SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Agarwal Prasoon) "

Sökning: WFRF:(Agarwal Prasoon)

  • Resultat 1-28 av 28
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Acharjee, Animesh, et al. (författare)
  • Immune infiltration and prognostic and diagnostic use of LGALS4 in colon adenocarcinoma and bladder urothelial carcinoma
  • 2021
  • Ingår i: American Journal of Translational Research. - : E-Century Publishing Corporation. - 1943-8141. ; 13:10, s. 11353-11363
  • Tidskriftsartikel (refereegranskat)abstract
    • Colon adenocarcinoma (COAD) is a common tumor of the gastrointestinal tract with a high mortality rate. Current research has identified many genes associated with immune infiltration that play a vital role in the development of COAD. In this study, we analysed the prognostic and diagnostic features of such immune-related genes in the context of colonic adenocarcinoma (COAD). We analysed 17 overlapping gene expression profiles of COAD and healthy samples obtained from TCGA-COAD and public single-cell sequencing resources, to identify potential therapeutic COAD targets. We evaluated the abundance of immune infiltration with those genes using the TIMER (Tumor Immune Estimation Resource) deconvolution method. Subsequently, we developed predictive and survival models to assess the prognostic value of these genes. The LGALS4 (Galectin-4) gene was found to be significantly (P<0.05) downregulated in COAD and bladder urothelial carcinoma (BLCA) compared to healthy samples. We identified LGALS4 as a prognostic and diagnostic marker for multiple cancer types, including COAD and BLCA. Our analysis reveals a series of novel candidate drug targets, as well as candidate molecular markers, that may explain the pathogenesis of COAD and BLCA. LGALS4 gene is associated with multiple cancer types and is a possible prognostic, as well as diagnostic, marker of COAD and BLCA.
  •  
4.
  •  
5.
  • Agarwal, Prasoon, et al. (författare)
  • CGGBP1 mitigates cytosine methylation at repetitive DNA sequences
  • 2015
  • Ingår i: BMC Genomics. - : Springer Science and Business Media LLC. - 1471-2164. ; 16
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: CGGBP1 is a repetitive DNA-binding transcription regulator with target sites at CpG-rich sequences such as CGG repeats and Alu-SINEs and L1-LINEs. The role of CGGBP1 as a possible mediator of CpG methylation however remains unknown. At CpG-rich sequences cytosine methylation is a major mechanism of transcriptional repression. Concordantly, gene-rich regions typically carry lower levels of CpG methylation than the repetitive elements. It is well known that at interspersed repeats Alu-SINEs and L1-LINEs high levels of CpG methylation constitute a transcriptional silencing and retrotransposon inactivating mechanism. Results: Here, we have studied genome-wide CpG methylation with or without CGGBP1-depletion. By high throughput sequencing of bisulfite-treated genomic DNA we have identified CGGBP1 to be a negative regulator of CpG methylation at repetitive DNA sequences. In addition, we have studied CpG methylation alterations on Alu and L1 retrotransposons in CGGBP1-depleted cells using a novel bisulfite-treatment and high throughput sequencing approach. Conclusions: The results clearly show that CGGBP1 is a possible bidirectional regulator of CpG methylation at Alus, and acts as a repressor of methylation at L1 retrotransposons.
  •  
6.
  • Agarwal, Prasoon, et al. (författare)
  • Genome-wide profiling of histone H3 lysine 27 and lysine 4 trimethylation in multiple myeloma reveals the importance of Polycomb gene targeting and highlights EZH2 as a potential therapeutic target.
  • 2016
  • Ingår i: Oncotarget. - : Impact Journals, LLC. - 1949-2553. ; 7:6, s. 6809-6923
  • Tidskriftsartikel (refereegranskat)abstract
    • Multiple myeloma (MM) is a malignancy of the antibody-producing plasma cells. MM is a highly heterogeneous disease, which has hampered the identification of a common underlying mechanism for disease establishment as well as the development of targeted therapy. Here we present the first genome-wide profiling of histone H3 lysine 27 and lysine 4 trimethylation in MM patient samples, defining a common set of active H3K4me3-enriched genes and silent genes marked by H3K27me3 (H3K27me3 alone or bivalent) unique to primary MM cells, when compared to normal bone marrow plasma cells. Using this epigenome profile, we found increased silencing of H3K27me3 targets in MM patients at advanced stages of the disease, and the expression pattern of H3K27me3-marked genes correlated with poor patient survival. We also demonstrated that pharmacological inhibition of EZH2 had anti-myeloma effects in both MM cell lines and CD138+ MM patient cells. In addition, EZH2 inhibition decreased the global H3K27 methylation and induced apoptosis. Taken together, these data suggest an important role for the Polycomb repressive complex 2 (PRC2) in MM, and highlights the PRC2 component EZH2 as a potential therapeutic target in MM.
  •  
7.
  • Agarwal, Prasoon, et al. (författare)
  • Growth signals employ CGGBP1 to suppress transcription of Alu-SINEs
  • 2016
  • Ingår i: Cell Cycle. - : Informa UK Limited. - 1538-4101 .- 1551-4005. ; 15:12, s. 1558-1571
  • Tidskriftsartikel (refereegranskat)abstract
    • CGGBP1 (CGG triplet repeat-binding protein 1) regulates cell proliferation, stress response,cytokinesis, telomeric integrity and transcription. It could affect these processes by modulatingtarget gene expression under different conditions. Identification of CGGBP1-target genes andtheir regulation could reveal how a transcription regulator affects such diverse cellular processes.Here we describe the mechanisms of differential gene expression regulation by CGGBP1 inquiescent or growing cells. By studying global gene expression patterns and genome-wide DNAbindingpatterns of CGGBP1, we show that a possible mechanism through which it affects theexpression of RNA Pol II-transcribed genes in trans depends on Alu RNA. We also show that itregulates Alu transcription in cis by binding to Alu promoter. Our results also indicate thatpotential phosphorylation of CGGBP1 upon growth stimulation facilitates its nuclear retention,Alu-binding and dislodging of RNA Pol III therefrom. These findings provide insights into howAlu transcription is regulated in response to growth signals.
  •  
8.
  • Agarwal, Prasoon, et al. (författare)
  • MYCN Amplification Is Associated with Reduced Expression of Genes Encoding gamma-Secretase Complex and NOTCH Signaling Components in Neuroblastoma
  • 2023
  • Ingår i: International Journal of Molecular Sciences. - : MDPI. - 1661-6596 .- 1422-0067. ; 24:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Amplification of the MYCN oncogene is found in similar to 20% of neuroblastoma (NB) cases and correlates with high-risk disease and poor prognosis. Despite the plethora of studies describing the role of MYCN in NB, the exact molecular mechanisms underlying MYCN's contribution to high-risk disease are not completely understood. Herein, we implemented an integrative approach combining publicly available RNA-Seq and MYCN ChIP-Seq datasets derived from human NB cell lines to define biological processes directly regulated by MYCN in NB. Our approach revealed that MYCN-amplified NB cell lines, when compared to non-MYCN-amplified cell lines, are characterized by reduced expression of genes involved in NOTCH receptor processing, axoneme assembly, and membrane protein proteolysis. More specifically, we found genes encoding members of the gamma-secretase complex, which is known for its ability to liberate several intracellular signaling molecules from membrane-bound proteins such as NOTCH receptors, to be down-regulated in MYCN-amplified NB cell lines. Analysis of MYCN ChIP-Seq data revealed an enrichment of MYCN binding at the transcription start sites of genes encoding gamma-secretase complex subunits. Notably, using publicly available gene expression data from NB primary tumors, we revealed that the expression of gamma-secretase subunits encoding genes and other components of the NOTCH signaling pathway was also reduced in MYCN-amplified tumors and correlated with worse overall survival in NB patients. Genetic or pharmacological depletion of MYCN in NB cell lines induced the expression of gamma-secretase genes and NOTCH-target genes. Chemical inhibition of gamma-secretase activity dampened the expression of NOTCH-target genes upon MYCN depletion in NB cells. In conclusion, this study defines a set of MYCN-regulated pathways that are specific to MYCN-amplified NB tumors, and it suggests a novel role for MYCN in the suppression of genes of the gamma-secretase complex, with an impact on the NOTCH-target gene expression in MYCN-amplified NB.
  •  
9.
  • Agarwal, Prasoon, et al. (författare)
  • MYCN Amplification Is Associated with Reduced Expression of Genes Encoding γ-Secretase Complex and NOTCH Signaling Components in Neuroblastoma
  • 2023
  • Ingår i: International Journal of Molecular Sciences. - 1661-6596 .- 1422-0067. ; 24:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Amplification of the MYCN oncogene is found in ~20% of neuroblastoma (NB) cases and correlates with high-risk disease and poor prognosis. Despite the plethora of studies describing the role of MYCN in NB, the exact molecular mechanisms underlying MYCN’s contribution to high-risk disease are not completely understood. Herein, we implemented an integrative approach combining publicly available RNA-Seq and MYCN ChIP-Seq datasets derived from human NB cell lines to define biological processes directly regulated by MYCN in NB. Our approach revealed that MYCN-amplified NB cell lines, when compared to non-MYCN-amplified cell lines, are characterized by reduced expression of genes involved in NOTCH receptor processing, axoneme assembly, and membrane protein proteolysis. More specifically, we found genes encoding members of the γ-secretase complex, which is known for its ability to liberate several intracellular signaling molecules from membrane-bound proteins such as NOTCH receptors, to be down-regulated in MYCN-amplified NB cell lines. Analysis of MYCN ChIP-Seq data revealed an enrichment of MYCN binding at the transcription start sites of genes encoding γ-secretase complex subunits. Notably, using publicly available gene expression data from NB primary tumors, we revealed that the expression of γ-secretase subunits encoding genes and other components of the NOTCH signaling pathway was also reduced in MYCN-amplified tumors and correlated with worse overall survival in NB patients. Genetic or pharmacological depletion of MYCN in NB cell lines induced the expression of γ-secretase genes and NOTCH-target genes. Chemical inhibition of γ-secretase activity dampened the expression of NOTCH-target genes upon MYCN depletion in NB cells. In conclusion, this study defines a set of MYCN-regulated pathways that are specific to MYCN-amplified NB tumors, and it suggests a novel role for MYCN in the suppression of genes of the γ-secretase complex, with an impact on the NOTCH-target gene expression in MYCN-amplified NB.
  •  
10.
  • Agarwal, Prasoon (författare)
  • Regulation of Gene Expression in Multiple Myeloma Cells and Normal Fibroblasts : Integrative Bioinformatic and Experimental Approaches
  • 2014
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The work presented in this thesis applies integrative genomic and experimental approaches to investigate mechanisms involved in regulation of gene expression in the context of disease and normal cell biology.In papers I and II, we have explored the role of epigenetic regulation of gene expression in multiple myeloma (MM). By using a bioinformatic approach we identified the Polycomb repressive complex 2 (PRC2) to be a common denominator for the underexpressed gene signature in MM. By using inhibitors of the PRC2 we showed an activation of the genes silenced by H3K27me3 and a reduction in the tumor load and increased overall survival in the in vivo 5TMM model. Using ChIP-sequencing we defined the distribution of H3K27me3 and H3K4me3 marks in MM patients cells. In an integrated bioinformatic approach, the H3K27me3-associated genes significantly correlated to under-expression in patients with less favorable survival. Thus, our data indicates the presence of a common under-expressed gene profile and provides a rationale for implementing new therapies focusing on epigenetic alterations in MM.In paper III we address the existence of a small cell population in MM presenting with differential tumorigenic properties in the 5T33MM murine model. We report that the predominant population of CD138+ cells had higher engraftment potential, higher clonogenic growth, whereas the CD138- MM cells presented with less mature phenotype and higher drug resistance. Our findings suggest that while designing treatment regimes for MM, both the cellpopulations must be targeted.In paper IV we have studied the general mechanism of differential gene expression regulation by CGGBP1 in response to growth signals in normal human fibroblasts. We found that CGGBP1 binding affects global gene expression by RNA Polymerase II. This is mediated by Alu RNAdependentinhibition of RNA Polymerase II. In presence of growth signals CGGBP1 is retained in the nuclei and exhibits enhanced Alu binding thus inhibiting RNA Polymerase III binding on Alus. Hence we suggest a mechanism by which CGGBP1 orchestrates Alu RNA-mediated regulation of RNA Polymerase II. This thesis provides new insights for using integrative bioinformatic approaches to decipher gene expression regulation mechanisms in MM and in normal cells.
  •  
11.
  • Agarwal, Prasoon, et al. (författare)
  • The epigenomic map of multiple myeloma reveals the importance of Polycomb gene silencing for the malignancy
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Multiple myeloma (MM) is characterized by accumulation of post-germinal center, isotype switched, long-living plasma cells with retained proliferation capacity within the bone marrow. MM is highly heterogeneous and remains fatal. This heterogeneity has hampered identification of a common underlying mechanism for disease establishment and the development of targeted therapy. We recently provided proof-of-principle that gene silencing associated with H3K27me3 contributes to the malignancy of MM. Here we present the first epigenomic map of MM for H3K27me3 and H3K4me3 derived by ChIP- and RNA sequencing from freshly-isolated bone marrow plasma cells from four patients. We compile lists of targets common among the patients as well as unique to MM when compared with PBMCs. Indicating the clinical relevance of our findings, we find increased silencing of H3K27me3 targets with disease progression and in patients presenting with a poor prognosis. Bivalent genes further significantly correlated to under-expressed genes in MM and were unique to MM when compared to PBMCs. Furthermore, bivalent genes, unlike H3K27me3 targets, significantly associated with transcriptional activation upon Polycomb inhibition indicating a potential for drug targeting. Thus, we suggest that gene silencing by Polycomb plays an important role in the development of the malignant phenotype of the MM cell during tumor progression.
  •  
12.
  • Aghanoori, Mohamad-Reza, et al. (författare)
  • CEBP beta regulation of endogenous IGF-1 in adult sensory neurons can be mobilized to overcome diabetes-induced deficits in bioenergetics and axonal outgrowth
  • 2022
  • Ingår i: Cellular and Molecular Life Sciences (CMLS). - : Springer Nature. - 1420-682X .- 1420-9071. ; 79:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Aberrant insulin-like growth factor 1 (IGF-1) signaling has been proposed as a contributing factor to the development of neurodegenerative disorders including diabetic neuropathy, and delivery of exogenous IGF-1 has been explored as a treatment for Alzheimer's disease and amyotrophic lateral sclerosis. However, the role of autocrine/paracrine IGF-1 in neuroprotection has not been well established. We therefore used in vitro cell culture systems and animal models of diabetic neuropathy to characterize endogenous IGF-1 in sensory neurons and determine the factors regulating IGF-1 expression and/or affecting neuronal health. Single-cell RNA sequencing (scRNA-Seq) and in situ hybridization analyses revealed high expression of endogenous IGF-1 in non-peptidergic neurons and satellite glial cells (SGCs) of dorsal root ganglia (DRG). Brain cortex and DRG had higher IGF-1 gene expression than sciatic nerve. Bidirectional transport of IGF-1 along sensory nerves was observed. Despite no difference in IGF-1 receptor levels, IGF-1 gene expression was significantly (P < 0.05) reduced in liver and DRG from streptozotocin (STZ)-induced type 1 diabetic rats, Zucker diabetic fatty (ZDF) rats, mice on a high-fat/ high-sugar diet and db/db type 2 diabetic mice. Hyperglycemia suppressed IGF-1 gene expression in cultured DRG neurons and this was reversed by exogenous IGF-1 or the aldose reductase inhibitor sorbinil. Transcription factors, such as NFAT1 and CEBP beta, were also less enriched at the IGF-1 promoter in DRG from diabetic rats vs control rats. CEBP beta overexpression promoted neurite outgrowth and mitochondrial respiration, both of which were blunted by knocking down or blocking IGF-1. Suppression of endogenous IGF-1 in diabetes may contribute to neuropathy and its upregulation at the transcriptional level by CEBP beta can be a promising therapeutic approach.
  •  
13.
  • Alzrigat, Mohammad, et al. (författare)
  • EZH2 inhibition in multiple myeloma downregulates myeloma associated oncogenes and upregulates microRNAs with potential tumor suppressor functions.
  • 2017
  • Ingår i: Oncotarget. - : Impact Journals, LLC. - 1949-2553. ; 8:6, s. 10213-10224
  • Tidskriftsartikel (refereegranskat)abstract
    • Multiple Myeloma (MM) is a plasma cell tumor localized to the bone marrow (BM). Despite the fact that current treatment strategies have improved patients' median survival time, MM remains incurable. Epigenetic aberrations are emerging as important players in tumorigenesis making them attractive targets for therapy in cancer including MM. Recently, we suggested the polycomb repressive complex 2 (PRC2) as a common denominator of gene silencing in MM and presented the PRC2 enzymatic subunit enhancer of zeste homolog 2 (EZH2) as a potential therapeutic target in MM. Here we further dissect the anti-myeloma mechanisms mediated by EZH2 inhibition and show that pharmacological inhibition of EZH2 reduces the expression of MM-associated oncogenes; IRF-4, XBP-1, PRDM1/BLIMP-1 and c-MYC. We show that EZH2 inhibition reactivates the expression of microRNAs with tumor suppressor functions predicted to target MM-associated oncogenes; primarily miR-125a-3p and miR-320c. ChIP analysis reveals that miR-125a-3p and miR-320c are targets of EZH2 and H3K27me3 in MM cell lines and primary cells. Our results further highlight that polycomb-mediated silencing in MM includes microRNAs with tumor suppressor activity. This novel role strengthens the oncogenic features of EZH2 and its potential as a therapeutic target in MM.
  •  
14.
  • Bisht, Vartika, et al. (författare)
  • Integration of the Microbiome, Metabolome and Transcriptomics Data Identified Novel Metabolic Pathway Regulation in Colorectal Cancer
  • 2021
  • Ingår i: International Journal of Molecular Sciences. - : MDPI AG. - 1661-6596 .- 1422-0067. ; 22:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Integrative multiomics data analysis provides a unique opportunity for the mechanistic understanding of colorectal cancer (CRC) in addition to the identification of potential novel therapeutic targets. In this study, we used public omics data sets to investigate potential associations between microbiome, metabolome, bulk transcriptomics and single cell RNA sequencing datasets. We identified multiple potential interactions, for example 5-aminovalerate interacting with Adlercreutzia; cholesteryl ester interacting with bacterial genera Staphylococcus, Blautia and Roseburia. Using public single cell and bulk RNA sequencing, we identified 17 overlapping genes involved in epithelial cell pathways, with particular significance of the oxidative phosphorylation pathway and the ACAT1 gene that indirectly regulates the esterification of cholesterol. These findings demonstrate that the integration of multiomics data sets from diverse populations can help us in untangling the colorectal cancer pathogenesis as well as postulate the disease pathology mechanisms and therapeutic targets.
  •  
15.
  • Cole, Laura K., et al. (författare)
  • Tafazzin Deficiency Reduces Basal Insulin Secretion and Mitochondrial Function in Pancreatic Islets From Male Mice
  • 2021
  • Ingår i: Endocrinology. - : The Endocrine Society. - 0013-7227 .- 1945-7170. ; 162:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Tafazzin (TAZ) is a cardiolipin (CL) biosynthetic enzyme important for maintaining mitochondrial function. TAZ affects both the species and content of CL in the inner mitochondrial membrane, which are essential for normal cellular respiration. In pancreatic beta cells, mitochondrial function is closely associated with insulin secretion. However, the role of TAZ and CL in the secretion of insulin from pancreatic islets remains unknown. Male 4-month-old doxycycline-inducible TAZ knock-down (KD) mice and wild-type littermate controls were used. Immunohistochemistry was used to assess beta-cell morphology in whole pancreas sections, whereas ex vivo insulin secretion, CL content, RNA-sequencing analysis, and mitochondrial oxygen consumption were measured from isolated islet preparations. Ex vivo insulin secretion under nonstimulatory low-glucose concentrations was reduced similar to 52% from islets isolated from TAZ KD mice. Mitochondrial oxygen consumption under low-glucose conditions was also reduced similar to 58% in islets from TAZ KD animals.TAZ deficiency in pancreatic islets was associated with significant alteration in CL molecular species and elevated polyunsaturated fatty acid CL content. In addition, RNA-sequencing of isolated islets showed that TAZ KD increased expression of extracellular matrix genes, which are linked to pancreatic fibrosis, activated stellate cells, and impaired beta-cell function.These data indicate a novel role for TAZ in regulating pancreatic islet function, particularly under low-glucose conditions.
  •  
16.
  • Fristedt Duvefelt, Charlotte, et al. (författare)
  • Increased resistance to proteaome inhibitors in multiple myeloma mediated by cIAP2 : implications for a combinatorial treatment
  • 2015
  • Ingår i: Oncotarget. - 1949-2553. ; 6:24, s. 20621-20635
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite the introduction of new treatment options for multiple myeloma (MM), a majority of patients relapse due to the development of resistance. Unraveling new mechanisms underlying resistance could lead to identification of possible targets for combinatorial treatment. Using TRAF3 deleted/mutated MM cell lines, we evaluated the role of the cellular inhibitor of apoptosis 2 (cIAP2) in drug resistance and uncovered the plausible mechanisms underlying this resistance and possible strategies to overcome this by combinatorial treatment. In MM, cIAP2 is part of the gene signature of aberrant NF-kappa B signaling and is heterogeneously expressed amongst MM patients. In cIAP2 overexpressing cells a decreased sensitivity to the proteasome inhibitors bortezomib, MG132 and carfilzomib was observed. Gene expression analysis revealed that 440 genes were differentially expressed due to cIAP2 overexpression. Importantly, the data imply that cIAPs are rational targets for combinatorial treatment in the population of MM with deleted/mutated TRAF3. Indeed, we found that treatment with the IAP inhibitor AT-406 enhanced the anti-MM effect of bortezomib in the investigated cell lines. Taken together, our results show that cIAP2 is an important factor mediating bortezomib resistance in MM cells harboring TRAF3 deletion/mutation and therefore should be considered as a target for combinatorial treatment.
  •  
17.
  • Halldorsdottir, Anna Margret, et al. (författare)
  • Mantle cell lymphoma displays a homogenous methylation profile : A comparative analysis with chronic lymphocytic leukemia
  • 2012
  • Ingår i: American Journal of Hematology. - : John Wiley & Sons. - 0361-8609 .- 1096-8652. ; 87:4, s. 361-367
  • Tidskriftsartikel (refereegranskat)abstract
    • Mantle cell lymphoma (MCL) and chronic lymphocytic leukemia (CLL) are mature CD5(+) B-cell malignancies with different biological/clinical characteristics. We recently reported an association between different prognostic subgroups of CLL (i.e., IGHV mutated and unmutated) and genomic methylation pattern. However, the relationship between DNA methylation and prognostic markers, such as the proliferation gene expression signature, has not been investigated in MCL. We applied high-resolution methylation microarrays (27,578 CpG sites) to assess the global DNA methylation profiles in 20 MCL (10 each with high/low proliferation signature) and 30 CLL (15 poor-prognostic IGHV unmutated subset #1 and 15 good-prognostic IGHV mutated subset #4) samples. Notably, MCL and each CLL subset displayed distinct genomic methylation profiles. After unsupervised hierarchical clustering, 17/20 MCL cases formed a cluster separate from CLL, while CLL subsets #1 and #4 formed subclusters. Surprisingly, few differentially methylated genes (n = 6) were identified between high vs. low proliferation MCL. In contrast, distinct methylation profiles were demonstrated for MCL and CLL. Importantly, certain functional classes of genes were preferentially methylated in either disease. For instance, developmental genes, in particular homeobox transcription factor genes (e.g., HLXB9, HOXA13), were more highly methylated in MCL, whereas apoptosis-related genes were enriched among targets methylated in CLL (e.g., CYFIP2, NR4A1). Results were validated using pyrosequencing, RQ-PCR and reexpression of specific genes. In summary, the methylation profile of MCL was homogeneous and no correlation with the proliferation signature was observed. Compared to CLL, however, marked differences were discovered such as the preferential methylation of homeobox genes in MCL.
  •  
18.
  • Halldorsdottir, Anna Margret, et al. (författare)
  • Mantle cell lymphoma displays a homogenous methylation profile: A comparative analysis with chronic lymphocytic leukemia
  • 2012
  • Ingår i: American Journal of Hematology. - : Wiley. - 0361-8609 .- 1096-8652. ; 87:4, s. 361-367
  • Tidskriftsartikel (refereegranskat)abstract
    • Mantle cell lymphoma (MCL) and chronic lymphocytic leukemia (CLL) are mature CD5(+) B-cell malignancies with different biological/clinical characteristics. We recently reported an association between different prognostic subgroups of CLL (i.e., IGHV mutated and unmutated) and genomic methylation pattern. However, the relationship between DNA methylation and prognostic markers, such as the proliferation gene expression signature, has not been investigated in MCL. We applied high-resolution methylation microarrays (27,578 CpG sites) to assess the global DNA methylation profiles in 20 MCL (10 each with high/low proliferation signature) and 30 CLL (15 poor-prognostic IGHV unmutated subset #1 and 15 good-prognostic IGHV mutated subset #4) samples. Notably, MCL and each CLL subset displayed distinct genomic methylation profiles. After unsupervised hierarchical clustering, 17/20 MCL cases formed a cluster separate from CLL, while CLL subsets #1 and #4 formed subclusters. Surprisingly, few differentially methylated genes (n = 6) were identified between high vs. low proliferation MCL. In contrast, distinct methylation profiles were demonstrated for MCL and CLL. Importantly, certain functional classes of genes were preferentially methylated in either disease. For instance, developmental genes, in particular homeobox transcription factor genes (e.g., HLXB9, HOXA13), were more highly methylated in MCL, whereas apoptosis-related genes were enriched among targets methylated in CLL (e.g., CYFIP2, NR4A1). Results were validated using pyrosequencing, RQ-PCR and reexpression of specific genes. In summary, the methylation profile of MCL was homogeneous and no correlation with the proliferation signature was observed. Compared to CLL, however, marked differences were discovered such as the preferential methylation of homeobox genes in MCL. Am. J. Hematol., 2012. (C) 2012 Wiley Periodicals, Inc.
  •  
19.
  •  
20.
  •  
21.
  • Kalushkova, Antonia, et al. (författare)
  • Polycomb target genes are silenced in multiple myeloma
  • 2010
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 5:7, s. e11483-
  • Tidskriftsartikel (refereegranskat)abstract
    • Multiple myeloma (MM) is a genetically heterogeneous disease, which to date remains fatal. Finding a common mechanism for initiation and progression of MM continues to be challenging. By means of integrative genomics, we identified an underexpressed gene signature in MM patient cells compared to normal counterpart plasma cells. This profile was enriched for previously defined H3K27-tri-methylated genes, targets of the Polycomb group (PcG) proteins in human embryonic fibroblasts. Additionally, the silenced gene signature was more pronounced in ISS stage III MM compared to stage I and II. Using chromatin immunoprecipitation (ChIP) assay on purified CD138+ cells from four MM patients and on two MM cell lines, we found enrichment of H3K27me3 at genes selected from the profile. As the data implied that the Polycomb-targeted gene profile would be highly relevant for pharmacological treatment of MM, we used two compounds to chemically revert the H3K27-tri-methylation mediated gene silencing. The S-adenosylhomocysteine hydrolase inhibitor 3-Deazaneplanocin (DZNep) and the histone deacetylase inhibitor LBH589 (Panobinostat), reactivated the expression of genes repressed by H3K27me3, depleted cells from the PRC2 component EZH2 and induced apoptosis in human MM cell lines. In the immunocompetent 5T33MM in vivo model for MM, treatment with LBH589 resulted in gene upregulation, reduced tumor load and increased overall survival. Taken together, our results reveal a common gene signature in MM, mediated by gene silencing via the Polycomb repressor complex. The importance of the underexpressed gene profile in MM tumor initiation and progression should be subjected to further studies.
  •  
22.
  • Lemaire, Miguel, et al. (författare)
  • The HDAC Inhibitor LBH589 Enhances the Antimyeloma Effects of the IGF-1RTK Inhibitor Picropodophyllin
  • 2012
  • Ingår i: Clinical Cancer Research. - 1078-0432 .- 1557-3265. ; 18:8, s. 2230-2239
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: We have previously shown the use of the insulin-like growth factor type 1 receptor tyrosine kinase (IGF-1RTK) inhibitor picropodophyllin (PPP) as an attractive strategy to combat multiple myeloma (MM) in vitro and in vivo. After a combinatorial drug screening, the histone deacetylase inhibitor LBH589 was shown to act in synergy with PPP reducing survival of MM cells. In this study, we tried to elucidate the molecular mechanisms underlying this combinatorial effect. Experimental Design: The in vitro anti-MM effects of PPP and LBH589 alone and in combination were evaluated by studying apoptosis, cell cycle distribution, and downstream transcriptome using both human MM cell lines and cells from the murine 5T3MM model. In vivo the effect on survival of 5T33MM-inoculated mice was evaluated. Results: In the human MM cell line RPMI8226, treatment with PPP and LBH589 in combination resulted in a five-fold increase of apoptosis, and an additive effect on the cleavage of the active forms of caspase-8 was observed as compared with the single drug treatments. Cell cycle analysis revealed an accumulation of cells in the G2-M phase and subsequent downregulation of cell cycle regulating proteins. These data were also confirmed in the 5T33MM cells in vitro. Also, the transcriptome was analyzed by Affymetrix arrays showing gene expression alterations mainly in categories of genes regulating apoptosis and cell adhesion. Combined treatment in vivo resulted in a significantly prolonged survival of 5T33MM-inoculated mice. Conclusions: The results indicate an improved MM treatment opportunity in using a combination of PPP and LBH589.
  •  
23.
  • Lin, Yingbo, et al. (författare)
  • SUMO-modified insulin-like growth factor 1 receptor (IGF-1R) increases cell cycle progression and cell proliferation
  • 2017
  • Ingår i: Journal of Cellular Physiology. - : John Wiley & Sons. - 0021-9541 .- 1097-4652. ; 232:10, s. 2722-2730
  • Tidskriftsartikel (refereegranskat)abstract
    • Increasing number of studies have shown nuclear localization of the insulin-like growth factor 1 receptor (nIGF-1R) in tumor cells and its links to adverse clinical outcome in various cancers. Any obvious cell physiological roles of nIGF-1R have, however, still not been disclosed. Previously, we reported that IGF-1R translocates to cell nucleus and modulates gene expression by binding to enhancers, provided that the receptor is SUMOylated. In this study, we constructed stable transfectants of wild type IGF1R (WT) and triple-SUMO-site-mutated IGF1R (TSM) using igf1r knockout mouse fibroblasts (R-). Cell clones (R-WT and R-TSM) expressing equal amounts of IGF1R were selected for experiments. Phosphorylation of IGF-1R, Akt, and Erk upon IGF-1 stimulation was equal in R-WT and R-TSM. WT was confirmed to enter nuclei. TSM did also undergo nuclear translocation, although to a lesser extent. This may be explained by that TSM heterodimerizes with insulin receptor, which is known to translocate to cell nuclei. R-WT proliferated substantially faster than R-TSM, which did not differ significantly from the empty vector control. Upon IGF-1 stimulationG1-S-phase progression of R-WT increased from 12 to 38%, compared to 13 to 20% of R-TSM. The G1-S progression of R-WT correlated with increased expression of cyclin D1, A, and CDK2, as well as downregulation of p27. This suggests that SUMO-IGF-1R affects upstream mechanisms that control and coordinate expression of cell cycle regulators. Further studies to identify such SUMO-IGF-1R dependent mechanisms seem important.
  •  
24.
  • Swati, Kumari, et al. (författare)
  • Computational exploration of FOXM1 inhibitors for glioblastoma : an integrated virtual screening and molecular dynamics simulation study
  • Ingår i: Journal of Biomolecular Structure and Dynamics. - 0739-1102.
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, a comprehensive investigation of a set of phytochemicals to identify potential inhibitors for the Forkhead box protein M1 (FOXM1) was conducted. FOXM1 is overexpressed in glioblastoma (GBM) cells and plays a crucial role in cell cycle progression, proliferation, and invasion. FOXM1 inhibitors have shown promising results in preclinical studies, and ongoing clinical trials are assessing their efficacy in GBM patients. However, there are limited studies on the identification of novel compounds against this attractive therapeutic target. To address this, the NPACT database containing 1,574 phytochemicals was used, employing a hierarchical multistep docking approach, followed by an estimation of relative binding free energy. By fixing user-defined XP-dock and MM-GBSA cut-off scores of −6.096 and −37.881 kcal/mol, the chemical space was further narrowed. Through exhaustive analysis of molecular binding interactions and various pharmacokinetics profiles, we identified four compounds, namely NPACT00002, NPACT01454, NPACT00856, and NPACT01417, as potential FOXM1 inhibitors. To assess the stability of protein-ligand binding in dynamic conditions, 100 ns Molecular dynamics (MD) simulations studies were performed. Furthermore, Molecular mechanics with generalized Born and surface area solvation (MM-GBSA) based binding free energy estimations of the entire simulation trajectories revealed a strong binding affinity of all identified compounds towards FOXM1, surpassing that of the control drug Troglitazone. Based on extensively studied multistep docking approaches, we propose that these molecules hold promise as FOXM1 inhibitors for potential therapeutic applications in GBM. However, experimental validation will be necessary to confirm their efficacy as targeted therapies. Communicated by Ramaswamy H. Sarma.
  •  
25.
  • Tomczyk, Mateusz M., et al. (författare)
  • Mitochondrial Sirtuin-3 (SIRT3) Prevents Doxorubicin-Induced Dilated Cardiomyopathy by Modulating Protein Acetylation and Oxidative Stress
  • 2022
  • Ingår i: Circulation Heart Failure. - : Ovid Technologies (Wolters Kluwer Health). - 1941-3289 .- 1941-3297. ; 15:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: High doses of doxorubicin put cancer patients at risk for developing dilated cardiomyopathy. Previously, we showed that doxorubicin treatment decreases SIRT3 (sirtuin 3), the main mitochondrial deacetylase and increases protein acetylation in rat cardiomyocytes. Here, we hypothesize that SIRT3 expression can attenuate doxorubicin induced dilated cardiomyopathy in vivo by preventing the acetylation of mitochondrial proteins. Methods: Nontransgenic, M3-SIRT3 (truncated SIRT3; short isoform), and M1-SIRT3 (full-length SIRT3; mitochondrial localized) transgenic mice were treated with doxorubicin for 4 weeks (8 mg/kg body weight per week). Echocardiography was performed to assess cardiac structure and function and validated by immunohistochemistry and immunofluorescence (n=4-10). Mass spectrometry was performed on cardiac mitochondrial peptides in saline (n=6) and doxorubicin (n=5) treated hearts. Validation was performed in doxorubicin treated primary rat and human induced stem cell derived cardiomyocytes transduced with adenoviruses for M3-SIRT3 and M1-SIRT3 and deacetylase deficient mutants (n=4-10). Results: Echocardiography revealed that M3-SIRT3 transgenic mice were partially resistant to doxorubicin induced changes to cardiac structure and function whereas M1-SIRT3 expression prevented cardiac remodeling and dysfunction. In doxorubicin hearts, 37 unique acetylation sites on mitochondrial proteins were altered. Pathway analysis revealed these proteins are involved in energy production, fatty acid metabolism, and oxidative stress resistance. Increased M1-SIRT3 expression in primary rat and human cardiomyocytes attenuated doxorubicin-induced superoxide formation, whereas deacetylase deficient mutants were unable to prevent oxidative stress. Conclusions: Doxorubicin reduced SIRT3 expression and markedly affected the cardiac mitochondrial acetylome. Increased M1-SIRT3 expression in vivo prevented doxorubicin-induced cardiac dysfunction, suggesting that SIRT3 could be a potential therapeutic target for mitigating doxorubicin-induced dilated cardiomyopathy.
  •  
26.
  • Warrier, N. M., et al. (författare)
  • Emerging Importance of Survivin in Stem Cells and Cancer : the Development of New Cancer Therapeutics
  • 2020
  • Ingår i: Stem Cell Reviews and Reports. - : Springer. - 2629-3269 .- 2629-3277. ; 16:5, s. 828-852
  • Tidskriftsartikel (refereegranskat)abstract
    • Survivin is one of the rare proteins that is differentially expressed in normal and cancer cells and is directly or indirectly involved in numerous pathways required for tumor maintenance. It is expressed in almost all cancers and its expression has been detected at early stages of cancer. These traits make survivin an exceptionally attractive target for cancer therapeutics. Even with these promising features to be an oncotherapeutic target, there has been limited success in the clinical trials targeting survivin. Only recently it has emerged that survivin was not being specifically targeted which could have resulted in the negative clinical outcome. Also, focus of research has now shifted from survivin expression in the overall heterogeneous tumor cell populations to survivin expression in cancer stem cells as these cells have proved to be the major drivers of tumors. Therefore, in this review we have analyzed the expression of survivin in normal and cancer cells with a particular focus on its expression in cancer stem cell compartment. We have discussed the major signaling pathways involved in regulation of survivin. We have explored the current development status of various types of interventions for inhibition of survivin. Furthermore, we have discussed the challenges involving the development of potent and specific survivin inhibitors for cancer therapeutics. Finally we have given insights for some of the promising future anticancer treatments.
  •  
27.
  • Warrier, Neerada Meenakshi, et al. (författare)
  • Integrative Analysis to Identify Genes Associated with Stemness and Immune Infiltration in Glioblastoma
  • 2021
  • Ingår i: Cells. - : MDPI AG. - 2073-4409. ; 10:10
  • Tidskriftsartikel (refereegranskat)abstract
    • It is imperative to identify the mechanisms that confer stemness to the cancer cells for more effective targeting. Moreover, there are not many studies on the link between stemness characteristics and the immune response in tumours. Therefore, in the current study involving GBM, we started with the study of BIRC5 (one of the rare genes differentially expressed in normal and cancer cells) and CXCR4 (gene involved in the survival and proliferation of CSCs). Together, these genes have not been systematically explored. We used a set of 27 promoter methylated regions in GBM. Our analysis showed that four genes corresponding to these regions, namely EOMES, BDNF, HLA-A, and PECAM1, were involved with BIRC5 and CXCR4. Interestingly, we found EOMES to be very significantly involved in stemness and immunology and it was positively correlated to CXCR4. Additionally, BDNF, which was significant in methylation, was negatively correlated to BIRC5.
  •  
28.
  • Warrier, Neerada Meenakshi, et al. (författare)
  • Survivin Inhibition by Piperine Sensitizes Glioblastoma Cancer Stem Cells and Leads to Better Drug Response
  • 2022
  • Ingår i: International Journal of Molecular Sciences. - : MDPI AG. - 1661-6596 .- 1422-0067. ; 23:14
  • Tidskriftsartikel (refereegranskat)abstract
    • Glioblastoma multiforme (GBM) cancer stem cells (GSCs) are one of the strongest contributing factors to treatment resistance in GBM. Identification of biomarkers capable of directly affecting these cells within the bulk tumor is a major challenge associated with the development of new targeting strategies. In this study, we focus on understanding the potential of the multifunctional extraordinaire survivin as a biomarker for GSCs. We analyzed the expression profiles of this gene using various publicly available datasets to understand its importance in stemness and other cancer processes. The findings from these studies were further validated using human GSCs isolated from a GBM cell line. In these GSCs, survivin was inhibited using the dietary phytochemical piperine (PIP) and the subsequent effects on stemness, cancer processes and Temozolomide were investigated. In silico analysis identified survivin to be one of the most significant differentially regulated gene in GSCs, in comparison to common stemness markers. Further validation studies on the isolated GSCs showed the importance of survivin in stemness, cancer progression and therapy resistance. Taken together, our study identifies survivin as a more consistent GSC marker and also suggests the possibility of using survivin inhibitors along with standard of care drugs for better therapeutic outcomes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-28 av 28
Typ av publikation
tidskriftsartikel (24)
annan publikation (3)
doktorsavhandling (1)
Typ av innehåll
refereegranskat (22)
övrigt vetenskapligt/konstnärligt (6)
Författare/redaktör
Agarwal, Prasoon (27)
Jernberg-Wiklund, He ... (14)
Kalushkova, Antonia (7)
Alzrigat, Mohammad (6)
Öberg, Fredrik (6)
Nilsson, Kenneth (5)
visa fler...
Österborg, Anders (4)
Enroth, Stefan (4)
Acharjee, Animesh (3)
Gkoutos, Georgios V. (3)
Singh, Umashankar (3)
Göransson, Hanna (2)
Sander, Birgitta (2)
Mansouri, Larry (2)
Nash, Katrina (2)
Axelsson, Tomas (2)
Westermark, Bengt (2)
Isaksson, Anders (2)
Osterborg, Anders (2)
Párraga, Alba Atienz ... (2)
Ma, Anqi (2)
Jin, Jian (2)
Glowacka, Aleksandra (2)
Mahmoud, Loay (2)
Bazzar, Wesam (2)
Rosenquist, Richard (2)
Stamatopoulos, Kosta ... (2)
Kumar, P. (1)
Wang, Q. (1)
Larsson, Lars-Gunnar (1)
Bano, Subia (1)
Rahmans, Taufiq (1)
Fryknäs, Mårten (1)
Collier, Paul (1)
Fritz, Markus Hsi-Ya ... (1)
Benes, Vladimir (1)
Wiklund, Helena Jern ... (1)
Ungerstedt, Johanna (1)
Brown, Peter J (1)
Teichmann, Martin (1)
Smit, Arian (1)
Larsson, Lars-Gunnar ... (1)
Wiklund, Helena Jern ... (1)
Axelson, Håkan (1)
Aghanoori, Mohamad-R ... (1)
Gauvin, Evan (1)
Nagalingam, Raghu S. (1)
Bonomo, Raiza (1)
Yathindranath, Vinit ... (1)
Smith, Darrell R. (1)
visa färre...
Lärosäte
Uppsala universitet (17)
Karolinska Institutet (9)
Kungliga Tekniska Högskolan (7)
Lunds universitet (6)
Språk
Engelska (28)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (22)
Naturvetenskap (5)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy