SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Almén Anja 1964) "

Sökning: WFRF:(Almén Anja 1964)

  • Resultat 1-16 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Almén, Anja, 1964, et al. (författare)
  • A CONCEPTUAL FRAMEWORK FOR MANAGING RADIATION DOSE TO PATIENTS IN DIAGNOSTIC RADIOLOGY USING REFERENCE DOSE LEVELS
  • 2016
  • Ingår i: Radiation protection dosimetry. - : Oxford University Press (OUP). - 1742-3406 .- 0144-8420. ; 169:1-4, s. 17-23
  • Tidskriftsartikel (refereegranskat)abstract
    • The overall aim of the present work was to develop a conceptual framework for managing radiation dose in diagnostic radiology with the intention to support optimisation. An optimisation process was first derived. The framework for managing radiation dose, based on the derived optimisation process, was then outlined. The outset of the optimisation process is four stages: providing equipment, establishing methodology, performing examinations and ensuring quality. The optimisation process comprises a series of activities and actions at these stages. The current system of diagnostic reference levels is an activity in the last stage, ensuring quality. The system becomes a reactive activity only to a certain extent engaging the core activity in the radiology department, performing examinations. Three reference dose levels-possible, expected and established-were assigned to the three stages in the optimisation process, excluding ensuring quality. A reasonably achievable dose range is also derived, indicating an acceptable deviation from the established dose level. A reasonable radiation dose for a single patient is within this range. The suggested framework for managing radiation dose should be regarded as one part of the optimisation process. The optimisation process constitutes a variety of complementary activities, where managing radiation dose is only one part. This emphasises the need to take a holistic approach integrating the optimisation process in different clinical activities.
  •  
2.
  • Almén, Anja, 1964, et al. (författare)
  • OPTIMISATION OF OCCUPATIONAL RADIATION PROTECTION IN IMAGE-GUIDED INTERVENTIONS: EXPLORING VIDEO RECORDINGS AS A TOOL IN THE PROCESS
  • 2016
  • Ingår i: Radiation protection dosimetry. - : Oxford University Press (OUP). - 1742-3406 .- 0144-8420. ; 169:1-4, s. 425-429
  • Tidskriftsartikel (refereegranskat)abstract
    • The overall purpose of this work was to explore how video recordings can contribute to the process of optimising occupational radiation protection in image-guided interventions. Video-recorded material from two image-guided interventions was produced and used to investigate to what extent it is conceivable to observe and assess dose-affecting actions in video recordings. Using the recorded material, it was to some extent possible to connect the choice of imaging techniques to the medical events during the procedure and, to a less extent, to connect these technical and medical issues to the occupational exposure. It was possible to identify a relationship between occupational exposure level to staff and positioning and use of shielding. However, detailed values of the dose rates were not possible to observe on the recordings, and the change in occupational exposure level from adjustments of exposure settings was not possible to identify. In conclusion, the use of video recordings is a promising tool to identify dose-affecting instances, allowing for a deeper knowledge of the interdependency between the management of the medical procedure, the applied imaging technology and the occupational exposure level. However, for a full information about the dose-affecting actions, the equipment used and the recording settings have to be thoroughly planned.
  •  
3.
  • Almén, Anja, 1964, et al. (författare)
  • Optimisation of occupational radiological protection in image-guided interventions: potential impact of dose rate measurements.
  • 2015
  • Ingår i: Journal of radiological protection : official journal of the Society for Radiological Protection. - : IOP Publishing. - 1361-6498. ; 35:1, s. 47-62
  • Tidskriftsartikel (refereegranskat)abstract
    • The optimisation of occupational radiological protection is challenging and a variety of factors have to be considered. Physicians performing image-guided interventions are working in an environment with one of the highest radiation risk levels in healthcare. Appropriate knowledge about the radiation environment is a prerequisite for conducting the optimisation process. Information about the dose rate variation during the interventions could provide valuable input to this process. The overall purpose of this study was to explore the prerequisite and feasibility to measure dose rate in scattered radiation and to assess the usefulness of such data in the optimisation process.Using an active dosimeter system, the dose rate in the unshielded scattered radiation field was measured in a fixed point close to the patient undergoing an image-guided intervention. The measurements were performed with a time resolution of one second and the dose rate data was continuously timed in a data log. In two treatment rooms, data was collected during a 6month time period, resulting in data from 380 image-guided interventions and vascular treatments in the abdomen, arms and legs. These procedures were categorised into eight types according to the purpose of the treatment and the anatomical region involved.The dose rate varied substantially between treatment types, both regarding the levels and the distribution during the procedure. The maximum dose rate for different types of interventions varied typically between 5 and 100mSvh(-1), but substantially higher and lower dose rates were also registered. The average dose rate during a complete procedure was however substantially lower and varied typically between 0.05 and 1mSvh(-1). An analysis of the distribution disclosed that for a large part of the treatment types, the major amount of the total accumulated dose for a procedure was delivered in less than 10% of the exposure time and in less than 1% of the total procedure time.The present study shows that systematic dose rate measurements are feasible. Such measurements can be used to give a general indication of the exposure level to the staff and could serve as a first risk assessment tool when introducing new treatment types or x-ray equipment in the clinic. For example, it could provide an indication for when detailed eye dose measurements are needed. It also gives input to risk management considerations and the development of efficient routines for other radiological protection measures.
  •  
4.
  • Almén, Anja, 1964, et al. (författare)
  • The process of optimisation of radiological protection – the significance of diagnostic reference levels
  • 2015
  • Ingår i: Optimisation in X-ray and Molecular Imaging 2015 - the Fourth Malmö Conference on Medical Imaging, Gothenburg, Sweden, 28-30 May 2015.
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • The system of diagnostic reference levels in medicine has been presented as a tool to advice on when a local review of the procedures and equipment is warranted in order to determine whether the protection has been adequately optimised. The system is somewhat country specific, presumably due to different national regulations or guidelines, but as a whole relies on the same principles and standards. Diagnostic reference levels are typically set for standardised patients and procedures with minor considerations of the need to manage individual patient characteristics or specific medical tasks in the optimisation process. Optimisation of radiological protection should involve key aspects influencing the radiation dose to the patients and also include the needs of optimising the protection for each patient individually. The actual given radiation dose to the patient is affected by a number of factors, amongst other things equipment specific features and training of staff performing the examinations. This emphases the need to take a holistic approach and integrate different clinical processes - e.g. purchasing of equipment or the implementation of new examination protocols in the clinic – in the process of optimisation. Taking this approach gives the opportunity to evaluate the significance of the current system of diagnostic reference levels in the process of optimisation and to identify other reference levels supporting the process of optimisation. This paper will investigate the optimisation process and identify key instances where reference levels could provide support to the optimisation process. The issue of optimising the individual examination with regard to patient characteristics and medical indication will be specifically addressed.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  • Lundh, Charlotta, 1977, et al. (författare)
  • Optimisation of radiological protection in a complex hybrid environment using detailed dose rate information
  • 2015
  • Ingår i: Optimisation in X-ray and Molecular Imaging 2015 - the Fourth Malmö Conference on Medical Imaging, Gothenburg, Sweden, 28-30 May 2015.
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Purpose: Physicians performing image-guided interventions are exposed to one of the highest radiation risk levels in healthcare. Hybrid environments combine the imaging technology of the image-guided interventions with operation environments, engaging more medical specialties to the use of advanced imaging devices. This complicates the risk management of radiological protection. The aim of this study was to explore the possibilities of using dose rate data for risk assessment in a multi-purpose hybrid room. Method: Dose rate data was collected for three types of image guided interventions in a hybrid room at Sahlgrenska University Hospital. The three procedure types studied were EndoVascular Aortic Repair (EVAR), Transcatheter Aortic Heart Valve (TAVI) and an orthopedic procedure of the back (Ort Back). Dose rate data for scattered radiation was collected using an active dosimeter system, giving dose rate data with a time resolution of 1 second in a fixed unshielded point on the C-arm. Data was analysed and visualized as histograms. Results: The dose rates varied substantially between the three types of procedures studied. The median dose rates were 2.3 mSv/h (EVAR), 1.4 mSv/h (TAVI) and 0.1 mSv/h (Ort back). During EVAR-procedures the absolute majority of the dose rates were between 1 and 10 mSv/h while it during Ort Back-procedures was dominated by dose rates below 0.1 mSv/h. Conclusions: A multi-purpose hybrid room have dose rates that vary substantially between the different areas of use, both regarding dose rate levels and dose rate distribution. The use of dose rate information adds important information that can improve the management of risk in these environments.
  •  
9.
  • Magee, Jill S, et al. (författare)
  • Derivation and application of dose reduction factors for protective eyewear worn in interventional radiology and cardiology.
  • 2014
  • Ingår i: Journal of radiological protection : official journal of the Society for Radiological Protection. - : IOP Publishing. - 1361-6498. ; 34:4, s. 811-823
  • Tidskriftsartikel (refereegranskat)abstract
    • Doses to the eyes of interventional radiologists and cardiologists could exceed the annual limit of 20mSv proposed by the International Commission on Radiological Protection. Lead glasses of various designs are available to provide protection, but standard eye dosemeters will not take account of the protection they provide. The aim of this study has been to derive dose reduction factors (DRFs) equal to the ratio of the dose with no eyewear, divided by that when lead glasses are worn. Thirty sets of protective eyewear have been tested in x-ray fields using anthropomorphic phantoms to simulate the patient and clinician in two centres. The experiments performed have determined DRFs from simulations of interventional procedures by measuring doses to the eyes of the phantom representing the clinician, using TLDs in Glasgow, Scotland and with an electronic dosemeter in Gothenburg, Sweden. During interventional procedures scattered x-rays arising from the patient will be incident on the head of the clinician from below and to the side. DRFs for x-rays incident on the front of lead glasses vary from 5.2 to 7.6, while values for orientations similar to those used in the majority of clinical practice are between 1.4 and 5.2. Specialised designs with lead glass side shields or of a wraparound style with angled lenses performed better than lead glasses based on the design of standard spectacles. Results suggest that application of a DRF of 2 would provide a conservative factor that could be applied to personal dosemeter measurements to account for the dose reduction provided by any type of lead glasses provided certain criteria relating to design and consistency of use are applied.
  •  
10.
  • Martin, Colin, et al. (författare)
  • Eye dosimetry and protective eyewear for interventional clinicians
  • 2015
  • Ingår i: Radiation Protection Dosimetry. - : Oxford University Press (OUP). - 0144-8420 .- 1742-3406. ; 165:1-4, s. 284-288
  • Tidskriftsartikel (refereegranskat)abstract
    • Doses to the eyes of interventional clinicians can exceed 20 mSv. Various protective devices can afford protection to the eyes with the final barrier being protective eyewear. The protection provided by lead glasses is difficult to quantify, and the majority of dosimeters are not designed to be worn under lead glasses. This study has measured dose reduction factors (DRFs) equal to the ratio of the dose with no protection, divided by that when lead glasses are worn. Glasses have been tested in X-ray fields using anthropomorphic phantoms to simulate the patient and clinician. DRFs for X-rays incident from the front vary from 5.2 to 7.6, while values for orientations reminiscent of clinical practice are between 1.4 and 5.2. Results suggest that a DRF of two is a conservative factor that could be applied to personal dosimeter measurements to account for the dose reduction provided by most types of lead glasses.
  •  
11.
  • Sandblom, Viktor, 1987, et al. (författare)
  • Evaluation of the impact of a system for real-time visualisation of occupational radiation dose rate during fluoroscopically guided procedures
  • 2013
  • Ingår i: Journal of Radiological Protection. - : IOP Publishing. - 0952-4746 .- 1361-6498. ; 33:3, s. 693-702
  • Tidskriftsartikel (refereegranskat)abstract
    • Optimisation of radiological protection for operators working with fluoroscopically guided procedures has to be performed during the procedure, under varying and difficult conditions. The aim of the present study was to evaluate the impact of a system for real-time visualisation of radiation dose rate on optimisation of occupational radiological protection in fluoroscopically guided procedures. Individual radiation dose measurements, using a system for real-time visualisation, were performed in a cardiology laboratory for three cardiologists and ten assisting nurses. Radiation doses collected when the radiation dose rates were not displayed to the staff were compared to radiation doses collected when the radiation dose rates were displayed. When the radiation dose rates were displayed to the staff, one cardiologist and the assisting nurses (as a group) significantly reduced their personal radiation doses. The median radiation dose (Hp(10)) per procedure decreased from 68 to 28 μSv (p = 0.003) for this cardiologist and from 4.3 to 2.5 μSv (p = 0.001) for the assisting nurses. The results of the present study indicate that a system for real-time visualisation of radiation dose rate may have a positive impact on optimisation of occupational radiological protection. In particular, this may affect the behaviour of staff members practising inadequate personal radiological protection.
  •  
12.
  • Sandblom, Viktor, 1987, et al. (författare)
  • Evaluation of the impact of a system for real-time visualisation of occupational radiation dose rate during fluoroscopically guided procedures
  • 2013
  • Ingår i: Nationellt möte om sjukhusfysik 2013, 13-14 november 2013, Varberg.
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Optimisation of radiological protection for operators working with fluoroscopically guided procedures has to be performed during the procedure, under varying and difficult conditions. The aim of this study was to evaluate the impact of a system for real-time visualisation of radiation dose rate on optimisation of occupational radiological protection during fluoroscopically guided procedures. Individual radiation dose measurements, using a system for real-time visualisation, were performed in a cardiology laboratory for three cardiologists and ten assisting nurses. Radiation doses collected when the radiation dose rates were not displayed to the staff (period 1) were compared to radiation doses collected when the radiation dose rates were displayed (period 2). The results showed that when the radiation dose rates were displayed to the staff, one cardiologist and the assisting nurses (as a group) significantly reduced their personal radiation doses. The median radiation dose ((Hp(10)) per procedure decreased from 68 to 28 μSv (p=0.003) for this cardiologist and from 4.3 to 2.5 μSv (p=0.001) for the assisting nurses. The results of the present study indicate that a system for real-time visualisation of radiation dose rate may have a positive impact on optimisation of occupational radiological protection. In particular, this may affect the behaviour of staff members practising inadequate personal radiological protection.
  •  
13.
  • Sandblom, Viktor, 1987, et al. (författare)
  • Mätmetoder för bestämning av stråldoser till ögats lins
  • 2013
  • Rapport (övrigt vetenskapligt/konstnärligt)abstract
    • I april 2011 sänkte International Commission on Radiological Protection (ICRP) sin rekommenderade dosgräns för ögats lins för arbetstagare vid verksamhet med joniserande strålning från 150 mSv/år till 20 mSv/år (ekvivalent dos). Under senare år har det i flera studier gjorts uppskattningar av ekvivalent dos till ögats lins för per-sonal som arbetar med röntgenvägledda procedurer. Resultaten från de flesta av dessa tyder på att det finns risk att personal överstiger 20 mSv/år till ögats lins. Hp(3) (persondosekvivalenten på 3 mm djup i mjuk vävnad) är den, av International Commission on Radiation Units and Measurements (ICRU), föreslagna storheten för att uppskatta ekvivalent dos till ögats lins. Konversionsfaktorer från luftkerma till Hp(3) finns i dag inte tillgängliga i någon internationell standard. För mätningar av persondosekvivalent till ögats lins används därför ofta Hp(0,07) istället. Aktiva dosimetrar (exempelvis EDD-30, NED-30, RaySafe i2, DMC 3000 eller EPD) kan användas för grov initial uppskattning av ekvivalent dos till extremiteter eller ögats lins. För att minska osäkerheter i samband med mätning bör passiva do-simetrar användas (exempelvis DIS-1, EYE-DTM, Inlight® nanoDotTM eller ett TLD-system). Om det tillgängliga mätinstrumentet inte är kalibrerat för relevant energi och djup samt med lämpligt fantom för den önskvärda tillämpningen bör det övervägas att utföra kalibreringen på annat sätt. Om lokal kalibrering av mätinstrument inte är möjligt kan de skickas in till SSM:s riksmätplats för joniserande strålning. SSM erbjuder spårbar kalibrering av mätinstrument i strålfält i ISO:s N-serie enligt ISO 4037. Operatörens position i förhållande till patient och röntgenrör ser olika ut för olika typer av röntgenvägledda procedurer. Vid vissa typer av procedurer inom kardiologi träffar dock den spridda strålningen nästan uteslutande operatörens ögon snett ner-ifrån vänster. Energiintervallet för den spridda strålningen som träffar operatören vid en röntgenvägledd procedur är ungefär 20–100 keV. Då primärstrålningen träffar patienten och sprids mot operatören vid röntgenvägledda procedurer förskjuts energispektrumet ungefär 10 keV mot lågenergiområdet. Felaktig positionering eller kalibrering av en dosimeter avsedd för uppskattning av ekvivalent dos till ögats lins leder till mätfel. För personal som arbetar med röntgen-vägledda procedurer bör dosimetern vara kalibrerad att mäta Hp(0,07) eller Hp(3). Att använda Hp(10) leder till större osäkerheter. Vad gäller positioneringen bör dosimetern placeras på tinningen bredvid ögat, så nära ögat som möjligt, på den sida röntgenröret befinner sig. Det är viktigt att vara medveten om vilka osäkerheter som förknippas med olika mätmetoder. Så länge man är medveten om osäkerheterna kan flera olika metoder användas för uppskattning av ekvivalent dos till ögats lins, det beror på vilket syfte mätningen har. Under arbetet med denna rapport har en del forskningsbehov identifierats, enligt följande. För att få en ökad kunskap om samband mellan exponering och hälsoeffekter behövs sannolikt en ökad kunskap om energideponering i ögat som organ för olika typer av strålningssituationer. De skyddsstorheter som beskrivs i denna rapport används ibland också i studier vars syfte är att kartlägga effekter av bestrålning, exempelvis i epidemiologiska studier. Skyddsstorheterna är en oexakt beskrivning av energideponering i olika delar av ögat. Rimligtvis kan en ökad kunskap om grundläggande dosimetri för olika energier och strålslag bidra till att osäkerheterna minskar i studier där effekter kartläggs. Även utredningsarbete om konsekvenser av en sänkt dosgränser behövs. Detta gäller såväl metoder för att kontrollera att dosimetrar uppfyller de krav som i dag ställs och att använda metoder i kliniken genererar tillräckligt noggranna värden för att säkerställa att dosgränser inte överskrids.
  •  
14.
  • Sandblom, Viktor, 1987, et al. (författare)
  • Visualisering av osynliga risker: optimering av strålskydd för säkrare arbetsmiljö
  • 2013
  • Ingår i: Röntgenveckan 2013, 3-6 september 2013, Uppsala.
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Joniserande strålning innebär en ökad risk för cancer och katarakt. Sänkning av gränsvärden och att fler grupper av personal exponeras för strålning, t ex i hybridsalar, kan leda till att fler hamnar i riskzonen. För att minska dessa risker har tekniker utvecklats som visar exponeringen av strålning i realtid, vilket ger helt nya möjligheter för optimering av strålskydd. Mot denna bakgrund initierades ett tvärvetenskapligt samarbete vid Göteborgs universitet, Det övergripande syftet med projektet är att bidra med kunskap om hur visualisering av joniserande strålning i realtid kan användas för att åstadkomma en säkrare arbetsmiljö. Vi undersöker a) om och i så fall för vilka procedurer visuell feedback kan minska personalens exponering för strålning, b) hur personalens agerande kan bidra till detta och c) hur personal förstår information om de registrerade stråldoserna och hur deras individuella erfarenheter kan tas tillvara för att förbättra arbetsmetoder. En pilotstudie av visualisering av doser i realtid under röntgenvägledda procedurer visade att en av tre kardiologer och de assisterande sjuksköterskorna som grupp uppvisade en statistiskt signifikant minskning av sina doser. En slutsats är att systemet för visualisering kan ha en positiv påverkan för optimering av strålskydd och bidra till minskade risker i arbete med joniserande strålning.
  •  
15.
  •  
16.
  • von Wrangel, Alexa, 1967, et al. (författare)
  • Video as a tool for optimization of radiological protection in image-guided interventions – possibilities and limitations
  • 2015
  • Ingår i: Optimisation in X-ray and Molecular Imaging 2015 - the Fourth Malmö Conference on Medical Imaging, Gothenburg, Sweden, 28-30 May 2015.
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • In healthcare, the highest patient and staff doses are received in image-guided intervention. This area includes a large variation of procedures with various prerequisites for performing radiological protection. Traditionally, radiation protection has mainly consisted of monitoring staff dose and providing personal radiation shielding in addition to education and training. New strategies have to be developed to achieve an optimized radiation protection in these changing environments. It could be anticipated that video could be a useful tool for optimization. The aim of this work was to develop video as a tool for optimization of radiological protection in image-guided interventions. Video recordings of the staff during image-guided abdominal interventions have been performed. Three cameras were used. Camera one was placed to get an overview of the room. The second camera was placed on the monitor facing the staff and camera three was recording the live monitor from the x-ray system. The video recordings were visually analyzed. Technical parameters were additionally collected from the x-ray system. Dose rate data was also collected during the procedures. So far, three procedures have been analysed in order to develop the optimization tool. The most important camera angle was the one over viewing the room. It was with the chosen angles, however, difficult to see what the staff members were looking at during the procedures. In developing the tool the following has been identified as important issues to consider; the number and position of cameras, the sound quality, editing of video material and safety issues. Furthermore, it is important to consider the competence of the evaluating team, which need to be multidisciplinary. Above all, ethical aspects of recording patients and staff have to be addressed. The present study combines video recordings of the interventional staff with information of the variation of dose rates during the procedure. This is a novel approach for education and training strategies.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-16 av 16

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy