SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Abrehdary Majid) srt2:(2020-2024)"

Sökning: WFRF:(Abrehdary Majid) > (2020-2024)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abrehdary, Majid, 1983-, et al. (författare)
  • A New Moho Depth Model for Fennoscandia with Special Correction for the Glacial Isostatic Effect
  • 2021
  • Ingår i: Pure and Applied Geophysics. - : Springer Nature. - 0033-4553 .- 1420-9136. ; 178:3, s. 877-888
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, we present a new Moho depth model in Fennoscandia and its surroundings. The model is tailored from data sets of XGM2019e gravitationl field, Earth2014 topography and seismic crustal model CRUST1.0 using the Vening Meinesz-Moritz model based on isostatic theory to a resolution of 1° × 1°. To that end, the refined Bouguer gravity disturbance is determined by reducing the observed field for gravity effect of topography, density heterogeneities related to bathymetry, ice, sediments, and other crustal components. Moreover, stripping of non-isostatic effects of gravity signals from mass anomalies below the crust due to crustal thickening/thinning, thermal expansion of the mantle, Delayed Glacial Isostatic Adjustment (DGIA), i.e., the effect of future GIA, and plate flexure has also been performed. As Fennoscandia is a key area for GIA research, we particularly investigate the DGIA effect on the gravity disturbance and gravimetric Moho depth determination in this area. One may ask whether the DGIA effect is sufficiently well removed in the application of the general non-isostatic effects in such an area, and to answer this question, the Moho depth is determined both with and without specific removal of the DGIA effect prior to non-isostatic effect and Moho depth determinations. The numerical results yield that the RMS difference of the Moho depth from our model HVMD19 vs. the seismic CRUST19 and GRAD09 models are 3.8/4.2 km and 3.7/4.0 km when the above strategy for removing the DGIA effect is/is not applied, respectively, and the mean value differences are 1.2/1.4 km and 0.98/1.4 km, respectively. Hence, our study shows that the specific correction for the DGIA effect on gravity disturbance is slightly significant, resulting in individual changes in the gravimetric Moho depth up to − 1.3 km towards the seismic results. On the other hand, our study shows large discrepancies between gravimetric and seismic Moho models along the Norwegian coastline, which might be due to uncompensated non-isostatic effects caused by tectonic motions.
  •  
2.
  • Abrehdary, Majid, 1983-, et al. (författare)
  • Estimating a combined Moho model for marine areas via satellite altimetric : gravity and seismic crustal models
  • 2020
  • Ingår i: Studia Geophysica et Geodaetica. - : Springer Science and Business Media LLC. - 0039-3169 .- 1573-1626. ; 64, s. 1-25
  • Tidskriftsartikel (refereegranskat)abstract
    • Isostasy is a key concept in geoscience in interpreting the state of mass balance between the Earth's lithosphere and viscous asthenosphere. A more satisfactory test of isostasy is to determine the depth to and density contrast between crust and mantle at the Moho discontinuity (Moho). Generally, the Moho can be mapped by seismic information, but the limited coverage of such data over large portions of the world (in particular at seas) and economic considerations make a combined gravimetric-seismic method a more realistic approach. The determination of a high-resolution of the Moho constituents for marine areas requires the combination of gravimetric and seismic data to diminish substantially the seismic data gaps. In this study, we estimate the Moho constituents globally for ocean regions to a resolution of 1° × 1° by applying the Vening Meinesz-Moritz method from gravimetric data and combine it with estimates derived from seismic data in a new model named COMHV19. The data files of GMG14 satellite altimetry-derived marine gravity field, the Earth2014 Earth topographic/bathymetric model, CRUST1.0 and CRUST19 crustal seismic models are used in a least-squares procedure. The numerical computations show that the Moho depths range from 7.3 km (in Kolbeinsey Ridge) to 52.6 km (in the Gulf of Bothnia) with a global average of 16.4 km and standard deviation of the order of 7.5 km. Estimated Moho density contrasts vary between 20 kg m-3 (north of Iceland) to 570 kg m-3 (in Baltic Sea), with a global average of 313.7 kg m-3 and standard deviation of the order of 77.4 kg m-3. When comparing the computed Moho depths with current knowledge of crustal structure, they are generally found to be in good agreement with other crustal models. However, in certain regions, such as oceanic spreading ridges and hot spots, we generally obtain thinner crust than proposed by other models, which is likely the result of improvements in the new model. We also see evidence for thickening of oceanic crust with increasing age. Hence, the new combined Moho model is able to image rather reliable information in most of the oceanic areas, in particular in ocean ridges, which are important features in ocean basins.
  •  
3.
  • Abrehdary, Majid, 1983-, et al. (författare)
  • Moho density contrast in Antarctica determined by satellite gravity and seismic models
  • 2021
  • Ingår i: Geophysical Journal International. - : Oxford University Press (OUP). - 0956-540X .- 1365-246X. ; 225:3, s. 1952-1962
  • Tidskriftsartikel (refereegranskat)abstract
    • As recovering the crust-mantle/Moho density contrast (MDC) significantly depends on the properties of the Earth's crust and upper mantle, varying from place to place, it is an oversimplification to define a constant standard value for it. It is especially challenging in Antarctica, where almost all the bedrock is covered with a thick layer of ice, and seismic data cannot provide a sufficient spatial resolution for geological and geophysical applications. As an alternative, we determine the MDC in Antarctica and its surrounding seas with a resolution of 1 degrees x 1 degrees by the Vening Meinesz-Moritz gravimetric-isostatic technique using the XGM2019e Earth Gravitational Model and Earth2014 topographic/bathymetric information along with CRUST1.0 and CRUST19 seismic crustal models. The numerical results show that our model, named HVMDC20, varies from 81 kg m(-3) in the Pacific Antarctic mid-oceanic ridge to 579 kg m(-3) in the Gamburtsev Mountain Range in the central continent with a general average of 403 kg m(-3). To assess our computations, we compare our estimates with those of some other gravimetric as well as seismic models (KTH11, GEMMA12C, KTH15C and CRUST1.0), illustrating that our estimates agree fairly well with KTH15C and CRUST1.0 but rather poor with the other models. In addition, we compare the geological signatures with HVMDC20, showing how the main geological structures contribute to the MDC. Finally, we study the remaining glacial isostatic adjustment effect on gravity to figure out how much it affects the MDC recovery, yielding a correlation of the optimum spectral window (7 <= n <= 12) between XGM2019e and W12a GIA models of the order of similar to 0.6 contributing within a negligible +/- 14 kg m(-3) to the MDC.
  •  
4.
  • Abrehdary, Majid, et al. (författare)
  • Remaining non-isostatic effects in isostatic-gravimetric Moho determination-is it needed?
  • 2023
  • Ingår i: Geophysical Journal International. - : Oxford University Press (OUP). - 0956-540X .- 1365-246X. ; 234:3, s. 2066-2074
  • Tidskriftsartikel (refereegranskat)abstract
    • For long time the study of the Moho discontinuity (or Moho) has been a crucial topic in inferring the dynamics of the Earth's interior, and with profitable result it is mapped by seismic data, but due to the heterogeneous distribution of such data the quality varies over the world. Nevertheless, with the advent of satellite gravity missions, it is today possible to recover the Moho constituents (i.e. Moho depth; MD and Moho density contrast; MDC) via gravity observations based on isostatic models. Prior to using gravity observations for this application it must be stripped due to the gravitational contributions of known anomalous crustal density structures, mainly density variations of oceans, glacial ice sheets and sediment basins (i.e. stripping gravity corrections). In addition, the gravity signals related mainly with masses below the crust must also be removed. The main purpose of this study is to estimate the significance of removing also remaining non-isostatic effects (RNIEs) on gravity, that is, gravity effects that remain after the stripping corrections. This is carried out by using CRUST19 seismic crustal model and employing Vening Meinesz-Moritz (VMM) gravimetric-isostatic model in recovering the Moho constituents on a global scale to a resolution of 1 degrees x 1 degrees. To reach this goal, we present a new model, named MHUU22, formed by the SGGUGM2 gravitational field, Earth2014 topography, CRUST1.0 and CRUST19 seismic crustal models. Particularly, this study has its main emphasis on the RNIEs on gravity and Moho constituents to find out if we can modify the stripping gravity corrections by a specific correction of the RNIEs. The numerical results illustrate that the RMS differences between MHUU22 MD and the seismic model CRUST1.0 and least-squares combined model MOHV21 are reduced by 33 and 41 per cent by applying the NIEs, and the RMS differences between MHUU22 MDC and the seismic model CRUST1.0 and least-squares combined model MDC21 are reduced by 41 and 23 per cent when the above strategy for removing the RNIEs is applied. Hence, our study demonstrates that the specific correction for the RNIEs on gravity disturbance is significant, resulting in remarkable improvements in MHUU22, which more clearly visualize several crustal structures.
  •  
5.
  • Saberi, Azim, et al. (författare)
  • Accuracy assessment and improvement of SRTM, ASTER, FABDEM, and MERIT DEMs by polynomial and optimization algorithm : A case study (Khuzestan Province, Iran)
  • 2023
  • Ingår i: Open Geosciences. - : De Gruyter Open. - 2391-5447. ; 15:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Satellite digital elevation models (DEMs) are used for decision-making in various fields. Therefore, evaluating and improving vertical accuracy of DEM can increase the quality of end products. This article aimed to increase the vertical accuracy of most popular satellite DEMs (i.e., the ASTER, Shuttle Radar Topography Mission [SRTM], Forest And Buildings removed Copernicus DEM [FABDEM], and Multi-Error-Removed Improved-Terrain [MERIT]) using the particle swarm optimization (PSO) algorithm. For this purpose, at first, the vertical error of DEMs was estimated via ground truth data. Next, a second-order polynomial was applied to model the vertical error in the study area. To select the polynomial with the highest accuracy, employed for vertical error modeling, the coefficients of the polynomial have been optimized using the PSO algorithm. Finally, the efficiency of the proposed algorithm has been evaluated by other ground truth data and in situ observations. The results show that the mean absolute error (MAE) of SRTM DEM is 4.83 m while this factor for ASTER DEM is 5.35 m, for FABDEM is 4.28, and for MERIT is 3.87. The obtained results indicated that the proposed model could improve the MAE of vertical accuracy of SRTM, ASTER, FABDEM, and MERIT DEMs to 0.83, 0.51, 0.37, and 0.29 m, respectively. 
  •  
6.
  • Sjöberg, Lars, 1947-, et al. (författare)
  • Combination of three global Moho density contrast models by a weighted least-squares procedure
  • 2022
  • Ingår i: Journal of Applied Geodesy. - : Walter de Gruyter GmbH. - 1862-9016 .- 1862-9024. ; 16:4, s. 331-339
  • Tidskriftsartikel (refereegranskat)abstract
    • Due to different structures of the Earth's crust and mantle, there is a significant density contrast at their boundary, the Moho Density Contrast (or shortly MDC). Frequently one assumes that the MDC is about 600 kg/m3, but seismic and gravimetric data show a considerable variation from region to region, and today there are few such studies, and global models are utterly rare. This research determines a new global model, called MDC21, which is a weighted least-squares combination of three available MDC models, pixel by pixel at a resolution of 1° × 1°. For proper weighting among the models, the study starts by estimating lacking standard errors and (frequently high) correlations among them. The numerical investigation shows that MDC21 varies from 21 to 504 kg/m3 in ocean areas and ranges from 132 to 629 kg/m3 in continental regions. The global average is 335 kg/m3. The standard errors estimated in ocean regions are mostly less than 40 kg/m3, while for continental regions it grows to 80 kg/m3. Most standard errors are small, but they reach to notable values in some specific regions. The estimated MDCs (as well as Moho depths) at mid-ocean ridges are small but show significant variations and qualities. 
  •  
7.
  • Sjöberg, Lars E., et al. (författare)
  • On Moho Determination by the Vening Meinesz-Moritz Technique
  • 2021
  • Ingår i: Geodetic Sciences. - : INTECH. ; , s. 1-19
  • Bokkapitel (refereegranskat)abstract
    • This chapter describes a theory and application of satellite gravity and altimetry data for determining Moho constituents (i.e. Moho depth and density contrast) with support from a seismic Moho model in a least-squares adjustment. It presents and applies the Vening Meinesz-Moritz gravimetric-isostatic model in recovering the global Moho features. Internal and external uncertainty estimates are also determined. Special emphasis is devoted to presenting methods for eliminating the so-called non-isostatic effects, i.e. the gravimetric signals from the Earth both below the crust and from partly unknown density variations in the crust and effects due to delayed Glacial Isostatic Adjustment as well as for capturing Moho features not related with isostatic balance. The global means of the computed Moho depths and density contrasts are 23.8±0.05 km and 340.5 ± 0.37 kg/m3, respectively. The two Moho features vary between 7.6 and 70.3 km as well as between 21.0 and 650.0 kg/m3. Validation checks were performed for our modeled crustal depths using a recently published seismic model, yielding an RMS difference of 4 km.
  •  
8.
  • Sjöberg, Lars E., 1947-, et al. (författare)
  • The uncertainty of CRUST1.0 Moho depth and density contrast models
  • 2021
  • Ingår i: Journal of Applied Geodesy. - : Walter de Gruyter GmbH. - 1862-9016 .- 1862-9024. ; 15:2, s. 143-152
  • Tidskriftsartikel (refereegranskat)abstract
    • As crustal structure models based on seismic and other data are frequently used as a-priori information for further geophysical and geological studies and interpretations (e. g., for gravity inversion), it is important to accurately document their qualities. For instance, the uncertainties in published crustal structures deeply affect the accuracies of produced Moho contour maps. The qualities in seismic crustal models arise from several factors such as the survey method, the spatial resolution of the survey (for example the spacing of the shot points and the recording stations), and the analytical techniques utilized to process the data. It is difficult to determine the uncertainties associated with seismic based crustal depth/Moho depth (MD) models, and even more difficult to use such data for estimating the Moho density contrast (MDC) and its accuracy. However, there is another important observable available today, namely global satellite gravitational data, which are fairly homogeneous v. r. t. accuracy and distribution over the planet. For instance, we find by simple error propagation, using the error covariance matrix of the GOCE TIM5 gravitational model, that this model can determine the MD to a global RMS error of 0.8 km with a resolution of about 1 degrees for a known MDC of 200 kg/m(3). However, the uncertainty in the MDC will further deteriorate the result. We present a new method for estimating the MD and MDC uncertainties of one model by comparing it with another (correlated or uncorrelated) model with known uncertainty. The method is applied in estimating the uncertainty for the CRUST1.0 MD model from four global models (CRUST19, MDN07, GEMMA1.0, KTH15C), yielding mean standard errors varying between 2 and 4.9 km in ocean regions and between 3.2 and 6.0 km on land regions with overall means of 3.8 +/- 0.4 and 4.8 +/- 0.6 km, respectively. Also, starting from the KTH15C MDC model, the mean standard error of CRUST1.0 MDC was estimated to 47.4 and 48.3 kg/m(3) for ocean and land regions, respectively.
  •  
9.
  • Sjöberg, Lars, 1947-, et al. (författare)
  • Geoid or Quasi-Geoid? A Short Comparison
  • 2024
  • Ingår i: X Hotine-Marussi Symposium on Mathematical Geodesy - Proceedings of the Symposium, 2022. - : Springer Nature. ; , s. 171-174
  • Konferensbidrag (refereegranskat)abstract
    • This article is a short introduction to the debate on choosing the geoid and orthometric heights or the quasi-geoid and normal heights as the vertical coordinate system. It mainly compiles some more or less already known facts for comparing the two systems.
  •  
10.
  • Sjöberg, Lars, 1947-, et al. (författare)
  • Remarks on the Terrain Correction and the Geoid Bias
  • 2024
  • Ingår i: X Hotine-Marussi Symposium on Mathematical Geodesy - Proceedings of the Symposium, 2022. - : Springer Nature. ; , s. 3-5
  • Konferensbidrag (refereegranskat)abstract
    • The incomplete knowledge of the topographic density distribution causes a topographic bias in all gravimetric geoid determinations. This bias becomes critical in aiming for accurate geoid models in high mountainous regions. The bias can be divided into two components: the bias of the Bouguer shell (or Bouguer plate) and that of the remaining terrain. Starting from the known (disturbing) potential at the Earth’s surface, we study the possible location of the bias caused by incomplete reduction of the terrain masses in the computational process, We show that there is no such bias for terrain masses located exterior to the Bouguer plate/shell and/or inside the Bouguer plate at a lateral distance exceeding the height HP of the topography at the computational point. We conclude that the only possible terrain bias could be generated by masses inside a dome of height 2−1HP centered along the radius vector through the computational point with its base of radius HP at sea-level.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy