SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Adan A.) srt2:(2020-2024)"

Sökning: WFRF:(Adan A.) > (2020-2024)

  • Resultat 1-30 av 30
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Munn-Chernoff, M. A., et al. (författare)
  • Shared genetic risk between eating disorder- and substance-use-related phenotypes: Evidence from genome-wide association studies
  • 2021
  • Ingår i: Addiction Biology. - : Wiley. - 1355-6215 .- 1369-1600. ; 26:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Eating disorders and substance use disorders frequently co-occur. Twin studies reveal shared genetic variance between liabilities to eating disorders and substance use, with the strongest associations between symptoms of bulimia nervosa and problem alcohol use (genetic correlation [r(g)], twin-based = 0.23-0.53). We estimated the genetic correlation between eating disorder and substance use and disorder phenotypes using data from genome-wide association studies (GWAS). Four eating disorder phenotypes (anorexia nervosa [AN], AN with binge eating, AN without binge eating, and a bulimia nervosa factor score), and eight substance-use-related phenotypes (drinks per week, alcohol use disorder [AUD], smoking initiation, current smoking, cigarettes per day, nicotine dependence, cannabis initiation, and cannabis use disorder) from eight studies were included. Significant genetic correlations were adjusted for variants associated with major depressive disorder and schizophrenia. Total study sample sizes per phenotype ranged from similar to 2400 to similar to 537 000 individuals. We used linkage disequilibrium score regression to calculate single nucleotide polymorphism-based genetic correlations between eating disorder- and substance-use-related phenotypes. Significant positive genetic associations emerged between AUD and AN (r(g) = 0.18; false discovery rate q = 0.0006), cannabis initiation and AN (r(g) = 0.23; q < 0.0001), and cannabis initiation and AN with binge eating (r(g) = 0.27; q = 0.0016). Conversely, significant negative genetic correlations were observed between three nondiagnostic smoking phenotypes (smoking initiation, current smoking, and cigarettes per day) and AN without binge eating (r(gs) = -0.19 to -0.23; qs < 0.04). The genetic correlation between AUD and AN was no longer significant after co-varying for major depressive disorder loci. The patterns of association between eating disorder- and substance-use-related phenotypes highlights the potentially complex and substance-specific relationships among these behaviors.
  •  
2.
  • Bryois, J., et al. (författare)
  • Genetic identification of cell types underlying brain complex traits yields insights into the etiology of Parkinson’s disease
  • 2020
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 52:5, s. 482-493
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide association studies have discovered hundreds of loci associated with complex brain disorders, but it remains unclear in which cell types these loci are active. Here we integrate genome-wide association study results with single-cell transcriptomic data from the entire mouse nervous system to systematically identify cell types underlying brain complex traits. We show that psychiatric disorders are predominantly associated with projecting excitatory and inhibitory neurons. Neurological diseases were associated with different cell types, which is consistent with other lines of evidence. Notably, Parkinson’s disease was genetically associated not only with cholinergic and monoaminergic neurons (which include dopaminergic neurons) but also with enteric neurons and oligodendrocytes. Using post-mortem brain transcriptomic data, we confirmed alterations in these cells, even at the earliest stages of disease progression. Our study provides an important framework for understanding the cellular basis of complex brain maladies, and reveals an unexpected role of oligodendrocytes in Parkinson’s disease. © 2020, The Author(s), under exclusive licence to Springer Nature America, Inc.
  •  
3.
  • Mahajan, Anubha, et al. (författare)
  • Multi-ancestry genetic study of type 2 diabetes highlights the power of diverse populations for discovery and translation
  • 2022
  • Ingår i: Nature Genetics. - : Springer Nature. - 1061-4036 .- 1546-1718. ; 54:5, s. 560-572
  • Tidskriftsartikel (refereegranskat)abstract
    • We assembled an ancestrally diverse collection of genome-wide association studies (GWAS) of type 2 diabetes (T2D) in 180,834 affected individuals and 1,159,055 controls (48.9% non-European descent) through the Diabetes Meta-Analysis of Trans-Ethnic association studies (DIAMANTE) Consortium. Multi-ancestry GWAS meta-analysis identified 237 loci attaining stringent genome-wide significance (P < 5 x 10(-9)), which were delineated to 338 distinct association signals. Fine-mapping of these signals was enhanced by the increased sample size and expanded population diversity of the multi-ancestry meta-analysis, which localized 54.4% of T2D associations to a single variant with >50% posterior probability. This improved fine-mapping enabled systematic assessment of candidate causal genes and molecular mechanisms through which T2D associations are mediated, laying the foundations for functional investigations. Multi-ancestry genetic risk scores enhanced transferability of T2D prediction across diverse populations. Our study provides a step toward more effective clinical translation of T2D GWAS to improve global health for all, irrespective of genetic background. Genome-wide association and fine-mapping analyses in ancestrally diverse populations implicate candidate causal genes and mechanisms underlying type 2 diabetes. Trans-ancestry genetic risk scores enhance transferability across populations.
  •  
4.
  • Randler, C., et al. (författare)
  • Animal welfare attitudes : Effects of gender and diet in university samples from 22 countries
  • 2021
  • Ingår i: Animals. - : MDPI AG. - 2076-2615. ; 11:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Animal Welfare Attitudes (AWA) are defined as human attitudes towards the welfare of animals in different dimensions and settings. Demographic factors, such as age and gender are associated with AWA. The aim of this study was to assess gender differences among university students in a large convenience sample from twenty-two nations in AWA. A total of 7914 people participated in the study (5155 women, 2711 men, 48 diverse). Participants completed a questionnaire that collected demographic data, typical diet and responses to the Composite Respect for Animals Scale Short version (CRAS-S). In addition, we used a measure of gender empowerment from the Human Development Report. The largest variance in AWA was explained by diet, followed by country and gender. In terms of diet, 6385 participants reported to be omnivores, 296 as pescatarian, 637 ate a vegetarian diet and 434 were vegans (n = 162 without answer). Diet was related with CRAS-S scores; people with a vegan diet scored higher in AWA than omnivores. Women scored significantly higher on AWA than men. Furthermore, gender differences in AWA increased as gender inequality decreased. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.
  •  
5.
  • Watson, Hunna J., et al. (författare)
  • Common Genetic Variation and Age of Onset of Anorexia Nervosa
  • 2022
  • Ingår i: BIOLOGICAL PSYCHIATRY: GLOBAL OPEN SCIENCE. - : Elsevier BV. - 2667-1743. ; 2:4, s. 368-378
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Genetics and biology may influence the age of onset of anorexia nervosa (AN). The aims of this study were to determine whether common genetic variation contributes to age of onset of AN and to investigate the genetic associations between age of onset of AN and age at menarche.METHODS: A secondary analysis of the Psychiatric Genomics Consortium genome-wide association study (GWAS) of AN was performed, which included 9335 cases and 31,981 screened controls, all from European ancestries. We conducted GWASs of age of onset, early-onset AN (,13 years), and typical-onset AN, and genetic correlation, genetic risk score, and Mendelian randomization analyses.RESULTS: Two loci were genome-wide significant in the typical-onset AN GWAS. Heritability estimates (single nucleotide polymorphism-h2) were 0.01-0.04 for age of onset, 0.16-0.25 for early-onset AN, and 0.17-0.25 for typical-onset AN. Early-and typical-onset AN showed distinct genetic correlation patterns with putative risk factors for AN. Specifically, early-onset AN was significantly genetically correlated with younger age at menarche, and typical-onset AN was significantly negatively genetically correlated with anthropometric traits. Genetic risk scores for age of onset and early-onset AN estimated from independent GWASs significantly predicted age of onset. Mendelian randomization analysis suggested a causal link between younger age at menarche and early -onset AN.CONCLUSIONS: Our results provide evidence consistent with a common variant genetic basis for age of onset and implicate biological pathways regulating menarche and reproduction.
  •  
6.
  • de Vrind, V. A. J., et al. (författare)
  • Leptin Receptor Expressing Neurons in the Substantia Nigra Regulate Locomotion, and in The Ventral Tegmental Area Motivation and Feeding
  • 2021
  • Ingår i: Frontiers in Endocrinology. - : Frontiers Media SA. - 1664-2392. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • Leptin is an anorexigenic hormone, important in the regulation of body weight. Leptin plays a role in food reward, feeding, locomotion and anxiety. Leptin receptors (LepR) are expressed in many brain areas, including the midbrain. In most studies that target the midbrain, either all LepR neurons of the midbrain or those of the ventral tegmental area (VTA) were targeted, but the role of substantia nigra (SN) LepR neurons has not been investigated. These studies have reported contradicting results regarding motivational behavior for food reward, feeding and locomotion. Since not all midbrain LepR mediated behaviors can be explained by LepR neurons in the VTA alone, we hypothesized that SN LepR neurons may provide further insight. We first characterized SN LepR and VTA LepR expression, which revealed LepR expression mainly on DA neurons. To further understand the role of midbrain LepR neurons in body weight regulation, we chemogenetically activated VTA LepR or SN LepR neurons in LepR-cre mice and tested for motivational behavior, feeding and locomotion. Activation of VTA LepR neurons in food restricted mice decreased motivation for food reward (p=0.032) and food intake (p=0.020), but not locomotion. In contrast, activation of SN LepR neurons in food restricted mice decreased locomotion (p=0.025), but not motivation for food reward or food intake. Our results provide evidence that VTA LepR and SN LepR neurons serve different functions, i.e. activation of VTA LepR neurons modulated motivation for food reward and feeding, while SN LepR neurons modulated locomotor activity.
  •  
7.
  • Masip, G., et al. (författare)
  • The temporal relationship between parental concern of overeating and childhood obesity considering genetic susceptibility: longitudinal results from the IDEFICS/I.Family study
  • 2021
  • Ingår i: International Journal of Behavioral Nutrition and Physical Activity. - : Springer Science and Business Media LLC. - 1479-5868. ; 18:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Many genes and molecular pathways are associated with obesity, but the mechanisms from genes to obesity are less well known. Eating behaviors represent a plausible pathway, but because the relationships of eating behaviors and obesity may be bi-directional, it remains challenging to resolve the underlying pathways. A longitudinal approach is needed to assess the contribution of genetic risk during the development of obesity in childhood. In this study we aim to examine the relationships between the polygenic risk score for body mass index (PRS-BMI), parental concern of overeating and obesity indices during childhood. Methods: The IDEFICS/I.Family study is a school-based multicenter pan-European cohort of children observed for 6 years (mean +/- SD follow-up 5.8 +/- 0.4). Children examined in 2007/2008 (wave 1) (mean +/- SD age: 4.4 +/- 1.1, range: 2-9 years), in 2009/2010 (wave 2) and in 2013/2014 (wave 3) were included. A total of 5112 children (49% girls) participated at waves 1, 2 and 3. For 2656 children with genome-wide data we constructed a PRS based on 2.1 million single nucleotide polymorphisms. Z-score BMI and z-score waist circumference (WC) were assessed and eating behaviors and relevant confounders were reported by parents via questionnaires. Parental concern of overeating was derived from principal component analyses from an eating behavior questionnaire. Results: In cross-lagged models, the prospective associations between z-score obesity indices and parental concern of overeating were bi-directional. In mediation models, the association between the PRS-BMI and parental concern of overeating at wave 3 was mediated by baseline z-BMI (beta = 0.16, 95% CI: 0.10, 0.21) and baseline z-WC (beta = 0.17, 95% CI: 0.11, 0.23). To a lesser extent, baseline parental concern of overeating also mediated the association between the PRS-BMI and z-BMI at wave 3 (beta = 0.10, 95% CI: 0.07, 0.13) and z-WC at wave 3 (beta = 0.09, 95% CI: 0.07, 0.12). Conclusions: The findings suggest that the prospective associations between obesity indices and parental concern of overeating are likely bi-directional, but obesity indices have a stronger association with future parental concern of overeating than vice versa. The findings suggest parental concern of overeating as a possible mediator in the genetic susceptibility to obesity and further highlight that other pathways are also involved. A better understanding of the genetic pathways that lead to childhood obesity can help to prevent weight gain.
  •  
8.
  • Omrani, A., et al. (författare)
  • Identification of Novel Neurocircuitry Through Which Leptin Targets Multiple Inputs to the Dopamine System to Reduce Food Reward Seeking
  • 2021
  • Ingår i: Biological Psychiatry. - : Elsevier BV. - 0006-3223. ; 90:12, s. 843-852
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Leptin reduces the motivation to obtain food by modulating activity of the mesolimbic dopamine (DA) system upon presentation of cues that predict a food reward. Although leptin directly reduces the activity of ventral tegmental area (VTA) DA neurons, the majority of leptin receptor (LepR)-expressing DA neurons do not project to the nucleus accumbens, the projection implicated in driving food reward seeking. Therefore, the precise locus of leptin action to modulate motivation for a food reward is unresolved. METHODS: We used transgenic mice expressing Cre recombinase under the control of the LepR promoter, anatomical tracing, optogenetics-assisted patch-clamp electrophysiology, in vivo optogenetics with fiber photometric calcium measurements, and chemogenetics to unravel how leptin-targeted neurocircuitry inhibits food reward seeking. RESULTS: A large number of DA neurons projecting to the nucleus accumbens are innervated by local VTA LepR-expressing GABA (gamma-aminobutyric acid) neurons. Leptin enhances the activity of these GABA neurons and thereby inhibits nucleus accumbens-projecting DA neurons. In addition, we find that lateral hypothalamic LepR-expressing neurons projecting to the VTA are inhibited by leptin and that these neurons modulate DA neurons indirectly via inhibition of VTA GABA neurons. In accordance with such a disinhibitory function, optogenetically stimulating lateral hypothalamic LepR projections to the VTA potently activates DA neurons in vivo. Moreover, we found that chemogenetic activation of lateral hypothalamic LepR neurons increases the motivation to obtain a food reward only when mice are in a positive energy balance. CONCLUSIONS: We identify neurocircuitry through which leptin targets multiple inputs to the DA system to reduce food reward seeking.
  •  
9.
  • Roelofs, T. J. M., et al. (författare)
  • Optimization of whole-brain rabies virus tracing technology for small cell populations
  • 2021
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The lateral hypothalamus (LH) is critically involved in the regulation of homeostatic energy balance. Some neurons in the LH express receptors for leptin (LepRb), a hormone known to increase energy expenditure and decrease energy intake. However, the neuroanatomical inputs to LepRb-expressing LH neurons remain unknown. We used rabies virus tracing technology to map these inputs, but encountered non-specific tracing. To optimize this technology for a minor cell population (LepRb is not ubiquitously expressed in LH), we used LepRb-Cre mice and assessed how different titers of the avian tumor virus receptor A (TVA) helper virus affected rabies tracing efficiency and specificity. We found that rabies expression is dependent on TVA receptor expression, and that leakiness of TVA receptors is dependent on the titer of TVA virus used. We concluded that a titer of 1.0-3.0x10(7) genomic copies per mu l of the TVA virus is optimal for rabies tracing. Next, we successfully applied modified rabies virus tracing technology to map inputs to LepRb-expressing LH neurons. We discovered that other neurons in the LH itself, the periventricular hypothalamic nucleus (Pe), the posterior hypothalamic nucleus (PH), the bed nucleus of the stria terminalis (BNST), and the paraventricular hypothalamic nucleus (PVN) are the most prominent input areas to LepRb-expressing LH neurons.
  •  
10.
  • Wright, Graham D., et al. (författare)
  • Recognising the importance and impact of Imaging Scientists: Global guidelines for establishing career paths within core facilities
  • 2024
  • Ingår i: JOURNAL OF MICROSCOPY. - 0022-2720 .- 1365-2818. ; 294:3, s. 397-410
  • Tidskriftsartikel (refereegranskat)abstract
    • In the dynamic landscape of scientific research, imaging core facilities are vital hubs propelling collaboration and innovation at the technology development and dissemination frontier. Here, we present a collaborative effort led by Global BioImaging (GBI), introducing international recommendations geared towards elevating the careers of Imaging Scientists in core facilities. Despite the critical role of Imaging Scientists in modern research ecosystems, challenges persist in recognising their value, aligning performance metrics and providing avenues for career progression and job security. The challenges encompass a mismatch between classic academic career paths and service-oriented roles, resulting in a lack of understanding regarding the value and impact of Imaging Scientists and core facilities and how to evaluate them properly. They further include challenges around sustainability, dedicated training opportunities and the recruitment and retention of talent. Structured across these interrelated sections, the recommendations within this publication aim to propose globally applicable solutions to navigate these challenges. These recommendations apply equally to colleagues working in other core facilities and research institutions through which access to technologies is facilitated and supported. This publication emphasises the pivotal role of Imaging Scientists in advancing research programs and presents a blueprint for fostering their career progression within institutions all around the world. In the exciting world of scientific research, imaging core facilities are essential hubs where scientists use advanced technologies to conduct experiments and uncover fascinating discoveries. What makes these facilities remarkable is that multiple scientists can access and utilise a variety of instruments for a wide range of multidisciplinary research projects, fostering collaboration and innovation. At the forefront of this scientific adventure are Imaging Scientists, experts who play a crucial role in planning experiments, preparing materials, adapting and acquiring technologies, collecting data, training and supporting researchers, analysing images and forming conclusions. Despite their pivotal contributions, there are challenges in recognising the importance of Imaging Scientists and ensuring they have ample opportunities to advance in their careers. These challenges include a mismatch between the typical academic career path and the unique roles and responsibilities of Imaging Scientists, a lack of widespread understanding of their value plus financial constraints, insufficient training opportunities, and difficulties in attracting and retaining talented individuals. To address these issues, Global BioImaging (GBI; www.globalbioimaging.org) has brought together Imaging Scientists from around the world to develop a generally applicable set of recommendations in three key areas: highlighting the significance and value of Imaging Scientists, making it easier to recruit and retain them, and supporting their ongoing learning and professional growth. A notable concept is to reimagine the traditional separation between academic roles and technical support roles. GBI envisions that these recommendations will not only benefit imaging facilities but also prove valuable for research institutions housing diverse technologies organised into core facilities. Recognising the diverse nature of research performing institutions globally, the GBI community sees this guide as a starting point that will initiate dialogue and instigate change, which should be periodically updated as the needs of Imaging Scientists change. This initial version lays a solid foundation for future enhancements, contributing to the acknowledgement and support of the invaluable work done by Imaging Scientists on a global scale.
  •  
11.
  • Pallanti, S., et al. (författare)
  • Manifesto for an ECNP Neuromodulation Thematic Working Group (TWG): Non-invasive brain stimulation as a new Super-subspecialty
  • 2021
  • Ingår i: European Neuropsychopharmacology. - : Elsevier BV. - 0924-977X. ; 52, s. 72-83
  • Tidskriftsartikel (refereegranskat)abstract
    • Non-Invasive Brain Stimulation (NIBS) techniques and in particular, repetitive Transcranial Magnetic Stimulation (rTMS), are developing beyond mere clinical application. Although originally purposed for the treatment of resistant neuropsychiatric disorders, NIBS is also contributing to a deeper understanding of psychiatric disorders. rTMS is also changing the model of the disorder itself, from “mental” to one of neural connectivity. TMS allows the assessment of brain circuit excitability and eventually, of plastic changes affecting these circuits. While a clinical translational approach is, at the present time, the most adequate to meet the dimensional-circuit base model of the disorder, it refines the standard categorical classification of psychiatric disorders. The discovery of the fundamental importance of the balance between neuroplasticity and inflammation is also now explored through neuro-modulation findings consistently with the evidence of anti-inflammatory actions of the magnetic pulses. rTMS may activate, inhibit, or otherwise interfere with the activity of neuronal cortical networks, depending on stimulus frequency and intensity of brain-induced electric field. Of particular interest, yet still unclear, is how the relatively unspecific nature of TMS stimulation may lead to specific neuronal reorganization, as well as a definition of the TMS-triggered reorganization of functional brain modules, raising attention on the importance of the active participation of the patient to the treatment. Configuration and state of consciousness of the subject have made subjective experience under treatment regain importance in the neuro-scientific Psychiatry based on the requirement of United States National Institute of Health (NIH) and the substantial importance of the consciousness state in the efficacy of the TMS treatment. By focusing on the subjective experience, a renaissance of the phenomenology offers Psychiatry an opportunity to become proficient and to distinguish itself from other disciplines. For all these reasons, TMS should be included in the cluster of the sub-specialties as a new “Super-Specialty” and an appropriate training course has to be inaugurated. Psychiatrists are nowadays multi-specialists, moving from a specialty to another, vs super-specialist. The cultivation of a properly trained cohort of TMS psychiatrists will better meet the challenges of treatment-resistant psychiatric conditions (disorders of connectivity), through appropriate and ethical practice, meanwhile facilitating an informed development and integration of additional emerging neuro-modulation techniques. The aim of this consensus paper is to underline the interdisciplinary nature of NIBS, that also encompasses the subjective experience and to point out the necessity of a neuroscience-applied approach to NIBS in the context of the European College of Neuro-psychopharmacology (ECNP). © 2021
  •  
12.
  • Roelofs, T. J. M., et al. (författare)
  • Good taste or gut feeling? A new method in rats shows oro-sensory stimulation and gastric distention generate distinct and overlapping brain activation patterns
  • 2021
  • Ingår i: International Journal of Eating Disorders. - : Wiley. - 0276-3478 .- 1098-108X. ; 54:7, s. 1116-1126
  • Tidskriftsartikel (refereegranskat)abstract
    • Satiation is influenced by a variety of signals including gastric distention and oro-sensory stimulation. Here we developed a high-field (9.4 T) functional magnetic resonance imaging (fMRI) protocol to test how oro-sensory stimulation and gastric distention, as induced with a block-design paradigm, affect brain activation under different states of energy balance in rats. Repeated tasting of sucrose induced positive and negative fMRI responses in the ventral tegmental area and septum, respectively, and gradual neural activation in the anterior insula and the brain stem nucleus of the solitary tract (NTS), as revealed using a two-level generalized linear model-based analysis. These unique findings align with comparable human experiments, and are now for the first time identified in rats, thereby allowing for comparison between species. Gastric distention induced more extensive brain activation, involving the insular cortex and NTS. Our findings are largely in line with human studies that have shown that the NTS is involved in processing both visceral information and taste, and anterior insula in processing sweet taste oro-sensory signals. Gastric distention and sucrose tasting induced responses in mesolimbic areas, to our knowledge not previously detected in humans, which may reflect the rewarding effects of a full stomach and sweet taste, thereby giving more insight into the processing of sensory signals leading to satiation. The similarities of these data to human neuroimaging data demonstrate the translational value of the approach and offer a new avenue to deepen our understanding of the process of satiation in healthy people and those with eating disorders.
  •  
13.
  • Yeo, G. S. H., et al. (författare)
  • The melanocortin pathway and energy homeostasis: From discovery to obesity therapy
  • 2021
  • Ingår i: Molecular Metabolism. - : Elsevier BV. - 2212-8778. ; 48
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Over the past 20 years, insights from human and mouse genetics have illuminated the central role of the brain leptin-melanocortin pathway in controlling mammalian food intake, with genetic disruption resulting in extreme obesity, and more subtle polymorphic variations influencing the population distribution of body weight. At the end of 2020, the U.S. Food and Drug Administration (FDA) approved setmelanotide, a melanocortin 4 receptor agonist, for use in individuals with severe obesity due to either pro-opiomelanocortin (POMC), proprotein convertase subtilisin/kexin type 1 (PCSK1), or leptin receptor (LEPR) deficiency. Scope of review: Herein, we chart the melanocortin pathway & rsquo;s history, explore its pharmacology, genetics, and physiology, and describe how a neuropeptidergic circuit became an important druggable obesity target. Major conclusions: Unravelling the genetics of the subset of severe obesity has revealed the importance of the melanocortin pathway in appetitive control; coupling this with studying the molecular pharmacology of compounds that bind melanocortin receptors has brought a new obesity drug to the market. This process provides a drug discovery template for complex disorders, which for setmelanotide took 25 years to transform from a single gene into an approved drug.
  •  
14.
  •  
15.
  • Adan, Roger A. H., et al. (författare)
  • Translational genetics; expectations for eating disorders and other psychiatric disorders : Translationele genetica: verwachtingen voor eetstoornissen en andere psychiatrische stoornissen
  • 2022
  • Ingår i: Tijdschrift voor Psychiatrie. - 0303-7339. ; 64:2022-5, s. 304-308
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Translational (genetic) research focuses on the translation of preclinical research into practice. While many genetic studies have been conducted in recent years, the results do not simply translate to the clinic. Aim To visualize the steps through which translational genetic research contributes to the unraveling of the biological backgrounds of psychiatric disorders, in particular of eating disorders. Method Literature review. Results Genetic studies have unraveled a mechanism underlying the hunger and satiety system. There is hope that genome-wide studies of eating disorders will lead to identification of neural circuits in which associated genes cluster. New techniques, such as opto- and chemogenetics, provide the opportunity to define the precise role of these circuits in eating disorders. Conclusion New techniques in molecular neuroscience allow the unravelling of the complexity of how the brain works and some of those techniques (such as chemogenetics) are being further developed for application in humans. However, it will be years before we can definitively translate this into the treatment of psychiatric disorders.
  •  
16.
  • Kallo, I., et al. (författare)
  • Characterization of orexin input to dopamine neurons of the ventral tegmental area projecting to the medial prefrontal cortex and shell of nucleus accumbens
  • 2022
  • Ingår i: Brain Structure & Function. - : Springer Science and Business Media LLC. - 1863-2653 .- 1863-2661. ; 227:3, s. 1083-1098
  • Tidskriftsartikel (refereegranskat)abstract
    • Orexin neurons are involved in homeostatic regulatory processes, including arousal and feeding, and provide a major input from the hypothalamus to the ventral tegmental area (VTA) of the midbrain. VTA neurons are a central hub processing reward and motivation and target the medial prefrontal cortex (mPFC) and the shell part of nucleus accumbens (NAcs). We investigated whether subpopulations of dopamine (DA) neurons in the VTA projecting either to the mPFC or the medial division of shell part of nucleus accumbens (mNAcs) receive differential input from orexin neurons and whether orexin exerts differential electrophysiological effects upon these cells. VTA neurons projecting to the mPFC or the mNAcs were traced retrogradely by Cav2-Cre virus and identified by expression of yellow fluorescent protein (YFP). Immunocytochemical analysis showed that a higher proportion of all orexin-innervated DA neurons projected to the mNAcs (34.5%) than to the mPFC (5.2%). Of all sampled VTA neurons projecting either to the mPFC or mNAcs, the dopaminergic (68.3 vs. 79.6%) and orexin-innervated DA neurons (68.9 vs. 64.4%) represented the major phenotype. Whole-cell current clamp recordings were obtained from fluorescently labeled neurons in slices during baseline periods and bath application of orexin A. Orexin similarly increased the firing rate of VTA dopamine neurons projecting to mNAcs (1.99 +/- 0.61 Hz to 2.53 +/- 0.72 Hz) and mPFC (0.40 +/- 0.22 Hz to 1.45 +/- 0.56 Hz). Thus, the hypothalamic orexin system targets mNAcs and to a lesser extent mPFC-projecting dopaminergic neurons of the VTA and exerts facilitatory effects on both clusters of dopamine neurons.
  •  
17.
  • Kooij, K. L., et al. (författare)
  • Intranasal administration of olanzapine has beneficial outcome in a rat activity-based anorexia model
  • 2023
  • Ingår i: European Neuropsychopharmacology. - 0924-977X. ; 71, s. 65-74
  • Tidskriftsartikel (refereegranskat)abstract
    • The atypical antipsychotic drug olanzapine is prescribed despite clinical studies on olanzap-ine treatment showing mixed results on treatment efficacy in anorexia nervosa. We investi-gated the effect of systemic and intranasal administration of olanzapine in the activity-based anorexia (ABA) model. Rats were habituated to a running wheel and exposed to the ABA model while treated with olanzapine. During ABA rats had 1.5 h of daily access to food and ad libi-tum access to a running wheel for seven consecutive days. Olanzapine was administered via an osmotic minipump (1, 2.75, and 7.5 mg/kg) or intranasally 2 h before dark onset (1 and 2.75 mg/kg). We monitored body weight, food intake, wheel revolutions, body temperature, and adipose tissue.We found 2.75 and 7.5 mg/kg systemic olanzapine decreased wheel revolutions during ABA. Relative adipose tissue mass was increased in the 7.5 mg/kg olanzapine-treated group while body weight, food intake, and body temperature were unaltered by the systemic olanzapine. 1 and 2.75 mg/kg intranasal olanzapine diminished wheel revolutions and body temperature during the first 2 h after administration. The intranasal olanzapine-treated rats had a higher body weight at the end of ABA. We find that olanzapine has beneficial outcomes in the ABA via two administration routes by acting mainly on running wheel activity. Intranasal olanzapine showed a rapid effect in the first hours after administration in reducing locomotor activity. We recommend further explor-ing intranasal administration of olanzapine in anorectic patients to assist them in coping with restlessness.(c) 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ )
  •  
18.
  • van Zessen, R., et al. (författare)
  • Cue and Reward Evoked Dopamine Activity Is Necessary for Maintaining Learned Pavlovian Associations
  • 2021
  • Ingår i: Journal of Neuroscience. - : Society for Neuroscience. - 0270-6474 .- 1529-2401. ; 41:23, s. 5004-5014
  • Tidskriftsartikel (refereegranskat)abstract
    • Associating natural rewards with predictive environmental cues is crucial for survival. Dopamine (DA) neurons of the ventral tegmental area (VTA) are thought to play a crucial role in this process by encoding reward prediction errors (RPEs) that have been hypothesized to play a role in associative learning. However, it is unclear whether this signal is still necessary after animals have acquired a cue-reward association. In order to investigate this, we trained mice to learn a Pavlovian cue-reward association. After learning, mice show robust anticipatory and consummatory licking behavior. As expected, calcium activity of VTA DA neurons goes up for cue presentation as well as reward delivery. Optogenetic inhibition during the moment of reward delivery disrupts learned behavior, even in the continued presence of reward. This effect is more pronounced over trials and persists on the next training day. Moreover, outside of the task licking behavior and locomotion are unaffected. Similarly to inhibitions during the reward period, we find that inhibiting cue-induced dopamine (DA) signals robustly decreases learned licking behavior, indicating that cue-related DA signals are a potent driver for learned behavior. Overall, we show that inhibition of either of these DA signals directly impairs the expression of learned associative behavior. Thus, continued DA signaling in a learned state is necessary for consolidating Pavlovian associations.
  •  
19.
  • de Git, K. C. G., et al. (författare)
  • Zona incerta neurons projecting to the ventral tegmental area promote action initiation towards feeding
  • 2021
  • Ingår i: Journal of Physiology-London. - : Wiley. - 0022-3751 .- 1469-7793. ; 559:2, s. 709-724
  • Tidskriftsartikel (refereegranskat)abstract
    • Key points The zona incerta (ZI) and ventral tegmental area (VTA) are brain areas that are both implicated in feeding behaviour. The ZI projects to the VTA, although it has not yet been investigated whether this projection regulates feeding. We experimentally (in)activated the ZI to VTA projection by using dual viral vector technology, and studied the effects on feeding microstructure, the willingness to work for food, general activity and body temperature. Activity of the ZI to VTA projection promotes feeding by facilitating action initiation towards food, as reflected in meal frequency and the willingness to work for food reward, without affecting general activity or directly modulating body temperature. We show for the first time that activity of the ZI to VTA projection promotes feeding, which improves the understanding of the neurobiology of feeding behaviour and body weight regulation. Both the zona incerta (ZI) and the ventral tegmental area (VTA) have been implicated in feeding behaviour. The ZI provides prominent input to the VTA, although it has not yet been investigated whether this projection regulates feeding. Therefore, we investigated the role of ZI to VTA projection neurons in the regulation of several aspects of feeding behaviour. We determined the effects of (in)activation of ZI to VTA projection neurons on feeding microstructure, food-motivated behaviour under a progressive ratio schedule of reinforcement, locomotor activity and core body temperature. To activate or inactivate ZI neurons projecting to the VTA, we used a combination of canine adenovirus-2 in the VTA, as well as Cre-dependent designer receptors exclusively activated by designer drugs (DREADD) or tetanus toxin (TetTox) light chain in the ZI. TetTox-mediated inactivation of ZI to VTA projection neurons reduced food-motivated behaviour and feeding by reducing meal frequency. Conversely, DREADD-mediated chemogenetic activation of ZI to VTA projection neurons promoted food-motivated behaviour and feeding. (In)activation of ZI to VTA projection neurons did not affect locomotor activity or directly regulate core body temperature. Taken together, ZI neurons projecting to the VTA exert bidirectional control overfeeding behaviour. More specifically, activity of ZI to VTA projection neurons facilitate action initiation towards feeding, as reflected in both food-motivated behaviour and meal initiation, without affecting general activity.
  •  
20.
  • Flores-Dourojeanni, J. P., et al. (författare)
  • Inhibition of ventral tegmental area projections to the nucleus accumbens shell increases premature responding in the five-choice serial reaction time task in rats
  • 2023
  • Ingår i: Brain Structure & Function. - : Springer Science and Business Media LLC. - 1863-2653 .- 1863-2661.
  • Tidskriftsartikel (refereegranskat)abstract
    • Exaggerated impulsivity and attentional impairments are hallmarks of certain disorders of behavioural control such as attention-deficit/hyperactivity disorder (ADHD), schizophrenia and addiction. Pharmacological studies have implicated elevated dopamine (DA) levels in the nucleus accumbens shell (NAcbS) in impulsive actions. The NAcbS receives its DA input from the ventral tegmental area (VTA), and we have previously shown that optogenetic activation of VTA-NAcbS projections impaired impulse control and attention in the five-choice serial reaction time task (5-CSRTT) in rats. To better understand the role of VTA-NAcbS projections in impulsivity and attention, the present study sought to inhibit this projection using optogenetics. We demonstrate that inhibiting VTA-NAcbS efferents during the last seconds of the inter-trial interval (i.e. immediately before presentation of the instructive cue) induces exaggerated impulsive action, in the absence of changes in attentional or motivational parameters in the 5-CSRTT. Together with our earlier observations, this suggests that impulse control in the 5-CSRTT is tightly controlled by VTA-NAcbS activity, with deviations in both directions resulting in increased impulsivity.
  •  
21.
  • Flores-Dourojeanni, J. P., et al. (författare)
  • Temporally Specific Roles of Ventral Tegmental Area Projections to the Nucleus Accumbens and Prefrontal Cortex in Attention and Impulse Control
  • 2021
  • Ingår i: Journal of Neuroscience. - : Society for Neuroscience. - 0270-6474 .- 1529-2401. ; 41:19, s. 4293-4304
  • Tidskriftsartikel (refereegranskat)abstract
    • Deficits in impulse control and attention are prominent in the symptomatology of mental disorders such as attention deficit hyperactivity disorder (ADHD), substance addiction, schizophrenia, and bipolar disorder, yet the underlying mechanisms are incompletely understood. Frontostriatal structures, such as the nucleus accumbens (NAcb), the medial prefrontal cortex (mPFC), and their dopaminergic innervation from the ventral tegmental area (VTA) have been implicated in impulse control and attention. What remains unclear is how the temporal pattern of activity of these VTA projections contributes to these processes. Here, we optogenetically stimulated VTA dopamine (DA) cells, as well as VTA projections to the NAcb core (NAcbC), NAcb shell (NAcbS), and the mPFC in male rats performing the 5-choice serial reaction time task (5-CSRTT). Our data show that stimulation of VTA DA neurons, and VTA projections to the NAcbC and the mPFC immediately before presentation of the stimulus cue, impaired attention but spared impulse control. Importantly, in addition to reducing attention, activation of VTA-NAcbS also increased impulsivity when tested under a longer intertrial interval (ITI), to provoke impulsive behavior. Optogenetic stimulation at the beginning of the ITI only partially replicated these effects. In sum, our data show how attention and impulsivity are modulated by neuronal activity in distinct ascending output pathways from the VTA in a temporally specific manner. These findings increase our understanding of the intricate mechanisms by which mesocorticolimbic circuits contribute to cognition.
  •  
22.
  • Kakava-Georgiadou, N., et al. (författare)
  • Molecular profile and response to energy deficit of leptin-receptor neurons in the lateral hypothalamus
  • 2022
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Leptin exerts its effects on energy balance by inhibiting food intake and increasing energy expenditure via leptin receptors in the hypothalamus. While LepR neurons in the arcuate nucleus of the hypothalamus, the primary target of leptin, have been extensively studied, LepR neurons in other hypothalamic nuclei remain understudied. LepR neurons in the lateral hypothalamus contribute to leptin's effects on food intake and reward, but due to the low abundance of this population it has been difficult to study their molecular profile and responses to energy deficit. We here explore the transcriptome of LepR neurons in the LH and their response to energy deficit. Male LepR-Cre mice were injected in the LH with an AAV carrying Cre-dependent L10:GFP. Few weeks later the hypothalami from fed and food-restricted (24-h) mice were dissected and the TRAP protocol was performed, for the isolation of translating mRNAs from LepR cells in the LH, followed by RNA sequencing. After mapping and normalization, differential expression analysis was performed with DESeq2. We confirm that the isolated mRNA is enriched in LepR transcripts and other known neuropeptide markers of LepR(LH) neurons, of which we investigate the localization patterns in the LH. We identified novel markers of LepR(LH) neurons with association to energy balance and metabolic disease, such as Acvr1c, Npy1r, Itgb1, and genes that are differentially regulated by food deprivation, such as Fam46a and Rrad. Our dataset provides a reliable and extensive resource of the molecular makeup of LH LepR neurons and their response to food deprivation.
  •  
23.
  • Le May, Marie, et al. (författare)
  • Functional and Neurochemical Identification of Ghrelin Receptor (GHSR)-Expressing Cells of the Lateral Parabrachial Nucleus in Mice
  • 2021
  • Ingår i: Frontiers in Neuroscience. - : Frontiers Media SA. - 1662-453X. ; 15
  • Tidskriftsartikel (refereegranskat)abstract
    • The lateral parabrachial nucleus (lPBN), located in the pons, is a well-recognized anorexigenic center harboring, amongst others, the calcitonin gene-related peptide (CGRP)-expressing neurons that play a key role. The receptor for the orexigenic hormone ghrelin (the growth hormone secretagogue receptor, GHSR) is also abundantly expressed in the lPBN and ghrelin delivery to this site has recently been shown to increase food intake and alter food choice. Here we sought to explore whether GHSR-expressing cells in the lPBN (GHSR(lPBN) cells) contribute to feeding control, food choice and body weight gain in mice offered an obesogenic diet, involving studies in which GHSR(lPBN) cells were silenced. We also explored the neurochemical identity of GHSR(lPBN) cells. To silence GHSR(lPBN) cells, Ghsr-IRES-Cre male mice were bilaterally injected intra-lPBN with a Cre-dependent viral vector expressing tetanus toxin-light chain. Unlike control wild-type littermates that significantly increased in body weight on the obesogenic diet (i.e., high-fat high-sugar free choice diet comprising chow, lard and 9% sucrose solution), the heterozygous mice with silenced GHSR(lPBN) cells were resistant to diet-induced weight gain with significantly lower food intake and fat weight. The lean phenotype appeared to result from a decreased food intake compared to controls and caloric efficiency was unaltered. Additionally, silencing the GHSR(lPBN) cells altered food choice, significantly reducing palatable food consumption. RNAscope and immunohistochemical studies of the lPBN revealed considerable co-expression of GHSR with glutamate and pituitary adenylate cyclase-activating peptide (PACAP), and much less with neurotensin, substance P and CGRP. Thus, the GHSR(lPBN) cells are important for diet-induced weight gain and adiposity, as well as in the regulation of food intake and food choice. Most GHSR(lPBN) cells were found to be glutamatergic and the majority (76%) do not belong to the well-characterized anorexigenic CGRP cell population.
  •  
24.
  • Olislagers, M., et al. (författare)
  • Comprehensive analyses of RNA-seq and genome-wide data point to enrichment of neuronal cell type subsets in neuropsychiatric disorders
  • 2022
  • Ingår i: Molecular Psychiatry. - : Springer Science and Business Media LLC. - 1359-4184 .- 1476-5578. ; 27, s. 947-955
  • Tidskriftsartikel (refereegranskat)abstract
    • Neurological and psychiatric disorders, including substance use disorders, share a range of symptoms, which could be the result of shared genetic background. Many genetic loci have been identified for these disorders using genome-wide association studies, but conclusive evidence about cell types wherein these loci are active is lacking. We aimed to uncover implicated brain cell types in neuropsychiatric traits and to assess consistency in results across RNA datasets and methods. We therefore comprehensively employed cell type enrichment methods by integrating single-cell transcriptomic data from mouse brain regions with an unprecedented dataset of 42 human genome-wide association study results of neuropsychiatric, substance use and behavioral/quantitative brain-related traits (n = 12,544,007 individuals). Single-cell transcriptomic datasets from the Karolinska Institute and 10x Genomics were used. Cell type enrichment was determined using Linkage Disequilibrium Score Regression, Multi-marker Analysis of GenoMic Annotation, and Data-driven Expression Prioritized Integration for Complex Traits. We found the largest degree of consistency across methods for implication of pyramidal cells in schizophrenia and cognitive performance. For other phenotypes, such as bipolar disorder, two methods implicated the same cell types, i.e., medium spiny neurons and pyramidal cells. For autism spectrum disorders and anorexia nervosa, no consistency in implicated cell types was observed across methods. We found no evidence for astrocytes being consistently implicated in neuropsychiatric traits. In conclusion, we provide comprehensive evidence for a subset of neuronal cell types being consistently implicated in several, but not all psychiatric disorders, while non-neuronal cell types seem less implicated. © 2021, The Author(s).
  •  
25.
  • Peris-Sampedro, Fiona, et al. (författare)
  • Genetic deletion of the ghrelin receptor (GHSR) impairs growth and blunts endocrine response to fasting in Ghsr-IRES-Cre mice
  • 2021
  • Ingår i: Molecular Metabolism. - : Elsevier BV. - 2212-8778. ; 51
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: The orexigenic hormone ghrelin exerts its physiological effects by binding to and activating the growth hormone secretagogue receptor (GHSR). The recent development of a Ghsr-IRES-Cre knock-in mouse line has enabled to genetically access GHSR-expressing neurons. Inserting a Cre construct using a knock-in strategy, even when following an upstream internal ribosome entry site (IRES) can, however, interfere with expression of a targeted gene, with consequences for the phenotype emerging. This study aimed to phenotype, both physically and metabolically, heterozygous and homozygous Ghsr-IRES-Cre mice, with a view to discovering the extent to which the ghrelin signalling system remains functional in these mice. Methods: We assessed feeding and arcuate nucleus (Arc) Fos activation in wild-type, heterozygous and homozygous Ghsr-IRES-Cre mice in response to peripherally-administered ghrelin. We also characterised their developmental and growth phenotypes, as well as their metabolic responses upon an overnight fast. Results: Insertion of the IRES-Cre cassette into the 30-untranslated region of the Ghsr gene led to a gene-dosage GHSR depletion in the Arc. Whereas heterozygotes remained ghrelin-responsive and more closely resembled wild-types, ghrelin had reduced orexigenic efficacy and failed to induce Arc Fos expression in homozygous littermates. Homozygotes had a lower body weight accompanied by a shorter body length, less fat tissue content, altered bone parameters, and lower insulin-like growth factor-1 levels compared to wild-type and heterozygous littermates. Moreover, both heterozygous and homozygous Ghsr-IRES-Cre mice lacked the usual fasting-induced rise in growth hormone (GH) and displayed an exaggerated drop in blood glucose and insulin compared to wild-types. Unexpectedly, fasting acyl-ghrelin levels were allele-dependently increased. Conclusions: Our data suggest that (i) heterozygous but not homozygous Ghsr-IRES-Cre mice retain the usual responsiveness to administered ghrelin, (ii) the impact of fasting on GH release and glucose homeostasis is altered even when only one copy of the Ghsr gene is non-functional (as in heterozygous Ghsr-IRES-Cre mice) and (iii) homozygous Ghsr-IRES-Cre mice exhibit growth retardation. Of the many transgenic models of suppressed ghrelin signalling, Ghsr-IRES-Cre mice emerge as best representing the full breadth of the expected phenotype with respect to body weight, growth, and metabolic parameters. (c) 2021 The Author(s). Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
  •  
26.
  • Peris-Sampedro, Fiona, et al. (författare)
  • The Orexigenic Force of Olfactory Palatable Food Cues in Rats
  • 2021
  • Ingår i: Nutrients. - : MDPI AG. - 2072-6643. ; 13:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Environmental cues recalling palatable foods motivate eating beyond metabolic need, yet the timing of this response and whether it can develop towards a less palatable but readily available food remain elusive. Increasing evidence indicates that external stimuli in the olfactory modality communicate with the major hub in the feeding neurocircuitry, namely the hypothalamic arcuate nucleus (Arc), but the neural substrates involved have been only partially uncovered. By means of a home-cage hidden palatable food paradigm, aiming to mimic ubiquitous exposure to olfactory food cues in Western societies, we investigated whether the latter could drive the overeating of plain chow in non-food-deprived male rats and explored the neural mechanisms involved, including the possible engagement of the orexigenic ghrelin system. The olfactory detection of a familiar, palatable food impacted upon meal patterns, by increasing meal frequency, to cause the persistent overconsumption of chow. In line with the orexigenic response observed, sensing the palatable food in the environment stimulated food-seeking and risk-taking behavior, which are intrinsic components of food acquisition, and caused active ghrelin release. Our results suggest that olfactory food cues recruited intermingled populations of cells embedded within the feeding circuitry within the Arc, including, notably, those containing the ghrelin receptor. These data demonstrate the leverage of ubiquitous food cues, not only for palatable food searching, but also to powerfully drive food consumption in ways that resonate with heightened hunger, for which the orexigenic ghrelin system is implicated.
  •  
27.
  • Schele, Erik, et al. (författare)
  • Engagement of the brain orexin system in activity-based anorexia behaviour in mice
  • 2023
  • Ingår i: European Neuropsychopharmacology. - : Elsevier BV. - 0924-977X. ; 70, s. 63-71
  • Tidskriftsartikel (refereegranskat)abstract
    • While excessive physical activity is common amongst anorexia nervosa (AN) patients, contributing to their low body weight, little is known about the underlying biology and effective treatments targeting the hyperactivity are lacking. Given the role of orexin in arousal, physical activity and energy expenditure, we sought to investigate i) the extent to which orexin neurons are activated during severe anorectic state in the activity-based anorexia (ABA) mouse model, and ii) if the dual orexin receptor antagonist suvorexant can reduce physical activity during ABA. The Fos-TRAP2 technique enable us to visually capture active neurons (Fos expressing) during severe anorectic state in the ABA mouse model, and by immunohistochemistry, determine the extent to which these active neurons are orexin positive. In addition, suvorexant was administered peripherally to ABA mice and running activity was monitored. We found that a large population of orexin neurons in the hypothalamus are activated by ABA and that peripheral administration of suvorexant decreases food anticipatory activity in these mice. We conclude that orexin may be a suitable target to treat hyperactivity in AN and recommend further studies to examine the efficacy of suvorexant in aiding AN patients to control their drive for hyperactivity. (c) 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
  •  
28.
  • Stoltenborg, Iris, et al. (författare)
  • TRAPing Ghrelin-Activated Circuits: A Novel Tool to Identify, Target and Control Hormone-Responsive Populations in TRAP2 Mice
  • 2022
  • Ingår i: International Journal of Molecular Sciences. - : MDPI AG. - 1422-0067. ; 23:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The availability of Cre-based mouse lines for visualizing and targeting populations of hormone-sensitive cells has helped identify the neural circuitry driving hormone effects. However, these mice have limitations and may not even be available. For instance, the development of the first ghrelin receptor (Ghsr)-IRES-Cre model paved the way for using the Cre-lox system to identify and selectively manipulate ghrelin-responsive populations. The insertion of the IRES-Cre cassette, however, interfered with Ghsr expression, resulting in defective GHSR signaling and a pronounced phenotype in the homozygotes. As an alternative strategy to target ghrelin-responsive cells, we hereby utilize TRAP2 (targeted recombination in active populations) mice in which it is possible to gain genetic access to ghrelin-activated populations. In TRAP2 mice crossed with a reporter strain, we visualized ghrelin-activated cells and found, as expected, much activation in the arcuate nucleus (Arc). We then stimulated this population using a chemogenetic approach and found that this was sufficient to induce an orexigenic response of similar magnitude to that induced by peripheral ghrelin injection. The stimulation of this population also impacted food choice. Thus, the TRAPing of hormone-activated neurons (here exemplified by ghrelin-activated pathways) provides a complimentary/alternative technique to visualize, access and control discrete pathways, linking hormone action to circuit function.
  •  
29.
  • Verharen, J. P. H., et al. (författare)
  • Dopaminergic contributions to behavioral control under threat of punishment in rats
  • 2020
  • Ingår i: Psychopharmacology. - : Springer Science and Business Media LLC. - 0033-3158 .- 1432-2072. ; 237, s. 1769-1782
  • Tidskriftsartikel (refereegranskat)abstract
    • Rationale Excessive intake of rewards, such as food and drugs, often has explicit negative consequences, including the development of obesity and addiction, respectively. Thus, choosing not to pursue reward is the result of a cost/benefit decision, proper execution of which requires inhibition of behavior. An extensive body of preclinical and clinical evidence implicates dopamine in certain forms of inhibition of behavior, but it is not fully known how it contributes to behavioral inhibition under threat of explicit punishment. Objectives To assess the involvement of midbrain dopamine neurons and their corticostriatal output regions, the ventral striatum and prefrontal cortex, in control over behavior under threat of explicit (foot shock) punishment in rats. Methods We used a recently developed behavioral inhibition task, which assesses the ability of rats to exert behavioral restraint at the mere sight of food reward, under threat of foot shock punishment. Using in vivo fiber photometry, chemogenetics, c-Fos immunohistochemistry, and behavioral pharmacology, we investigated how dopamine neurons in the ventral tegmental area, as well as its output areas, the ventral striatum and prefrontal cortex, contribute to behavior in this task. Results Using this multidisciplinary approach, we found little evidence for a direct involvement of ascending midbrain dopamine neurons in inhibitory control over behavior under threat of punishment. For example, photometry recordings suggested that VTA DA neurons do not directly govern control over behavior in the task, as no differences were observed in neuronal population activity during successful versus unsuccessful behavioral control. In addition, chemogenetic and pharmacological manipulations of the mesocorticolimbic DA system had little or no effect on the animals' ability to exert inhibitory control over behavior. Rather, the dopamine system appeared to have a role in the motivational components of reward pursuit. Conclusions Together, our data provide insight into the mesocorticolimbic mechanisms behind motivated behaviors by showing a modulatory role of dopamine in the expression of cost/benefit decisions. In contrast to our expectations, dopamine did not appear to directly mediate the type of behavioral control that is tested in our task.
  •  
30.
  • Verharen, J. P. H., et al. (författare)
  • How Reward and Aversion Shape Motivation and Decision Making: A Computational Account
  • 2020
  • Ingår i: Neuroscientist. - : SAGE Publications. - 1073-8584. ; 26:1, s. 87-99
  • Tidskriftsartikel (refereegranskat)abstract
    • Processing rewarding and aversive signals lies at the core of many adaptive behaviors, including value-based decision making. The brain circuits processing these signals are widespread and include the prefrontal cortex, amygdala and striatum, and their dopaminergic innervation. In this review, we integrate historic findings on the behavioral and neural mechanisms of value-based decision making with recent, groundbreaking work in this area. On the basis of this integrated view, we discuss a neuroeconomic framework of value-based decision making, use this to explain the motivation to pursue rewards and how motivation relates to the costs and benefits associated with different courses of action. As such, we consider substance addiction and overeating as states of altered value-based decision making, in which the expectation of reward chronically outweighs the costs associated with substance use and food consumption, respectively. Together, this review aims to provide a concise and accessible overview of important literature on the neural mechanisms of behavioral adaptation to reward and aversion and how these mediate motivated behaviors.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-30 av 30

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy