SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Akbar Muhammad) srt2:(2020-2024)"

Sökning: WFRF:(Akbar Muhammad) > (2020-2024)

  • Resultat 1-17 av 17
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Akbar, Nabeela, et al. (författare)
  • Tunning tin-based perovskite as an electrolyte for semiconductor protonic fuel cells
  • 2022
  • Ingår i: International journal of hydrogen energy. - : Elsevier BV. - 0360-3199 .- 1879-3487. ; 47:8, s. 5531-5540
  • Tidskriftsartikel (refereegranskat)abstract
    • The use of ceramic semiconductors to serve as an efficient proton conductor is an evolving approach in the novel emerging field of semiconductor protonic fuel cells (SPFCs). One of the most critical challenges in SPFCs is to design a sufficient proton-conductivity of 0.1 S cm(-1) below <600 degrees C. Here we report to tune the perovskite BaSnO3 (BSO), a semi-conductor single-phase material, to be applied as a proton-conducting electrolyte for SPFC. It was found that the oxygen vacancies play a vital role to promote proton transport while the electronic short-circuiting issue of BSO semiconductor has been justified by the Schottky junction mechanism at the anode/electrolyte interface. We have demonstrated a SPFC device to deliver a maximum power density of 843 mW cm(-2) with an ionic conductivity of 0.23 S cm(-1) for BSO at 550 degrees C. The oxygen vacancy formation by increasing the annealing temperature helps to understand the proton transport mechanism in BSO and such novel low-temperature SPFC (LT-SPFC).
  •  
2.
  • Sarfraz, Amina, et al. (författare)
  • Catalytic Effect of Silicon Carbide on the Composite Anode of Fuel Cells
  • 2021
  • Ingår i: ACS Applied Energy Materials. - : AMER CHEMICAL SOC. - 2574-0962. ; 4:7, s. 6436-6444
  • Tidskriftsartikel (refereegranskat)abstract
    • High efficiency, fuel flexibility, and sustainable energy conversion make fuel cells attractive compared to conventional energy systems. The direct ethanol fuel cells have attracted much attention because of the direct utilization of ethanol fuel. Anode materials are required to enhance the catalytic activity of the liquid fuel, which oxidize the fuel at lower operating temperature. Therefore, the catalytic effect using silicon carbide has been investigated in the LiNiO2-delta anode. The material has been characterized, and it is found that SiC shows a cubic structure and LiNiO2-delta exhibits a hexagonal structure, while the LiNiO2-delta-SiC composite exhibits a mixed cubic and hexagonal phase. Scanning electron microscopy depicts that the material is porous. The Fourier transform infrared spectroscopy analysis shows the presence of Si-O-Si, Si-C, C=O, and Si-OH bonding. The LiNiO2-delta-SiC composite (1:0.3) exhibited a maximum electrical conductivity of 1.34 S cm(-1) at 650 degrees C with an electrical band gap of 0.84 eV. The fabricated cell with the LiNiO2-delta-SiC anode exhibits a power density of 0.20 W cm(-2) at 650 degrees C with liquid ethanol fuel. The results show that there is a promising catalytic activity of SiC in the fuel cell anode.
  •  
3.
  • Ali Ahmad, Syed Ossama, et al. (författare)
  • Application of two-dimensional materials in perovskite solar cells: recent progress, challenges, and prospective solutions
  • 2021
  • Ingår i: Journal of Materials Chemistry C. - : ROYAL SOC CHEMISTRY. - 2050-7526 .- 2050-7534. ; 9:40, s. 14065-14092
  • Forskningsöversikt (refereegranskat)abstract
    • Perovskite solar cells (per-SCs) with high performance and cost-effective solution processing have been the center of interest for researchers in the past decade. Power conversion efficiencies (PCEs) have been gradually improved up to 25.2% with relatively improved stability, which is an unparalleled progress in all generations of solar cell (SC) technology. However, there are still some prevailing challenges regarding the stability and upscaling of these promising devices. Recently, 2D layered materials (LMs) have been extensively explored to overcome the prevailing challenges of poor stability (under moisture, light soaking and high temperature), halide segregation, hysteresis, involvement of toxic materials (i.e., lead), and upscaling of devices. A critical review addressing the recent developments in the use of 2D materials, especially transition metal dichalcogenides (TMDCs), is hence necessary. The development of novel synthesis and deposition techniques including liquid-metal synthesis and ultrasonic assisted spray pyrolysis has offered more efficient fabrication of 2D-LMs with controlled thickness and morphology. Effective functionalization approaches to increase the dispersability of 2D-LMs in non-polar solvents has boosted their potential application in solar cell technology as well. Moreover, compositing 2D TMDCs with suitable organic/inorganic compounds has enabled superior charge kinetics in all functional parts of per-SCs. In addition, newly developed materials such as graphyne and graphdyine along with 2D metal organic frameworks (MOFs) and covalent organic frameworks (COFs) have been employed in per-SCs to achieve PCEs up to 20%. This review summarizes the recent progress and challenges in the application of 2D-LMs in per-SCs and outlines the future pathways to further extend the PCE of per-SCs beyond 25%. This review particularly focuses on 2D-LMs as electrode materials and additives, the underlying charge (electron-hole) transport phenomenon in the functional layers, and their chemical and structural stability.
  •  
4.
  • Khokhar, Javeria, et al. (författare)
  • Prevalence and determinants of anemia among resident female university students from Southern Punjab, Pakistan
  • 2022
  • Ingår i: Women and Health. - : Informa UK Limited. - 0363-0242 .- 1541-0331. ; 62:6, s. 488-501
  • Tidskriftsartikel (refereegranskat)abstract
    • Health and nutritional status of the women of reproductive age (WRA) is expected to be influenced with women literacy status alongside other sociodemographic indicators. However, data are scant to validate if literate young women have lower incidence of anemia prevalence. Nexus to the problem stated, a cross-sectional study was conducted on 1,541 female resident university students (FRUS) aged 17–35 years from a public sector university located in Southern Punjab, Pakistan. Hemoglobin (Hb) led screening for anemia was performed followed by nutritional assessment and structured questionnaire-based sociodemographic and dietary assessment. The data generated were analyzed using independent t-test, Chi-square, and response surface regression models. Response rate for the prevalence of anemia in FRUS was 38 percent with mean Hb levels 10.5 g/dL. With a significant effect (p =.001) of participants’ weight on anemia prevalence, 22.45 percent of the sample population was recorded as underweight. Sociodemographic and dietary parameters analyzed suggested low daily food expenditure (x 2 = 20.59; p =.000) and reduced intake of meat (x 2 = 12.14; p =.01), beans & pulses (x 2 = 18.56; p =.001) to significantly influence rate of anemia prevalence in FRUS. The study concludes high prevalence rate of anemia among FRUS to strongly relate with students’ low monthly stipend, little daily food expenditure, and substandard dietary quality.
  •  
5.
  • Qu, Gang, et al. (författare)
  • Enhancing the Performance of the p-n Heterostructure Electrolyte for Solid Oxide Fuel Cells via A-Site-Deficiency Engineering
  • 2023
  • Ingår i: ACS Applied Materials and Interfaces. - : American Chemical Society (ACS). - 1944-8244 .- 1944-8252. ; 15:42, s. 49154-49169
  • Tidskriftsartikel (refereegranskat)abstract
    • Semiconductor ionic electrolytes are attracting growing interest for developing low-temperature solid oxide fuel cells (LT-SOFCs). Our recent study has proposed a p-n heterostructure electrolyte based on perovskite oxide BaCo0.4Fe0.4Zr0.1Y0.1O3-δ (BCFZY) and ZnO, achieving promising fuel cell performance. Herein, to further improve the performance of the heterostructure electrolyte, an A-site-deficiency strategy is used to solely modify BCFZY for regulating the ionic conduction and catalytic activity of the heterostructure. Two new electrolytes, B0.9CFZY-ZnO and B0.8CFZY-ZnO, were developed and systematically studied. The results show that the two samples gain improved ionic conductivity and auxiliary catalytic activity after A-site deficiency as a result of the increment of the surface and interface oxygen vacancies. The single cells with B0.9CFZY-ZnO and B0.8CFZY-ZnO exhibit enhanced peak power outputs at 450-550 °C compared to the cell based on B1.0CFZY-ZnO (typically, 745 and 795 vs 542 mW cm-2 at 550 °C). Particular attention is paid to the impact of A-site deficiency on the interface energy band alignment between BxCFZY and ZnO, which suggests that the p-n heterojunction effect of BxCFZY-ZnO for charge carrier regulation can be tuned by A-site deficiency to enable high proton transport while avoiding fuel cell current leakage. This study thus confirms the feasibility of A-site-deficiency engineering to optimize the performance of the heterostructure electrolyte for developing LT-SOFCs.
  •  
6.
  • Sohail, Muhammad Tayyab, et al. (författare)
  • Impacts of urbanization, LULC, LST, and NDVI changes on the static water table with possible solutions and water policy discussions: A case from Islamabad, Pakistan
  • 2023
  • Ingår i: Frontiers in Environmental Science. - : Frontiers Media S.A.. - 2296-665X. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • Rapid urbanization, coupled with land use land cover changes (LULC), has caused stress on freshwater resources around the globe. As in the case of Islamabad, the capital of Pakistan, the population has increased significantly, creating a deficit of natural resources and affecting the environment adversely. Therefore, the purpose of this study is to examine the effects of urbanization and LULC on the decline of the static water table in Islamabad. It also seeks to analyze water policy issues in order to achieve sustainable water resource development. The excessive pumping of the existing groundwater has exceeded the safe limit, which is justified by the constantly growing population. However, the changes in the LULC of the study area have turned many green pastures into barren land. Our research data were obtained from the Capital Development Authority (CDA), Pakistan Meteorological Department (PMD), and Landsat Satellite images. After analyzing PMD and CDA data for the last 20 years (2000–2020), the results were interpreted using Arc GIS. It has been observed that the Normalized Difference Vegetation Index (NDVI) value increases as the Land Surface Temperature (LST) decreases. Therefore, the overall observation is a decreasing trend in Islamabad temperatures due to the increased vegetation in the study area during the period of 2000–2020. It was observed that there has been a considerable drop in water levels due to over-pumping in a few areas. It is primarily associated with the increasing population of the capital in the last 2 decades. This study uses a survey to explore the potential locations for check dams to enhance and recharge the groundwater aquifers in the capital, Islamabad. It suggests catchment areas throughout the Margalla Hills along with different localities, such as Rumli Village, Trail 5, and Shahdara.
  •  
7.
  • Abbafati, Cristiana, et al. (författare)
  • 2020
  • Tidskriftsartikel (refereegranskat)
  •  
8.
  • Akbar, Muhammad Usman, 1990-, et al. (författare)
  • Brain tumor segmentation using synthetic MR images - A comparison of GANs and diffusion models
  • 2024
  • Ingår i: Scientific Data. - : Nature Publishing Group. - 2052-4463. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Large annotated datasets are required for training deep learning models, but in medical imaging data sharing is often complicated due to ethics, anonymization and data protection legislation. Generative AI models, such as generative adversarial networks (GANs) and diffusion models, can today produce very realistic synthetic images, and can potentially facilitate data sharing. However, in order to share synthetic medical images it must first be demonstrated that they can be used for training different networks with acceptable performance. Here, we therefore comprehensively evaluate four GANs (progressive GAN, StyleGAN 1–3) and a diffusion model for the task of brain tumor segmentation (using two segmentation networks, U-Net and a Swin transformer). Our results show that segmentation networks trained on synthetic images reach Dice scores that are 80%–90% of Dice scores when training with real images, but that memorization of the training images can be a problem for diffusion models if the original dataset is too small. Our conclusion is that sharing synthetic medical images is a viable option to sharing real images, but that further work is required. The trained generative models and the generated synthetic images are shared on AIDA data hub.
  •  
9.
  • Baharin, Shamsul Ammar Shamsul, et al. (författare)
  • Electromagnetic Interference From Natural Lightning on 4G Communication Links
  • 2024
  • Ingår i: IEEE Access. - : Institute of Electrical and Electronics Engineers (IEEE). - 2169-3536. ; 12, s. 14870-14881
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, microwave radiation pulses emitted from natural lightning have been found to interfere with the Fourth Generation Long Term Evolution (4G LTE) mobile communication data transmission. Two sets of measurement instruments have been synchronized where lightning electric field sensor together with 4G LTE network were evaluated its performance under two conditions namely fair-weather (four cases) and storm (four lightning cases). The microwave radiation emitted from lightning was directly measured without the use of a mixer and down-convertor to ensure the preservation of information such as the number of pulses and amplitude. A client-server architecture has been set up for data transmission utilizing User Datagram Protocol (UDP) where the packets have been generated by using Internet Performance Working Group Third Version (Iperf3) platform. Under fair-weather conditions, the 4G LTE connection at both the client and server nodes demonstrated stability and experienced minimal impact. On the other hand, natural lightning electromagnetic interference disrupted the 4G LTE communication links. Among the four reported storms, three storms have affected the 4G LTE data transmission. The first and fourth storms resulted in a complete connection drop to zero, lasting for 4 minutes and 2 seconds and for 44 seconds, respectively. The observation of hundreds microwave radiation pulses, each characterized by individual oscillating features suggests a potential disruption to packet transmission. Moreover, negative could-to-ground (-CG) and intra-cloud (IC) lightning flashes have been identified as the primary sources of interference to the 4G LTE data transmission. This information could be useful for future studies and for developers working on improving the reliability and performance of 4G LTE networks, particularly in areas prone to thunderstorms.
  •  
10.
  • Jönemo, Johan, 1974-, et al. (författare)
  • Efficient Brain Age Prediction from 3D MRI Volumes Using 2D Projections
  • 2023
  • Ingår i: Brain Sciences. - : MDPI. - 2076-3425. ; 13:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Using 3D CNNs on high-resolution medical volumes is very computationally demanding, especially for large datasets like UK Biobank, which aims to scan 100,000 subjects. Here, we demonstrate that using 2D CNNs on a few 2D projections (representing mean and standard deviation across axial, sagittal and coronal slices) of 3D volumes leads to reasonable test accuracy (mean absolute error of about 3.5 years) when predicting age from brain volumes. Using our approach, one training epoch with 20,324 subjects takes 20–50 s using a single GPU, which is two orders of magnitude faster than a small 3D CNN. This speedup is explained by the fact that 3D brain volumes contain a lot of redundant information, which can be efficiently compressed using 2D projections. These results are important for researchers who do not have access to expensive GPU hardware for 3D CNNs.
  •  
11.
  • Kausar, Tehzeeb, et al. (författare)
  • Influence diagnostics for the Cox proportional hazards regression model : method, simulation and applications
  • 2023
  • Ingår i: Journal of Statistical Computation and Simulation. - : Taylor & Francis. - 0094-9655 .- 1563-5163. ; 93:10, s. 1580-1600
  • Tidskriftsartikel (refereegranskat)abstract
    • This article investigates the performance of several residuals for the Cox proportional hazards regression model to diagnose the influential observations. The standardized and adjusted forms of residuals are proposed for Cox proportional hazards regression model. In addition, Cook's distance is proposed for both standardized and adjusted residuals. The assessment of different residuals for the identification of influential observations is made through the Monte Carlo simulation. A real dataset of bone marrow transplant Leukaemia is analyzed to show the benefit of the proposed methods. Simulation and application results show that the standardized and adjusted residuals based on the Cox-Snell method perform best for the detection of influential points. Furthermore, the standardized, and adjusted Martingale and deviance residuals work better when the sample size is large.
  •  
12.
  • Khan, Rizwan, et al. (författare)
  • Dental image enhancement network for early diagnosis of oral dental disease
  • 2023
  • Ingår i: Scientific Reports. - : Springer Nature. - 2045-2322. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Intelligent robotics and expert system applications in dentistry suffer from identification and detection problems due to the non-uniform brightness and low contrast in the captured images. Moreover, during the diagnostic process, exposure of sensitive facial parts to ionizing radiations (e.g., X-Rays) has several disadvantages and provides a limited angle for the view of vision. Capturing high-quality medical images with advanced digital devices is challenging, and processing these images distorts the contrast and visual quality. It curtails the performance of potential intelligent and expert systems and disincentives the early diagnosis of oral and dental diseases. The traditional enhancement methods are designed for specific conditions, and network-based methods rely on large-scale datasets with limited adaptability towards varying conditions. This paper proposed a novel and adaptive dental image enhancement strategy based on a small dataset and proposed a paired branch Denticle-Edification network (Ded-Net). The input dental images are decomposed into reflection and illumination in a multilayer Denticle network (De-Net). The subsequent enhancement operations are performed to remove the hidden degradation of reflection and illumination. The adaptive illumination consistency is maintained through the Edification network (Ed-Net). The network is regularized following the decomposition congruity of the input data and provides user-specific freedom of adaptability towards desired contrast levels. The experimental results demonstrate that the proposed method improves visibility and contrast and preserves the edges and boundaries of the low-contrast input images. It proves that the proposed method is suitable for intelligent and expert system applications for future dental imaging.
  •  
13.
  • Nazir, S., et al. (författare)
  • Emergence of robust half-metallic spin gap and a sizeable magnetic anisotropy in electron-doped Ca2FeOsO6
  • 2023
  • Ingår i: Materials Chemistry and Physics. - : Elsevier. - 0254-0584 .- 1879-3312. ; 294
  • Tidskriftsartikel (refereegranskat)abstract
    • Half-metallic materials having a large band gap (Eg) along with giant magnetocrystalline anisotropy energy (MAE) have been proposed to be crucial for the development of magnetic tunnel junctions. Herein, electron-doped Ca2FeOsO6 (CFOO) double perovskite oxide is investigated by employing ab-initio calculations with the inclusion of Hubbard U and spin–orbit coupling effects. Electron doping is realized by introducing Co+2/Ni+2 ion with 3d7 (t2g3 ↑ t2g2 ↓ eg2 ↑ eg0 ↓)/3d8 (t2g3 ↑ t2g3 ↓ eg2 ↑ eg0 ↓) configuration at Fe+33d5 (t2g3 ↑ t2g0 ↓ eg2 ↑ eg0 ↓) site. The thermodynamical, mechanical, and dynamical stability of these motifs for determining the synthesis feasibility at ambient conditions is established by calculating the formation energetics, elastic constants, and phonon band structure, respectively. The undoped CFOO system displays a ferrimagnetic Mott-insulating behavior due to a strong antiferromagnetic coupling between Fe and Os ions. On the other hand, electron doping induces half metallicity in CFOO, where extra electrons provided by TM-dopants produce a repulsion in the partially filled Os t2g3↓ spin-minority channel. As a consequence, the Os bands near the Fermi level are shifted to higher energetics; resulting in a conducting nature for the doped motifs. Therefore, Os ion remains in the mixed formal valence states of Os+5 and Os+6/Os+7, which reduces the moments as well. Most remarkably, a large Eg of 1.26/1.65 eV exists in the spin-majority channel of Co/Ni-doped structure, which is highly desired to effectively suppress the spin-flipping and affirm the large mean free path for spins along with a high spin-filtering response. Our results also demonstrated that the half metallicity of the studied TM-doped CFOO is robust and can be preserved under a reasonable magnitude of biaxial strains ([110]). Additionally, a sizeable MAE constant of ∼×107 erg/cm3 indicates that these materials could be potential candidates for the data storage devices.
  •  
14.
  • Qadri, Syed Furqan, et al. (författare)
  • CT-based automatic spine segmentation using patch-based deep learning
  • 2023
  • Ingår i: International Journal of Intelligent Systems. - : Hindawi Publishing Corporation. - 0884-8173 .- 1098-111X. ; 2023
  • Tidskriftsartikel (refereegranskat)abstract
    • CT vertebral segmentation plays an essential role in various clinical applications, such as computer-assisted surgical interventions, assessment of spinal abnormalities, and vertebral compression fractures. Automatic CT vertebral segmentation is challenging due to the overlapping shadows of thoracoabdominal structures such as the lungs, bony structures such as the ribs, and other issues such as ambiguous object borders, complicated spine architecture, patient variability, and fluctuations in image contrast. Deep learning is an emerging technique for disease diagnosis in the medical field. This study proposes a patch-based deep learning approach to extract the discriminative features from unlabeled data using a stacked sparse autoencoder (SSAE). 2D slices from a CT volume are divided into overlapping patches fed into the model for training. A random under sampling (RUS)-module is applied to balance the training data by selecting a subset of the majority class. SSAE uses pixel intensities alone to learn high-level features to recognize distinctive features from image patches. Each image is subjected to a sliding window operation to express image patches using autoencoder high-level features, which are then fed into a sigmoid layer to classify whether each patch is a vertebra or not. We validate our approach on three diverse publicly available datasets: VerSe, CSI-Seg, and the Lumbar CT dataset. Our proposed method outperformed other models after configuration optimization by achieving 89.9% in precision, 90.2% in recall, 98.9% in accuracy, 90.4% in F-score, 82.6% in intersection over union (IoU), and 90.2% in Dice coefficient (DC). The results of this study demonstrate that our model's performance consistency using a variety of validation strategies is flexible, fast, and generalizable, making it suited for clinical application.
  •  
15.
  • Rasool, Shahzad, et al. (författare)
  • Insight of proton transport phenomena in semiconductor ionic materials
  • 2024
  • Ingår i: Journal of Power Sources. - : Elsevier BV. - 0378-7753 .- 1873-2755. ; 598
  • Forskningsöversikt (refereegranskat)abstract
    • Semiconductor ionic materials (SIM) have recently gained broad attention due to their unique structural and chemical properties that enable efficient proton transport, making them promising materials for advanced fuel cell applications. This mini-review provides an overview of the proton transport phenomena in SIM and discusses their significance and future perspectives. We discuss the different types of SIMs, their proton transport mechanisms, and the factors that affect their performance. Furthermore, we emphasize the correlation between traditional perovskite oxides and SIMs and how this can be leveraged to improve the development of more advanced proton conductors for fuel cells. Also, we have highlighted the Proton-coupled electron transfer (PCET) mechanism in SIM. This mini-review provides a comprehensive overview of the current state of this emerging field, including its scientific foundations, future prospects, and applicable materials, technologies, devices, and basics for proton ceramic fuel cells (PCFCs).
  •  
16.
  • Yousaf, M., et al. (författare)
  • Evaluation of rare earth (Yb, La) doped (Sm3Fe5O12) garnet ferrite membrane for LT-SOFC
  • 2020
  • Ingår i: International journal of hydrogen energy. - : Elsevier Ltd. - 0360-3199 .- 1879-3487.
  • Tidskriftsartikel (refereegranskat)abstract
    • Rare earth element doping is a popular methodology for improving the electrical and electrochemical properties of materials. Inspired by this ideology, garnet ferrite material Sm3Fe5O12 (SFO) doped by rare earth (Yb, La) metal ions to form Sm3-0.5Yb0.5Fe5O12 (SYFO) and Sm3-0.5La0·5Fe5O12 (SLFO). The samples are synthesized by sol gel auto combustion and have been applied as electrolyte membrane for the first time in low temperature solid oxide fuel cell (LT-SOFC). The results indicate that the as-prepared materials have triple charge transport (H+/O−2/e−) carrier which promotes the hydrogen oxidation reaction (HOR) and oxygen reduction reactions (ORR) in SOFC at triple phase boundary region (TPB). Electrochemical impedance spectroscopy (EIS) reveals that the polarization resistance of SLFO membrane significantly reduces from 0.92 Ω-cm2 to 0.45 Ω-cm2 and the power output improve from 310 mW/cm2 to 650 mW/cm2 at 550 °C temperature in comparison with that of SYFO and SFO electrolyte supported cells. UV-vis diffused spectroscopy explains the semiconducting nature of the prepared materials due to the existence of optical bandgap in the semiconductor region. The further investigation also verifies the protonic conduction of SLFO membrane by constructing oxygen ion blocking fuel cell with configuration of Ni-NCAL/BZCY/SLFO/BZCY/Ni-NCAL having 427.94 mW/Cm2 fuel cell performance with 1.03 OCV at 550 °C temperature. 
  •  
17.
  • Zahra, M., et al. (författare)
  • Tailoring the ions and bandgaps in a novel semi-ionic energy conversion device for electrochemical performance
  • 2020
  • Ingår i: Materials Today Energy. - : Elsevier BV. - 2468-6069. ; 18
  • Tidskriftsartikel (refereegranskat)abstract
    • The new semi-ionic energy conversion (SIEC) device has attracted remarkable attention owing to its clean and environmentally friendly applications. In this device, novel materials and mechanisms have been explored using electronic and ionic conductor materials. The tuning effect of the ions and bandgap has been studied to investigate the structural, optical, and electrochemical performance of the material. Composite materials, gadolinium-doped ceria-cadmium-doped ZnO (GDC-ZnCdO), based on ionic gadolinium-doped ceria (GDC) and semiconductor (ZnCdO) in molar ratios of 1:4, 2:3, 3:2, and 4:1 have been prepared by a wet chemical route. The crystalline structure of the GDC-ZnCdO was studied and found to have cubic and hexagonal wurtzite phases with an average crystallite size of 30–40 nm. The morphology of the prepared composite materials is a homogenous and porous structure. It was found that the addition of GDC increases the transmittance and shows a red shift in the bandgap from 2.70 eV to 2.46 eV. The maximum conductivity of 2.0 S/cm1 was achieved for the sample 4GDC-1ZnCdO at 700°C. Electrochemical impedance spectra and X-ray photoelectron spectroscopy analysis were performed to investigate the electrochemical properties of the prepared semi-ionic composite materials. The SIEC device showed a much better performance than a conventional solid oxide fuel cell. The maximum open-circuit voltage (OCV) of about 1.013 Vand power density of 0.65 W/cm2 were obtained using hydrogen fuel at 600°C, as compared with a conventional fuel cell with 0.72 V and 0.27 W/cm2, respectively. Hence, the results reveal that the ions and bandgap tuning play a crucial role in fuel cell functions. Therefore, it has been determined that the bandgap can be tuned to obtain a better and more stable performance of the SIEC device. This study presents a novel approach to enhance the electrochemical performance with the tailoring of the new semi-ionic materials.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-17 av 17
Typ av publikation
tidskriftsartikel (15)
forskningsöversikt (2)
Typ av innehåll
refereegranskat (17)
Författare/redaktör
Zhu, Bin (2)
Eklund, Anders, 1981 ... (2)
Johansson, Lars (1)
Sulo, Gerhard (1)
Al-Ansari, Nadhir, 1 ... (1)
Raza, Rizwan (1)
visa fler...
Alay-e-Abbas, Syed M ... (1)
Abbas, Q. (1)
Mahmood, Asif (1)
Elbeltagi, Ahmed (1)
Qasim, Muhammad (1)
Hassankhani, Hadi (1)
Liu, Yang (1)
Ali, Muhammad (1)
Mitchell, Philip B (1)
Ali, A. (1)
McKee, Martin (1)
Madotto, Fabiana (1)
Cooray, Vernon, 1952 ... (1)
Wang, B. (1)
Abolhassani, Hassan (1)
Rezaei, Nima (1)
Castro, Franz (1)
Koul, Parvaiz A. (1)
Blystad, Ida, 1972- (1)
Weiss, Daniel J. (1)
Wang, Feng (1)
Ackerman, Ilana N. (1)
Nazir, S (1)
Brenner, Hermann (1)
Syväjärvi, Mikael (1)
Ferrara, Giannina (1)
Salama, Joseph S. (1)
Mullany, Erin C. (1)
Abbafati, Cristiana (1)
Bensenor, Isabela M. (1)
Bernabe, Eduardo (1)
Carrero, Juan J. (1)
Cercy, Kelly M. (1)
Zaki, Maysaa El Saye ... (1)
Esteghamati, Alireza (1)
Esteghamati, Sadaf (1)
Fanzo, Jessica (1)
Farzadfar, Farshad (1)
Foigt, Nataliya A. (1)
Grosso, Giuseppe (1)
Islami, Farhad (1)
James, Spencer L. (1)
Khader, Yousef Saleh (1)
Kimokoti, Ruth W. (1)
visa färre...
Lärosäte
Kungliga Tekniska Högskolan (5)
Linköpings universitet (4)
Uppsala universitet (2)
Luleå tekniska universitet (2)
Umeå universitet (1)
Jönköping University (1)
visa fler...
Lunds universitet (1)
Chalmers tekniska högskola (1)
Karolinska Institutet (1)
Högskolan Dalarna (1)
visa färre...
Språk
Engelska (17)
Forskningsämne (UKÄ/SCB)
Teknik (9)
Naturvetenskap (7)
Medicin och hälsovetenskap (4)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy