen III N-propeptide in OA cartilage compared with non-OA cartilage. The other proteins in the protein panel did not appear to be different between the two groups. In conclusion, we identified a number of cartilage matrix proteins which may represent early molecular changes in the OA process and may have potential to predict the development of OA.
  •  
5.
  • Hsueh, Ming-Feng, et al. (författare)
  • Analysis of "old" proteins unmasks dynamic gradient of cartilage turnover in human limbs
  • 2019
  • Ingår i: Science Advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 5:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Unlike highly regenerative animals, such as axolotls, humans are believed to be unable to counteract cumulative damage, such as repetitive joint use and injury that lead to the breakdown of cartilage and the development of osteoarthritis. Turnover of insoluble collagen has been suggested to be very limited in human adult cartilage. The goal of this study was to explore protein turnover in articular cartilage from human lower limb joints. Analyzing molecular clocks in the form of nonenzymatically deamidated proteins, we unmasked a position-dependent gradient (distal high, proximal low) of protein turnover, indicative of a gradient of tissue anabolism reflecting innate tissue repair capacity in human lower limb cartilages that is associated with expression of limb-regenerative microRNAs. This association shows a potential link to a capacity, albeit limited, for regeneration that might be exploited to enhance joint repair and establish a basis for human limb regeneration.
  •  
6.
  • Hsueh, Ming Feng, et al. (författare)
  • Elucidating the Molecular Composition of Cartilage by Proteomics
  • 2016
  • Ingår i: Journal of Proteome Research. - : American Chemical Society (ACS). - 1535-3893 .- 1535-3907. ; 15:2, s. 374-388
  • Tidskriftsartikel (refereegranskat)abstract
    • Articular cartilage consists of chondrocytes and two major components, a collagen-rich framework and highly abundant proteoglycans. Most prior studies defining the zonal distribution of cartilage have extracted proteins with guanidine-HCl. However, an unextracted collagen-rich residual is left after extraction. In addition, the high abundance of anionic polysaccharide molecules extracted from cartilage adversely affects the chromatographic separation. In this study, we established a method for removing chondrocytes from cartilage sections with minimal extracellular matrix protein loss. The addition of surfactant to guanidine-HCl extraction buffer improved protein solubility. Ultrafiltration removed interference from polysaccharides and salts. Almost four-times more collagen peptides were extracted by the in situ trypsin digestion method. However, as expected, proteoglycans were more abundant within the guanidine-HCl extraction. These different methods were used to extract cartilage sections from different cartilage layers (superficial, intermediate, and deep), joint types (knee and hip), and disease states (healthy and osteoarthritic), and the extractions were evaluated by quantitative and qualitative proteomic analyses. The results of this study led to the identifications of the potential biomarkers of osteoarthritis (OA), OA progression, and the joint specific biomarkers.
  •  
7.
  • Kraus, V B, et al. (författare)
  • OARSI Clinical Trials Recommendations: Soluble biomarker assessments in clinical trials in osteoarthritis.
  • 2015
  • Ingår i: Osteoarthritis and Cartilage. - : Elsevier BV. - 1063-4584. ; 23:5, s. 686-697
  • Forskningsöversikt (refereegranskat)abstract
    • The objective of this work was to describe requirements for inclusion of soluble biomarkers in osteoarthritis (OA) clinical trials and progress toward OA-related biomarker qualification. The Guidelines for Biomarkers Working Group, representing experts in the field of OA biomarker research from both academia and industry, convened to discuss issues related to soluble biomarkers and to make recommendations for their use in OA clinical trials based on current knowledge and anticipated benefits. This document summarizes current guidance on use of biomarkers in OA clinical trials and their utility at five stages, including preclinical development and phase I to phase IV trials. As demonstrated by this summary, biomarkers can provide value at all stages of therapeutics development. When resources permit, we recommend collection of biospecimens in all OA clinical trials for a wide variety of reasons but in particular, to determine whether biomarkers are useful in identifying those individuals most likely to receive clinically important benefits from an intervention; and to determine whether biomarkers are useful for identifying individuals at earlier stages of OA in order to institute treatment at a time more amenable to disease modification.
  •  
8.
  • Luo, Yunyun, et al. (författare)
  • The minor collagens in articular cartilage
  • 2017
  • Ingår i: Protein and Cell. - : Oxford University Press (OUP). - 1674-800X .- 1674-8018. ; 8:8, s. 560-572
  • Tidskriftsartikel (refereegranskat)abstract
    • Articular cartilage is a connective tissue consisting of a specialized extracellular matrix (ECM) that dominates the bulk of its wet and dry weight. Type II collagen and aggrecan are the main ECM proteins in cartilage. However, little attention has been paid to less abundant molecular components, especially minor collagens, including type IV, VI, IX, X, XI, XII, XIII, and XIV, etc. Although accounting for only a small fraction of the mature matrix, these minor collagens not only play essential structural roles in the mechanical properties, organization, and shape of articular cartilage, but also fulfil specific biological functions. Genetic studies of these minor collagens have revealed that they are associated with multiple connective tissue diseases, especially degenerative joint disease. The progressive destruction of cartilage involves the degradation of matrix constituents including these minor collagens. The generation and release of fragmented molecules could generate novel biochemical markers with the capacity to monitor disease progression, facilitate drug development and add to the existing toolbox for in vitro studies, preclinical research and clinical trials.
  •  
9.
  • Mehta, Shikhar, et al. (författare)
  • Interleukin-1 receptor antagonist (IL-1Ra) is more effective in suppressing cytokine-induced catabolism in cartilage-synovium co-culture than in cartilage monoculture
  • 2019
  • Ingår i: Arthritis Research and Therapy. - : Springer Science and Business Media LLC. - 1478-6354 .- 1478-6362. ; 21:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Most in vitro studies of potential osteoarthritis (OA) therapies have used cartilage monocultures, even though synovium is a key player in mediating joint inflammation and, thereby, cartilage degeneration. In the case of interleukin-1 (IL-1) inhibition using its receptor antagonist (IL-1Ra), like chondrocytes, synoviocytes also express IL-1 receptors that influence intra-articular IL-1 signaling and IL-1Ra efficacy. The short residence time of IL-1Ra after intra-articular injection requires the application of frequent dosing, which is clinically impractical and comes with increased risk of infection; these limitations motivate the development of effective drug delivery strategies that can maintain sustained intra-articular IL-1Ra concentrations with only a single injection. The goals of this study were to assess how the presence of synovium in IL-1-challenged cartilage-synovium co-culture impacts the time-dependent biological response of single and sustained doses of IL-1Ra, and to understand the mechanisms underlying any co-culture effects. Methods: Bovine cartilage explants with or without synovium were treated with IL-1α followed by single or multiple doses of IL-1Ra. Effects of IL-1Ra in rescuing IL-1α-induced catabolism in cartilage monoculture and cartilage-synovium co-culture were assessed by measuring loss of glycosaminoglycans (GAGs) and collagen using DMMB (dimethyl-methylene blue) and hydroxyproline assays, respectively, nitric oxide (NO) release using Griess assay, cell viability by fluorescence staining, metabolic activity using Alamar blue, and proteoglycan biosynthesis by radiolabel incorporation. Day 2 conditioned media from mono and co-cultures were analyzed by mass spectrometry and cytokine array to identify proteins unique to co-culture that contribute to biological crosstalk. Results: A single dose of IL-1Ra was ineffective, and a sustained dose was necessary to significantly suppress IL-1α-induced catabolism as observed by enhanced suppression of GAG and collagen loss, NO synthesis, rescue of chondrocyte metabolism, viability, and GAG biosynthesis rates. The synovium exhibited a protective role as the effects of single-dose IL-1Ra were significantly enhanced in cartilage-synovium co-culture and were accompanied by release of anti-catabolic factors IL-4, carbonic anhydrase-3, and matrilin-3. A total of 26 unique proteins were identified in conditioned media from co-cultures, while expression levels of many additional proteins important to cartilage homeostasis were altered in co-culture compared to monocultures; principal component analysis revealed distinct clustering between co-culture and cartilage and synovium monocultures, thereby confirming significant crosstalk. Conclusions: IL-1Ra suppresses cytokine-induced catabolism in cartilage more effectively in the presence of synovium, which was associated with endogenous production of anti-catabolic factors. Biological crosstalk between cartilage and synovium is significant; thus, their co-cultures should better model the intra-articular actions of potential OA therapeutics. Additionally, chondroprotective effects of IL-1Ra require sustained drug levels, underscoring the need for developing drug delivery strategies to enhance its joint residence time following a single intra-articular injection.
  •  
10.
  • Rucci, Nadia, et al. (författare)
  • The α2β1 binding domain of chondroadherin inhibits breast cancer-induced bone metastases and impairs primary tumour growth: A preclinical study.
  • 2015
  • Ingår i: Cancer Letters. - : Elsevier BV. - 1872-7980 .- 0304-3835. ; 358:1, s. 67-75
  • Tidskriftsartikel (refereegranskat)abstract
    • cyclicCHAD is a peptide representing the α2β1 integrin binding sequence of the matrix protein chondroadherin (CHAD), which in our hands proved effective at counteracting bone loss in ovariectomised mice by inhibiting osteoclastogenesis. Given that bone metastases are characterised by exacerbated osteoclast activity as well, we tested this therapy in mice intracardiacally injected with the osteotropic human breast cancer cell line MDA-MB-231. Treatment with cyclicCHAD significantly decreased cachexia and incidence of bone metastases, and induced a trend of reduction of visceral metastasis volume, while in orthotopically injected mice cyclicCHAD reduced tumour volume. In vitro studies showed its ability to impair tumour cell motility and invasion, suggesting a direct effect not only on osteoclasts but also on the tumour cell phenotype. Interestingly, when administered together with a suboptimal, poorly effective, dose of doxorubicin (DXR), cyclicCHAD improved survival and reduced visceral metastases volume to a level similar to that of the optimal dose of DXR alone. Taken together, these preclinical data suggest that cyclicCHAD is a new inhibitor of bone metastases, with an appreciable direct effect also on tumour growth and a synergistic activity in combination with low dose chemotherapy, underscoring an important translational impact.
  •  
11.
  • Ruiz-Romero, Cristina, et al. (författare)
  • Mining the Proteome Associated with Rheumatic and Autoimmune Diseases
  • 2019
  • Ingår i: Journal of Proteome Research. - : American Chemical Society (ACS). - 1535-3893 .- 1535-3907. ; 18:12, s. 4231-4239
  • Tidskriftsartikel (refereegranskat)abstract
    • A steady increase in the incidence of osteoarthritis and other rheumatic diseases has been observed in recent decades, including autoimmune conditions such as rheumatoid arthritis, spondyloarthropathies, systemic lupus erythematosus, systemic sclerosis, and Sjogren's syndrome. Rheumatic and autoimmune diseases (RADs) are characterized by the inflammation of joints, muscles, or other connective tissues. In addition to often experiencing debilitating mobility and pain, RAD patients are also at a higher risk of suffering comorbidities such as cardiovascular or infectious events. Given the socioeconomic impact of RADs, broad research efforts have been dedicated to these diseases worldwide. In the present work, we applied literature mining platforms to identify "popular" proteins closely related to RADs. The platform is based on publicly available literature. The results not only will enable the systematic prioritization of candidates to perform targeted proteomics studies but also may lead to a greater insight into the key pathogenic processes of these disorders.
  •  
12.
  • Tang, Xiaodi, et al. (författare)
  • Connective tissue growth factor contributes to joint homeostasis and osteoarthritis severity by controlling the matrix sequestration and activation of latent TGFβ
  • 2018
  • Ingår i: Annals of the Rheumatic Diseases. - : BMJ. - 0003-4967 .- 1468-2060. ; 77:9, s. 1372-1380
  • Tidskriftsartikel (refereegranskat)abstract
    • Objectives: One mechanism by which cartilage responds to mechanical load is by releasing heparin-bound growth factors from the pericellular matrix (PCM). By proteomic analysis of the PCM, we identified connective tissue growth factor (CTGF) and here investigate its function and mechanism of action. Methods: Recombinant CTGF (rCTGF) was used to stimulate human chondrocytes for microarray analysis. Endogenous CTGF was investigated by in vitro binding assays and confocal microscopy. Its release from cut cartilage (injury CM) was analysed by Western blot under reducing and non-reducing conditions. A postnatal, conditional CtgfcKO mouse was generated for cartilage injury experiments and to explore the course of osteoarthritis (OA) by destabilisation of the medial meniscus. siRNA knockdown was performed on isolated human chondrocytes. Results: The biological responses of rCTGF were TGFβ dependent. CTGF displaced latent TGFβ from cartilage and both were released on cartilage injury. CTGF and latent TGFβ migrated as a single high molecular weight band under non-reducing conditions, suggesting that they were in a covalent (disulfide) complex. This was confirmed by immunoprecipitation. Using CtgfcKO mice, CTGF was required for sequestration of latent TGFβ in the matrix and activation of the latent complex at the cell surface through TGFβR3. In vivo deletion of CTGF increased the thickness of the articular cartilage and protected mice from OA. Conclusions: CTGF is a latent TGFβ binding protein that controls the matrix sequestration and activation of TGFβ in cartilage. Deletion of CTGF in vivo caused a paradoxical increase in Smad2 phosphorylation resulting in thicker cartilage that was protected from OA.
  •  
13.
  • Tillgren, Viveka, et al. (författare)
  • Novel Small Leucine-Rich Protein Chondroadherin-like (CHADL) is Expressed in Cartilage and Modulates Chondrocyte Differentiation.
  • 2015
  • Ingår i: Journal of Biological Chemistry. - 1083-351X. ; 290:2, s. 918-925
  • Tidskriftsartikel (refereegranskat)abstract
    • The constitution and biophysical properties of extracellular matrices can dramatically influence cellular phenotype during development, homeostasis, or pathogenesis. These effects can be signaled through a differentially regulated assembly of collagen fibrils, orchestrated by a family of collagen-associated Small Leucine-Rich Proteins, SLRPs. In this report, we describe the tissue-specific expression and function of a previously uncharacterized SLRP Chondroadherin-like (CHADL). We have developed antibodies against CHADL and, by immunohistochemistry, detected CHADL expression mainly in skeletal tissues, particularly in fetal cartilage and in pericellular space of adult chondrocytes. In situ hybridizations and immunoblots on tissue lysates confirmed this tissue-specific expression pattern. Recombinant CHADL bound collagen in cell culture, and inhibited in vitro collagen fibrillogenesis. After Chadl shRNA knockdown chondrogenic ATDC5 cells increased their proliferation and differentiation, indicated by increased transcript levels of Sox9, Ihh, Col2a1, and Col10a1. The knockdown increased collagen II and aggrecan deposition in the cell layers. Microarray analysis of the knockdown samples suggested collagen receptor-related changes, although other upstream effects could not be excluded. Together, our data indicate that the novel SLRP CHADL is expressed in cartilaginous tissues, influences collagen fibrillogenesis, and modulates chondrocyte proliferation and differentiation. CHADL appears to have a negative regulatory role, possibly ensuring the formation of a stable extracellular matrix.
  •  
14.
  • Tillgren, Viveka, et al. (författare)
  • The Tyrosine Sulfate Domain of Fibromodulin Binds Collagen and Enhances Fibril Formation
  • 2016
  • Ingår i: Journal of Biological Chemistry. - 0021-9258. ; 291:45, s. 23744-23755
  • Tidskriftsartikel (refereegranskat)abstract
    • Small leucine-rich proteoglycans interact with other extracellular matrix proteins and are important regulators of matrix assembly. Fibromodulin has a key role in connective tissues, binding collagen through two identified binding sites in its leucine-rich repeat domain and regulating collagen fibril formation in vitro and in vivo Some nine tyrosine residues in the fibromodulin N-terminal domain are O-sulfated, a posttranslational modification often involved in protein interactions. The N-terminal domain mimics heparin, binding proteins with clustered basic amino acid residues. Because heparin affects collagen fibril formation, we investigated whether tyrosine sulfate is involved in fibromodulin interactions with collagen. Using full-length fibromodulin and its N-terminal tyrosine-sulfated domain purified from tissue, as well as recombinant fibromodulin fragments, we found that the N-terminal domain binds collagen. The tyrosine-sulfated domain and the leucine-rich repeat domain both bound to three specific sites along the collagen type I molecule, at the N terminus and at 100 and 220 nm from the N terminus. The N-terminal domain shortened the collagen fibril formation lag phase and tyrosine sulfation was required for this effect. The isolated leucine-rich repeat domain inhibited the fibril formation rate, and full-length fibromodulin showed a combination of these effects. The fibrils formed in the presence of fibromodulin or its fragments showed more organized structure. Fibromodulin and its tyrosine sulfate domain remained bound on the formed fiber. Taken together, this suggests a novel, regulatory function for tyrosine sulfation in collagen interaction and control of fibril formation.
  •  
15.
  • Wang, Yang, et al. (författare)
  • Quantitative proteomics analysis of cartilage response to mechanical injury and cytokine treatment
  • 2017
  • Ingår i: Matrix Biology. - : Elsevier BV. - 0945-053X. ; 63, s. 11-22
  • Tidskriftsartikel (refereegranskat)abstract
    • Mechanical damage at the time of joint injury and the ensuing inflammatory response associated with elevated levels of pro-inflammatory cytokines in the synovial fluid, are reported to contribute to the progression to osteoarthritis after injury. In this exploratory study, we used a targeted proteomics approach to follow the progression of matrix degradation in response to mechanical damage and cytokine treatment of human knee cartilage explants, and thereby to study potential molecular biomarkers. This proteomics approach allowed us to unambiguously identify and quantify multiple peptides and proteins in the cartilage medium and explants upon treatment with ±. injurious compression ±. cytokines, treatments that mimic the earliest events in post-traumatic OA. We followed degradation of different protein domains, e.g., G1/G2/G3 of aggrecan, by measuring representative peptides of matrix proteins released into the medium at 7 time points throughout the 21-day culture period. COMP neo-epitopes, which were previously identified in the synovial fluid of knee injury/OA patients, were also released by these human cartilage explants treated with cyt and cyt+inj. The absence of collagen pro-peptides and elevated levels of specific COMP and COL3A1 neo-epitopes after human knee trauma may be relevant as potential biomarkers for post-traumatic OA. This model system thereby enables study of the kinetics of cartilage degradation and the identification of biomarkers within cartilage explants and those released to culture medium. Discovery proteomics revealed that candidate proteases were identified after specific treatment conditions, including MMP1, MMP-3, MMP-10 and MMP-13.
  •  
16.
  • Xu, Maojia, et al. (författare)
  • Chondrocytes Derived From Mesenchymal Stromal Cells and Induced Pluripotent Cells of Patients With Familial Osteochondritis Dissecans Exhibit an Endoplasmic Reticulum Stress Response and Defective Matrix Assembly
  • 2016
  • Ingår i: Stem Cells Translational Medicine. - : Oxford University Press (OUP). - 2157-6564 .- 2157-6580. ; 5:9, s. 1171-1181
  • Tidskriftsartikel (refereegranskat)abstract
    • Familial osteochondritis dissecans (FOCD) is an inherited skeletal defect characterized by the development of large cartilage lesions in multiple joints, short stature, and early onset of severe osteoarthritis. It is associated with a heterozygous mutation in the ACAN gene, resulting in a Val-Met replacement in the C-type lectin domain of aggrecan. To understand the cellular pathogenesis of this condition, we studied the chondrogenic differentiation of patient bone marrow mesenchymal stromal cells (BM-MSCs). We also looked at cartilage derived from induced pluripotent stem cells (iPSCs) generated from patient fibroblasts. Our results revealed several characteristics of the differentiated chondrocytes that help to explain the disease phenotype and susceptibility to cartilage injury. First, patient chondrogenic pellets had poor structural integrity but were rich in glycosaminoglycan. Second, it was evident that large amounts of aggrecan accumulated within the endoplasmic reticulum of chondrocytes differentiated from both BM-MSCs and iPSCs. In turn, there was a marked absence of aggrecan in the extracellular matrix. Third, it was evident that matrix synthesis and assembly were globally dysregulated. These results highlight some of the abnormal aspects of chondrogenesis in these patient cells and help to explain the underlying cellular pathology. The results suggest that FOCD is a chondrocyte aggrecanosis with associated matrix dysregulation. The work provides a new in vitro model of osteoarthritis and cartilage degeneration based on the use of iPSCs and highlights how insights into disease phenotype and pathogenesis can be uncovered by studying differentiation of patient stem cells.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-16 av 16

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy