SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Abitbol Tíffany) "

Sökning: WFRF:(Abitbol Tíffany)

  • Resultat 1-34 av 34
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abitbol, Tiffany, et al. (författare)
  • Cellulose nanocrystal/low methoxyl pectin gels produced by internal ionotropic gelation.
  • 2021
  • Ingår i: Carbohydrate Polymers. - : Elsevier BV. - 0144-8617 .- 1879-1344. ; 260
  • Tidskriftsartikel (refereegranskat)abstract
    • The biotechnological applications of cellulose nanocrystals (CNCs) continue to grow due to their sustainable nature, impressive mechanical, rheological, and emulsifying properties, upscaled production capacity, and compatibility with other materials, such as protein and polysaccharides. In this study, hydrogels from CNCs and pectin, a plant cell wall polysaccharide broadly used in food and pharma, were produced by calcium ion-mediated internal ionotropic gelation (IG). In the absence of pectin, a minimum of 4 wt% CNC was needed to produce self-supporting gels by internal IG, whereas the addition of pectin at 0.5 wt% enabled hydrogel formation at CNC contents as low as 0.5 wt%. Experimental data indicate that CNCs and pectin interact to give robust and self-supporting hydrogels at solid contents below 2.5 %. Potential applications of these gels could be as carriers for controlled release, scaffolds for cell growth, or wherever else distinct and porous network morphologies are required.
  •  
2.
  •  
3.
  • Abitbol, Tiffany, et al. (författare)
  • Isolation of Mixed Compositions of Cellulose Nanocrystals, Microcrystalline Cellulose, and Lignin Nanoparticles from Wood Pulps
  • 2023
  • Ingår i: ACS Omega. - : American Chemical Society (ACS). - 2470-1343. ; 8:24, s. 21474-21484
  • Tidskriftsartikel (refereegranskat)abstract
    • From a circular economyperspective, one-pot strategies for theisolation of cellulose nanomaterials at a high yield and with multifunctionalproperties are attractive. Here, the effects of lignin content (bleachedvs unbleached softwood kraft pulp) and sulfuric acid concentrationon the properties of crystalline lignocellulose isolates and theirfilms are explored. Hydrolysis at 58 wt % sulfuric acid resulted inboth cellulose nanocrystals (CNCs) and microcrystalline celluloseat a relatively high yield (>55%), whereas hydrolysis at 64 wt% gaveCNCs at a lower yield (<20%). CNCs from 58 wt % hydrolysis weremore polydisperse and had a higher average aspect ratio (1.5-2x),a lower surface charge (2x), and a higher shear viscosity (100-1000x).Hydrolysis of unbleached pulp additionally yielded spherical nanoparticles(NPs) that were <50 nm in diameter and identified as lignin bynanoscale Fourier transform infrared spectroscopy and IR imaging.Chiral nematic self-organization was observed in films from CNCs isolatedat 64 wt % but not from the more heterogeneous CNC qualities producedat 58 wt %. All films degraded to some extent under simulated sunlighttrials, but these effects were less pronounced in lignin-NP-containingfilms, suggesting a protective feature, but the hemicellulose contentand CNC crystallinity may be implicated as well. Finally, heterogeneousCNC compositions obtained at a high yield and with improved resourceefficiency are suggested for specific nanocellulose uses, for instance,as thickeners or reinforcing fillers, representing a step toward thedevelopment of application-tailored CNC grades.
  •  
4.
  • Abitbol, Tiffany, et al. (författare)
  • Nanocellulose-Based Hybrid Materials for UV Blocking and Mechanically Robust Barriers
  • 2020
  • Ingår i: ACS Applied Bio Materials. - : American Chemical Society (ACS). - 2576-6422. ; 3:4, s. 2245-2254
  • Tidskriftsartikel (refereegranskat)abstract
    • Nanocellulose (NC)-based hybrid coatings and films containing CeO2 and SiO2 nanoparticles (NPs) to impart UV screening and hardness properties, respectively, were prepared by solvent casting. The NC film-forming component (75 wt % of the overall solids) was composed entirely of cellulose nanocrystals (CNCs) or of CNCs combined with cellulose nanofibrils (CNFs). Zeta potential measurements indicated that the four NP types (CNC, CNF, CeO2, and SiO2) were stably dispersed in water and negatively charged at pH values between 6 and 9. The combination of NPs within this pH range ensured uniform formulations and homogeneous coatings and films, which blocked UV light, the extent of which depended on film thickness and CeO2 NP content, while maintaining good transparency in the visible spectrum (∼80%). The addition of a low amount of CNFs (1%) reduced the film hardness, but this effect was compensated by the addition of SiO2 NPs. Chiral nematic self-assembly was observed in the mixed NC film; however, this ordering was disrupted by the addition of the oxide NPs. The roughness of the hybrid coatings was reduced by the inclusion of oxide NPs into the NC matrix perhaps because the spherical oxide NPs were able to pack into the spaces between cellulose fibrils. We envision these hybrid coatings and films in barrier applications, photovoltaics, cosmetic formulations, such as sunscreens, and for the care and maintenance of wood and glass surfaces, or other surfaces that require a smooth, hard, and transparent finish and protection from UV damage.
  •  
5.
  • Abitbol, Tiffany, et al. (författare)
  • Surface Charge Influence on the Phase Separation and Viscosity of Cellulose Nanocrystals
  • 2018
  • Ingår i: Langmuir. - : American Chemical Society (ACS). - 0743-7463 .- 1520-5827. ; 34:13, s. 3925-3933
  • Tidskriftsartikel (refereegranskat)abstract
    • counterions in the suspensions. The results suggest that there is a threshold surface charge density (∼0.3%S) above which effective volume considerations are dominant across the concentration range relevant to liquid crystalline phase formation. Above this threshold value, phase separation occurs at the same effective volume fraction of CNCs (∼10 vol %), with a corresponding increase in critical concentration due to the decrease in effective diameter that occurs with increasing surface charge. Below or near this threshold value, the formation of end-to-end aggregates may favor gelation and interfere with ordered phase formation.
  •  
6.
  •  
7.
  • Attias, Noam, et al. (författare)
  • Biofabrication of Nanocellulose–Mycelium Hybrid Materials
  • 2021
  • Ingår i: Advanced Sustainable Systems. - : Wiley-VCH Verlag. - 2366-7486. ; 5:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Healthy material alternatives based on renewable resources and sustainable technologies have the potential to disrupt the environmentally damaging production and consumption practices established throughout the modern industrial era. In this study, a mycelium–nanocellulose biocomposite with hybrid properties is produced by the agitated liquid culture of a white-rot fungus (Trametes ochracea) with nanocellulose (NC) comprised as part of the culture media. Mycelial development proceeds via the formation of pellets, where NC is enriched in the pellets and depleted from the surrounding liquid media. Micrometer-scale NC elements become engulfed in mycelium, whereas it is hypothesized that the nanometer-scale fraction becomes integrated within the hyphal cell wall, such that all NC in the system is essentially surface-modified by mycelium. The NC confers mechanical strength to films processed from the biocomposite, whereas the mycelium screens typical cellulose–water interactions, giving fibrous slurries that dewater faster and films that exhibit significantly improved wet resistance in comparison to pure NC films. The mycelium–nanocellulose biocomposites are processable in the ways familiar to papermaking and are suggested for diverse applications, including packaging, filtration, and hygiene products.
  •  
8.
  • Attias, Noam, et al. (författare)
  • Mycelium bio-composites in industrial design and architecture : Comparative review and experimental analysis
  • 2020
  • Ingår i: Journal of Cleaner Production. - : Elsevier Ltd. - 0959-6526 .- 1879-1786. ; 246
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent convergence of biotechnological and design tools has stimulated an emergence of new design practices utilizing natural mechanisms to program matter in a bottom-up approach. In this paper, the fibrous network of mycelium—the vegetative part of fungi—is employed to produce sustainable alternatives for synthetic foams. Current research on mycelium-based materials lacks essential details regarding material compositions, incubation conditions, and fabrication methods. The paper presents the results of ongoing research on employing mycelium to provide cleaner architecture and design products with sustainable lifecycles. The paper opens with a critical review of current projects, products, and scientific literature using mycelium in design and architecture. In the second section, material properties of varied fungi-substrate compositions and fabrication methods are evaluated and compared through changes in essential chemical parameters during fermentation, visual impression, water absorbency, and compression strength tests. Then, potential architecture and design implications related to the material properties are discussed. Results indicate a clear correlation between fungi, substrate, mold properties, and incubation conditions on final material characteristics, depicting a clear effect on material density, water absorbency, and the compressive strength of the final bio-composite. Finally, two primary case studies demonstrate implications for mycelium-based composites for circular design and architectural applications. The study shows that in order to produce desirable designs and performance within an inclusive circular approach, parameters such as material composition and fabrication conditions should be considered according to the target function of the final product throughout the design process.
  •  
9.
  • Attias, Noam, et al. (författare)
  • State of the art, recent advances, and challenges in the field of fungal mycelium materials : a snapshot of the 2021 Mini Meeting
  • 2021
  • Ingår i: Fungal Biology and Biotechnology. - : BioMed Central Ltd. - 2054-3085. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Material development based on fungal mycelium is a fast-rising field of study as researchers, industry, and society actively search for new sustainable materials to address contemporary material challenges. The compelling potential of fungal mycelium materials is currently being explored in relation to various applications, including construction, packaging, “meatless” meat, and leather-like textiles. Here, we highlight the discussions and outcomes from a recent 1-day conference on the topic of fungal mycelium materials (“Fungal Mycelium Materials Mini Meeting”), where a group of researchers from diverse academic disciplines met to discuss the current state of the art, their visions for the future of the material, and thoughts on the challenges surrounding widescale implementation. © 2021, The Author(s).
  •  
10.
  •  
11.
  • Babi, Mouhanad, et al. (författare)
  • Efficient Labeling of Nanocellulose for High-Resolution Fluorescence Microscopy Applications
  • 2022
  • Ingår i: Biomacromolecules. - : American Chemical Society. - 1525-7797 .- 1526-4602. ; 23:5, s. 1981-1994
  • Tidskriftsartikel (refereegranskat)abstract
    • The visualization of naturally derived cellulose nanofibrils (CNFs) and nanocrystals (CNCs) within nanocomposite materials is key to the development of packaging materials, tissue culture scaffolds, and emulsifying agents, among many other applications. In this work, we develop a versatile and efficient two-step approach based on triazine and azide-alkyne click-chem. to fluorescently label nanocelluloses with a variety of com. available dyes. We show that this method can be used to label bacterial cellulose fibrils, plant-derived CNFs, carboxymethylated CNFs, and CNCs with Cy5 and fluorescein derivatives to high degrees of labeling using minimal amounts of dye while preserving their native morphol. and crystalline structure. The ability to tune the labeling d. with this method allowed us to prepare optimized samples that were used to visualize nanostructural features of cellulose through super-resolution microscopy. The efficiency, cost-effectiveness, and versatility of this method make it ideal for labeling nanocelluloses and imaging them through advanced microscopy techniques for a broad range of applications.
  •  
12.
  •  
13.
  • Fall, Andreas, et al. (författare)
  • Hybrid Materials of Nanocellulose and Graphene
  • 2019
  • Ingår i: <em>International Conference on Nanotechnology for Renewable Materials 2019</em>. - : TAPPI Press. ; , s. 1069-1080
  • Konferensbidrag (refereegranskat)
  •  
14.
  • González-Gil, Rosa, et al. (författare)
  • Sustainable and Printable Nanocellulose-Based Ionogels as Gel Polymer Electrolytes for Supercapacitors
  • 2022
  • Ingår i: Nanomaterials. - : MDPI. - 2079-4991. ; 12:2
  • Tidskriftsartikel (refereegranskat)abstract
    • A new gel polymer electrolyte (GPE) based supercapacitor with an ionic conductivity up to 0.32–0.94 mS cm−2 has been synthesized from a mixture of an ionic liquid (IL) with nanocellulose (NC). The new NC-ionogel was prepared by combining the IL 1-ethyl-3-methylimidazolium dimethyl phosphate (EMIMP) with carboxymethylated cellulose nanofibers (CNFc) at different ratios (CNFc ratio from 1 to 4). The addition of CNFc improved the ionogel properties to become easily printable onto the electrode surface. The new GPE based supercapacitor cell showed good electrochemical performance with specific capacitance of 160 F g−1 and an equivalent series resistance (ESR) of 10.2 Ω cm−2 at a current density of 1 mA cm−2. The accessibility to the full capacitance of the device is demonstrated after the addition of CNFc in EMIMP compared to the pristine EMIMP (99 F g−1 and 14.7 Ω cm−2). © 2022 by the authors. 
  •  
15.
  • Kam, Doron, et al. (författare)
  • Direct Cryo Writing of Aerogels via 3D Printing of Aligned Cellulose Nanocrystals Inspired by the Plant Cell Wall
  • 2019
  • Ingår i: Colloids Interfaces. - : MDPI AG. - 2504-5377. ; 3:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Aerogel objects inspired by plant cell wall components and structures were fabricated using extrusion-based 3D printing at cryogenic temperatures. The printing process combines 3D printing with the alignment of rod-shaped nanoparticles through the freeze-casting of aqueous inks. We have named this method direct cryo writing (DCW) as it encompasses in a single processing step traditional directional freeze casting and the spatial fidelity of 3D printing. DCW is demonstrated with inks that are composed of an aqueous mixture of cellulose nanocrystals (CNCs) and xyloglucan (XG), which are the major building blocks of plant cell walls. Rapid fixation of the inks is achieved through tailored rheological properties and controlled directional freezing. Morphological evaluation revealed the role of ice crystal growth in the alignment of CNCs and XG. The structure of the aerogels changed from organized and tubular to disordered and flakey pores with an increase in XG content. The internal structure of the printed objects mimics the structure of various wood species and can therefore be used to create wood-like structures via additive manufacturing technologies using only renewable wood-based materials.
  •  
16.
  • Kaschuk, J. J., et al. (författare)
  • Processing factors affecting roughness, optical and mechanical properties of nanocellulose films for optoelectronics
  • 2024
  • Ingår i: Carbohydrate Polymers. - : Elsevier Ltd. - 0144-8617 .- 1879-1344. ; 332
  • Tidskriftsartikel (refereegranskat)abstract
    • This work aims to understand how nanocellulose (NC) processing can modify the key characteristics of NC films to align with the main requirements for high-performance optoelectronics. The performance of these devices relies heavily on the light transmittance of the substrate, which serves as a mechanical support and optimizes light interactions with the photoactive component. Critical variables that determine the optical and mechanical properties of the films include the morphology of cellulose nanofibrils (CNF), as well as the concentration and turbidity of the respective aqueous suspensions. This study demonstrates that achieving high transparency was possible by reducing the grammage and adjusting the drying temperature through hot pressing. Furthermore, the use of modified CNF, specifically carboxylated CNF, resulted in more transparent films due to a higher nanosized fraction and lower turbidity. The mechanical properties of the films depended on their structure, homogeneity (spatial uniformity of local grammage), and electrokinetic factors, such as the presence of electrostatic charges on CNF. Additionally, we investigated the angle-dependent transmittance of the CNF films, since solar devices usually operate under indirect light. This work demonstrates the importance of a systematic approach to the optimization of cellulose films, providing valuable insight into the optoelectronic field. 
  •  
17.
  • Kaschuk, Joice, et al. (författare)
  • Plant-Based Structures as an Opportunity to Engineer Optical Functions in Next-Generation Light Management
  • 2022
  • Ingår i: Advanced Materials. - : John Wiley and Sons Inc. - 0935-9648 .- 1521-4095. ; 34:6
  • Tidskriftsartikel (refereegranskat)abstract
    • This review addresses the reconstruction of structural plant components (cellulose, lignin, and hemicelluloses) into materials displaying advanced optical properties. The strategies to isolate the main building blocks are discussed, and the effects of fibrillation, fibril alignment, densification, self-assembly, surface-patterning, and compositing are presented considering their role in engineering optical performance. Then, key elements that enable lignocellulosic to be translated into materials that present optical functionality, such as transparency, haze, reflectance, UV-blocking, luminescence, and structural colors, are described. Mapping the optical landscape that is accessible from lignocellulosics is shown as an essential step toward their utilization in smart devices. Advanced materials built from sustainable resources, including those obtained from industrial or agricultural side streams, demonstrate enormous promise in optoelectronics due to their potentially lower cost, while meeting or even exceeding current demands in performance. The requirements are summarized for the production and application of plant-based optically functional materials in different smart material applications and the review is concluded with a perspective about this active field of knowledge. © 2021 The Authors.
  •  
18.
  • Klemm, Dieter O., et al. (författare)
  • Chapter 1 - The nanocellulose family
  • 2021
  • Ingår i: Nanocellulose Based Composites for Electronics. - : Elsevier.
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)abstract
    • Cellulose is one of the most important natural raw materials and has been extensively used for more than 100 years in the form of paper and board materials, textiles, a large range of various cellulose derivatives, and many other applications. Over the past 15 years, fundamental research on novel cellulosic types has matured into several new fields of material and product development, which combine the outstanding properties of the natural product cellulose with the specific features of nanomaterials. Like other nanomaterials, these nanocelluloses are characterized by having at least one dimension in the nanometer range. The field of nanocellulosic materials is subdivided into three areas that differ significantly in terms of starting material, production method, and product properties. The members of the nanocellulose family are cellulose nanofibers (CNF), cellulose nanocrystals (CNC), and bacterial nanocellulose (BNC). The last one forms cellulose nano networks.
  •  
19.
  • Koppolu, R., et al. (författare)
  • Continuous Processing of Nanocellulose and Polylactic Acid into Multilayer Barrier Coatings
  • 2019
  • Ingår i: ACS Applied Materials and Interfaces. - : American Chemical Society (ACS). - 1944-8244 .- 1944-8252. ; 11:12, s. 11920-11927
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent years have seen an increased interest toward utilizing biobased and biodegradable materials for barrier packaging applications. Most of the abovementioned materials usually have certain shortcomings that discourage their adoption as a preferred material of choice. Nanocellulose falls into such a category. It has excellent barrier against grease, mineral oils, and oxygen but poor tolerance against water vapor, which makes it unsuitable to be used at high humidity. In addition, nanocellulose suspensions' high viscosity and yield stress already at low solid content and poor adhesion to substrates create additional challenges for high-speed processing. Polylactic acid (PLA) is another potential candidate that has reasonably high tolerance against water vapor but rather a poor barrier against oxygen. The current work explores the possibility of combining both these materials into thin multilayer coatings onto a paperboard. A custom-built slot-die was used to coat either microfibrillated cellulose or cellulose nanocrystals onto a pigment-coated baseboard in a continuous process. These were subsequently coated with PLA using a pilot-scale extrusion coater. Low-density polyethylene was used as for reference extrusion coating. Cationic starch precoating and corona treatment improved the adhesion at nanocellulose/baseboard and nanocellulose/PLA interfaces, respectively. The water vapor transmission rate for nanocellulose + PLA coatings remained lower than that of the control PLA coating, even at a high relative humidity of 90% (38 °C). The multilayer coating had 98% lower oxygen transmission rate compared to just the PLA-coated baseboard, and the heptane vapor transmission rate reduced by 99% in comparison to the baseboard. The grease barrier for nanocellulose + PLA coatings increased 5-fold compared to nanocellulose alone and 2-fold compared to PLA alone. This approach of processing nanocellulose and PLA into multiple layers utilizing slot-die and extrusion coating in tandem has the potential to produce a barrier packaging paper that is both 100% biobased and biodegradable.
  •  
20.
  • Koppolu, Rajesh, et al. (författare)
  • Continuous roll-to-roll coating of cellulose nanocrystals onto paperboard
  • 2018
  • Ingår i: Cellulose. - : Springer Science and Business Media LLC. - 0969-0239 .- 1572-882X. ; 25:10, s. 6055-6069
  • Tidskriftsartikel (refereegranskat)abstract
    • There is an increased interest in the use of cellulose nanocrystal (CNC) films and coatings for a range of functional applications in the fields of material science, biomedical engineering, and pharmaceutical sciences. Most of these applications have been demonstrated on films and coatings produced using laboratory-scale batch processes, such as solvent casting, dip coating, or spin coating. For successful coating application of CNC suspensions using a high throughput process, several challenges need to be addressed: relatively high viscosity at low solids content, coating brittleness, and potentially poor adhesion to the substrate. This work aims to address these problems. The impact of plasticizer on suspension rheology, coating adhesion, and barrier properties was quantified, and the effect of different pre-coatings on the wettability and adhesion of CNC coatings to paperboard substrates was explored. CNC suspensions were coated onto pre-coated paperboard in a roll-to-roll process using a custom-built slot die. The addition of sorbitol reduced the brittleness of the CNC coatings, and a thin cationic starch pre-coating improved their adhesion to the paperboard. The final coat weight, dry coating thickness, and coating line speed were varied between 1–11 g/m2, 900 nm–7 µm, and 2.5–10 m/min, respectively. The barrier properties, adhesive strength, coating coverage, and smoothness of the CNC coatings were characterized. SEM images show full coating coverage at coat weights as low as 1.5 g/m2. With sorbitol as plasticizer and at coat weights above 3.5 g/m2, heptane vapor and water vapor transmission rates were reduced by as much as 99% and 75% respectively. Compared to other film casting techniques, the process employed in this work deposits a relatively thick coating in significantly less time, and may therefore pave the way toward various functional applications based on CNCs.
  •  
21.
  •  
22.
  • Koppolu, Rajesh, et al. (författare)
  • Tailoring the performance of nanocellulose-based multilayer-barrier paperboard using biodegradable-thermoplastics, pigments, and plasticizers
  • 2023
  • Ingår i: Cellulose. - : Springer Science and Business Media B.V.. - 0969-0239 .- 1572-882X. ; 30:11, s. 6945-
  • Tidskriftsartikel (refereegranskat)abstract
    • In this work a multilayer barrier paperboard was produced in a roll-to-roll process by slot-die coating of nanocellulose (microfibrillated cellulose or carboxymethylated cellulose nanofibrils) followed by extrusion coating of biodegradable thermoplastics (polylactic acid, polybutylene adipate terephthalate and polybutylene succinate). Hyperplaty kaolin pigments were blended in different ratios into nanocellulose to tailor the barrier properties of the multilayer structure and to study their influence on adhesion to the thermoplastic top layer. Influence of a plasticizer (glycerol) on flexibility and barrier performance of the multilayer structure was also examined. Water vapor permeance for the multilayer paperboard was below that of control single-layer thermoplastic materials, and oxygen permeance of the coated structure was similar or lower than that of pure nanocellulose films. Glycerol as a plasticizer further lowered the oxygen permeance and kaolin addition improved the adhesion at the nanocellulose/thermoplastic interface. The results provide insight into the role played by nanocelluloses, thermoplastics, pigments, and plasticizers on the barrier properties when these elements are processed together into multilayer structures, and paves the way for industrial production of sustainable packaging. 
  •  
23.
  • Kotov, Nikolay, et al. (författare)
  • Elucidating the fine-scale structural morphology of nanocellulose by nano infrared spectroscopy
  • 2023
  • Ingår i: Carbohydrate Polymers. - : Elsevier Ltd. - 0144-8617 .- 1879-1344. ; 302
  • Tidskriftsartikel (refereegranskat)abstract
    • Nanoscale infrared (IR) spectroscopy and microscopy, enabling the acquisition of IR spectra and images with a lateral resolution of 20 nm, is employed to chemically characterize individual cellulose nanocrystals (CNCs) and cellulose nanofibrils (CNFs) to elucidate if the CNCs and CNFs consist of alternating crystalline and amorphous domains along the CNF/CNC. The high lateral resolution enables studies of the nanoscale morphology at different domains of the CNFs/CNCs: flat segments, kinks, twisted areas, and end points. The types of nanocellulose investigated are CNFs from tunicate, CNCs from cotton, and anionic and cationic wood-derived CNFs. All nano-FTIR spectra acquired from the different samples and different domains of the individual nanocellulose particles resemble a spectrum of crystalline cellulose, suggesting that the non-crystalline cellulose signal observed in macroscopic measurements of nanocellulose most likely originate from cellulose chains present at the surface of the nanocellulose particles. 
  •  
24.
  • Kummala, Ruut, et al. (författare)
  • Human Dermal Fibroblast Viability and Adhesion on Cellulose Nanomaterial Coatings : Influence of Surface Characteristics
  • 2020
  • Ingår i: Biomacromolecules. - : American Chemical Society (ACS). - 1525-7797 .- 1526-4602. ; 21:4, s. 1560-1567
  • Tidskriftsartikel (refereegranskat)abstract
    • Biodegradable and renewable materials, such as cellulose nanomaterials, have been studied as a replacement material for traditional plastics in the biomedical field. Furthermore, in chronic wound care, modern wound dressings, hydrogels, and active synthetic extracellular matrices promoting tissue regeneration are developed to guide cell growth and differentiation. Cells are guided not only by chemical cues but also through their interaction with the surrounding substrate and its physicochemical properties. Hence, the current work investigated plant-based cellulose nanomaterials and their surface characteristic effects on human dermal fibroblast (HDF) behavior. Four thin cellulose nanomaterial-based coatings produced from microfibrillar cellulose (MFC), cellulose nanocrystals (CNC), and two TEMPO-oxidized cellulose nanofibers (CNF) with different total surface charge were characterized, and HDF viability and adhesion were evaluated. The highest viability and most stable adhesion were on the anionic CNF coating with a surface charge of 1.14 mmol/g. On MFC and CNC coated surfaces, HDFs sedimented but were unable to anchor to the substrate, leading to low viability.
  •  
25.
  • Magnusson, Mikael, et al. (författare)
  • Bioconversion of food waste to biocompatible wet-laid fungal films
  • 2022
  • Ingår i: Materials & design. - : Elsevier. - 0264-1275 .- 1873-4197. ; 216
  • Tidskriftsartikel (refereegranskat)abstract
    • The fungus Rhizopus delemar was grown on bread waste in a submerged cultivation process and wet-laid into films. Alkali or enzyme treatments were used to isolate the fungal cell wall. A heat treatment was also applied to deactivate biological activity of the fungus. Homogenization of fungal biomass was done by an iterative ultrafine grinding process. Finally, the biomass was cast into films by a wet-laid process. Ultrafine grinding resulted in densification of the films. Fungal films showed tensile strengths of up to 18.1 MPa, a Young's modulus of 2.3 GPa and a strain at break of 1.4%. Highest tensile strength was achieved using alkali treatment, with SEM analysis showing a dense and highly organized structure. In contrast, less organized structures were obtained using enzymatic or heat treatments. A cell viability assay and fluorescent staining confirmed the biocompatibility of the films. A promising route for food waste valorization to sustainable fungal wet-laid films was established. © 2022 The Authors
  •  
26.
  • Martinez-Crespiera, Sandra, et al. (författare)
  • Use of Nanocellulose to Produce Water-Based Conductive Inks with Ag NPs for Printed Electronics
  • 2022
  • Ingår i: International Journal of Molecular Sciences. - : MDPI AG. - 1661-6596 .- 1422-0067. ; 23:6
  • Tidskriftsartikel (refereegranskat)abstract
    • The need for more sustainable printed electronics has emerged in the past years. Due to this, the use of nanocellulose (NC) extracted from cellulose has recently been demonstrated to provide interesting materials such as functional inks and transparent flexible films due to its properties. Its high specific surface area together with the high content of reactive hydroxyl groups provide a highly tailorable surface chemistry with applications in ink formulations as a stabilizing, capping, binding and templating agent. Moreover, NC mechanical, physical and thermal properties (high strength, low porosity and high thermal stability, respectively) provide an excellent alternative for the currently used plastic films. In this work, we present a process for the production of water-based conductive inks that uses NC both as a template for silver nanoparticles (Ag NPs) formation and as an ink additive for ink formulation. The new inks present an electrical conductivity up to 2 × 106 S/m, which is in the range of current commercially available conductive inks. Finally, the new Ag NP/NC-based conductive inks have been tested to fabricate NFC antennas by screen-printing onto NC-coated paper, demonstrating to be operative.
  •  
27.
  • Moon, R. J., et al. (författare)
  • Setting priorities in CNF particle size measurement : What is needed vs. what is feasible
  • 2023
  • Ingår i: TAPPI Journal. - : Technical Assoc. of the Pulp and Paper Industry Press. - 0734-1415. ; 22:2, s. 116-137
  • Tidskriftsartikel (refereegranskat)abstract
    • Measuring the size of cellulose nanomaterials can be challenging, especially in the case of branched and entangled cellulose nanofibrils (CNFs). The International Organization for Standardization, Technical Committee 6, Task Group 1—Cellulosic Nanomaterials, is exploring opportunities to develop standard methods for the measurement of CNF particle size and particle size distribution. This paper presents a summary of the available measuring techniques, responses from a survey on the measurement needs of CNF companies and researchers, and outcomes from an international workshop on cellulose nanofibril measurement and standardization. Standardization needs differed among groups, with Japanese companies mostly requiring measurements for product specification and production control, and other companies mostly needing measurements for safety/regula-tory purposes and for grade definitions in patents. Among all the companies, average length and width with percen-tiles (D(10), D(50), D(90)) were the most desired measurands. Workshop participants concurred that defining the location(s) on the CNF at which to measure the width and the length is an urgent and complex question. They also agreed that methods are needed for rapid particle size measurement at the nanoscale. Our recommendation within ISO is to start work to revise the definition of CNFs and develop sample preparation and measurement guidelines. It was also recommended that further research be done to reproducibly prepare hierarchical branched CNF structures and characterize them, develop automated image analysis for hierarchical branched CNF structures, and develop a classification system encompassing measurements at multiple size ranges from micro-to nanoscale to fully characterize and distinguish CNF samples. 00327-2022 
  •  
28.
  • Nilsson, Patrik, et al. (författare)
  • Design of experiments to investigate multi-additive cellulose nanocrystal films
  • 2022
  • Ingår i: Frontiers in Molecular Biosciences. - : Frontiers Media S.A.. - 2296-889X. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Cellulose nanocrystal (CNC) suspensions can self-assemble into chiral nematic films upon the slow evaporation of water. These films are brittle, as indicated by their fracturing instead of plastically deforming once they are fully elastically deformed. This aspect can be mediated to some extent by plasticizing additives, such as glucose and glycerol, however, few reports consider more than one additive at a time or address the influence of additive content on the homogeneity of the self-assembled structure. In this work, design of experiments (DoE) was used to empirically model complex film compositions, attempting to relate additive concentrations in dilute suspension to film properties, and to understand whether outcome specific predictions are possible using this approach. We demonstrate that DoE can be used to predict film properties in multi-additive systems, without consideration given to the different phenomena that occur along the drying process or to the nature of the additives. Additionally, a homogeneity metric is introduced in relation to chiral nematic organization in CNC films, with most of the additive-containing compositions in this work found to reduce the homogeneity of the self-assembly relative to pure CNC films. Copyright © 2022 Nilsson, Engström, Kaschuk, Vapaavuori, Larsson and Abitbol.
  •  
29.
  • Reid, Michael S., et al. (författare)
  • Fluorescently labeled cellulose nanofibrils for detection and loss analysis
  • 2020
  • Ingår i: Carbohydrate Polymers. - : Elsevier Ltd. - 0144-8617 .- 1879-1344. ; 250
  • Tidskriftsartikel (refereegranskat)abstract
    • Fluorescently labeled cellulose nanofibrils (CNFs) were used to evaluate CNF leaching from paper according to standard safety assays for food contact materials. Enzymatically pretreated pulp was first labeled with 5-([4,6-Dichlorotriazin-2-yl]amino)fluorescein hydrochloride (DTAF), followed by homogenization to produce fluorescent CNFs of varying degrees of fibrillation. Labeling at the μmolar DTAF/g cellulose level imparted quantitative ppb fluorescence detection of CNFs (LOD of approximately 20 ppb), without significantly altering other material properties, suggesting that DTAF-labeled CNFs are an appropriate mimic for native CNFs and that this approach can be used to detect low CNF concentrations. Cold and hot-water extractions of laboratory papers (100 % CNFs and CNF-fiber blended papers) showed loss values below 3 wt% CNFs, with the finest CNF quality showing the least loss overall and with greater loss experienced under hot water conditions compared with cold water. DTAF-labeled CNFs can be used to address questions related to CNF distribution, localization, and loss.
  •  
30.
  • Soto Veliz, Diosangeles, et al. (författare)
  • Influence of mineral coatings on fibroblast behaviour : The importance of coating formulation and experimental design
  • 2021
  • Ingår i: Colloids and Surfaces B. - : Elsevier B.V.. - 0927-7765 .- 1873-4367. ; 208
  • Tidskriftsartikel (refereegranskat)abstract
    • Mineral coatings manipulate surface properties such as roughness, porosity, wettability and surface energy. Properties that are known to determine cell behaviour. Therefore, mineral coatings can potentially be used to manipulate cell fate. This paper studies mineral-cell interactions through coatings in a stacked cell culture platform. Minerals were chosen according to their influence on Human Dermal Fibroblasts (HDFs): calcium carbonate, calcium sulphates, and kaolin. Mineral coatings were formulated with the additives latex, sorbitol, polyvinyl alcohol (PVOH) and TEMPO-oxidised cellulose nanofibrils (CNF-T). The coatings were placed as a bottom or top of the device, for a direct or indirect interaction with HDFs, respectively. Cells were seeded, in various densities, to the bottom of the device; and cell density and confluency were monitored in time. Overall, results show that the coating interaction is influenced at first by the cell seeding density. Scarce cell seeding density limits adaptability to the new environment, while an abundant one encourages confluency in time. In between those densities, coating formulation plays the next major role. Calcium carbonate promoted HDFs growth the most as expected, but the response to the rest of minerals depended on the coating additive. CNF-T encouraged proliferation even for kaolin, a mineral with long-term toxicity to HDFs, while PVOH induced a detrimental effect on HDF growth regardless of the mineral. At last, the placement of the coated layer provided insights on the contact-dependency of each response. This study highlights the importance of the experimental design, including coating formulation, when investigating cellular response to biomaterials. © 2021 The Authors
  •  
31.
  • Sudheshwar, A., et al. (författare)
  • Assessing sustainability hotspots in the production of paper-based printed electronics
  • 2023
  • Ingår i: Flexible and Printed Electronics. - : Institute of Physics. - 2058-8585. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Novel printed electronics are projected to grow and be manufactured in the future in large volumes. In many applications, printed electronics are envisaged as sustainable alternatives to conventional (PCB-based) electronics. One such application is in the semi-quantitative drug detection and point-of-care device called ‘GREENSENSE’ that uses paper-based printed electronics. This paper analyses the carbon footprint of GREENSENSE in order to identify and suggest means of mitigating disproportionately high environmental impacts, labeled ‘sustainability hotspots’, from materials and processes used during production which would be relevant in high-volume applications. Firstly, a life cycle model traces the flow of raw materials (such as paper, CNCs, and nanosilver) through the three ‘umbrella’ processes (circuit printing, component mounting, and biofunctionalization) manufacturing different electronic components (the substrate, conductive inks, energy sources, display, etc) that are further assembled into GREENSENSE. Based on the life cycle model, life cycle inventories are modeled that map out the network of material and energy flow throughout the production of GREENSENSE. Finally, from the environmental impact and sustainability hotspot analysis, both crystalline nanocellulose and nanosilver were found to create material hotspots and they should be replaced in favor of lower-impact materials. Process hotspots are created by manual, lab-, and pilot-scale processes with unoptimized material consumption, energy use, and waste generation; automated and industrial-scale manufacturing can mitigate such process hotspots. © 2023 The Author(s).
  •  
32.
  • Ul Hassan Alvi, Naveed, et al. (författare)
  • The Fast and One-Step Growth of ZnO Nanorods on Cellulose Nanofibers for Highly Sensitive Photosensors
  • 2023
  • Ingår i: Nanomaterials. - : Multidisciplinary Digital Publishing Institute (MDPI). - 2079-4991. ; 13:18
  • Tidskriftsartikel (refereegranskat)abstract
    • Cellulose is the most abundant organic material on our planet which has a key role in our daily life (e.g., paper, packaging). In recent years, the need for replacing fossil-based materials has expanded the application of cellulose and cellulose derivatives including into electronics and sensing. The combination of nanostructures with cellulose nanofibers (CNFs) is expected to create new opportunities for the development of innovative electronic devices. In this paper, we report on a single-step process for the low temperature (<100 °C), environmentally friendly, and fully scalable CNF-templated highly dense growth of zinc oxide (ZnO) nanorods (NRs). More specifically, the effect of the degree of substitution of the CNF (enzymatic CNFs and carboxymethylated CNFs with two different substitution levels) on the ZnO growth and the application of the developed ZnO NRs/CNF nanocomposites in the development of UV sensors is reported herein. The results of this investigation show that the growth and nature of ZnO NRs are strongly dependent on the charge of the CNFs; high charge promotes nanorod growth whereas with low charge, ZnO isotropic microstructures are created that are not attached to the CNFs. Devices manufactured via screen printing/drop-casting of the ZnO NRs/CNF nanocomposites demonstrate a good photo-sensing response with a very stable UV-induced photocurrent of 25.84 µA. This also exhibits excellent long-term stability with fast ON/OFF switching performance under the irradiance of a UV lamp (15 W). 
  •  
33.
  • Wojno, Sylwia, 1990, et al. (författare)
  • Percolation and phase behavior in cellulose nanocrystal suspensions from nonlinear rheological analysis
  • 2023
  • Ingår i: Carbohydrate Polymers. - : Elsevier Ltd. - 0144-8617 .- 1879-1344. ; 308
  • Tidskriftsartikel (refereegranskat)abstract
    • We examine the influence of surface charge on the percolation, gel-point and phase behavior of cellulose nanocrystal (CNC) suspensions in relation to their nonlinear rheological material response. Desulfation decreases CNC surface charge density which leads to an increase in attractive forces between CNCs. Therefore, by considering sulfated and desulfated CNC suspensions, we are comparing CNC systems that differ in their percolation and gel-point concentrations relative to their phase transition concentrations. The results show that independently of whether the gel-point (linear viscoelasticity, LVE) occurs at the biphasic - liquid crystalline transition (sulfated CNC) or at the isotropic - quasi-biphasic transition (desulfated CNC), the nonlinear behavior appears to mark the existence of a weakly percolated network at lower concentrations. Above this percolation threshold, nonlinear material parameters are sensitive to the phase and gelation behavior as determined in static (phase) and LVE conditions (gel-point). However, the change in material response in nonlinear conditions can occur at higher concentrations than identified through polarized optical microscopy, suggesting that the nonlinear deformations could distort the suspensions microstructure such that for example a liquid crystalline phase (static) suspension could show microstructural dynamics similar to a biphasic system.
  •  
34.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-34 av 34
Typ av publikation
tidskriftsartikel (28)
konferensbidrag (5)
bokkapitel (1)
Typ av innehåll
refereegranskat (32)
övrigt vetenskapligt/konstnärligt (2)
Författare/redaktör
Abitbol, Tiffany (34)
Fall, Andreas (8)
Swerin, Agne (6)
Aulin, Christian (5)
Toivakka, Martti (4)
Ahniyaz, Anwar (3)
visa fler...
Beni, Valerio, 1972- (3)
Stevanic Srndovic, J ... (2)
Kotov, Nikolay (2)
Johnson, C. Magnus (2)
Miettunen, Kati (2)
Nordgren, Niklas (2)
Kam, Doron (2)
Shoseyov, Oded (2)
Lahti, J (2)
Beck, S (1)
Reid, Michael S. (1)
Costa, J (1)
Toprak, Muhammet, 19 ... (1)
Mijlkovic, Ana (1)
Malafronte, Loredana (1)
Larsson, Per Tomas (1)
Lopez-Sanchez, Patri ... (1)
Kubat, Mikaela (1)
Brännvall, Elisabet, ... (1)
Nizamov, Rustem (1)
Nyberg, Mikael (1)
Guerreiro, Maria Pit ... (1)
Alvarez-Asencio, Rub ... (1)
Levi-Kalisman, Yael (1)
Gray, Derek G (1)
Altskär, Annika (1)
Lindström, Tom (1)
Hakkarainen, Minna (1)
Adolfsson, Karin H. (1)
Ahlinder, Astrid (1)
Stading, Mats (1)
Zhao, Wei (1)
Engström, Åsa (1)
Zamani, Akram (1)
Dobryden, Illia (1)
Magnusson, Mikael (1)
Wågberg, Lars, 1956- (1)
Karlsson, Maria (1)
Xu, Chunlin (1)
Cranston, Emily (1)
Kádár, Roland, 1982 (1)
Nevo, Yuval (1)
Nilsson, Patrik (1)
Kuusipalo, Jurkka (1)
visa färre...
Lärosäte
RISE (32)
Kungliga Tekniska Högskolan (10)
Linköpings universitet (1)
Chalmers tekniska högskola (1)
Högskolan i Borås (1)
Språk
Engelska (34)
Forskningsämne (UKÄ/SCB)
Teknik (16)
Naturvetenskap (9)
Medicin och hälsovetenskap (2)
Lantbruksvetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy