SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Andersson Mats X. 1977) srt2:(2020-2024)"

Sökning: WFRF:(Andersson Mats X. 1977) > (2020-2024)

  • Resultat 1-14 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cheregi, Otilia, et al. (författare)
  • Transcriptome analysis reveals insights into adaptive responses of two marine microalgae species to Nordic seasons
  • 2023
  • Ingår i: Algal Research. - 2211-9264. ; 74
  • Tidskriftsartikel (refereegranskat)abstract
    • There is an increasing interest in algae-based biomass produced outdoors in natural and industrial settings for biotechnological applications. To predict the yield and biochemical composition of the biomass, it is important to understand how the transcriptome of species and strains of interest is affected by seasonal changes. Here we studied the effects of Nordic winter and summer on the transcriptome of two phytoplankton species, namely the diatom Skeletonema marinoi (Sm) and the eustigmatophyte Nannochloropsis granulata (Ng), recently identified as potentially important for biomass production on the west coast of Sweden. Cultures were grown in photobioreactors in simulated Nordic summer and winter, and the gene expression in two phases was quantified by Illumina RNA-sequencing. Five paired comparisons were made among the four conditions. Sm was overall more responsive to seasons since 70 % of the total transcriptome (14,783 genes) showed differential expression in at least one comparison as compared to 1.6 % (1403 genes) for Ng. For both species, we observed larger differences between the seasons than between the phases of the same season. In summer phase 1, Sm cells focused on photosynthesis and polysaccharide biosynthesis. Nitrate assimilation and recycling of intracellular nitrogen for protein biosynthesis were more active in summer phase 2 and throughout winter. Lipid catabolism was upregulated in winter relative to summer to supply carbon for respiration. Ng favored lipid accumulation in summer, while in winter activated different lipid remodeling pathways as compared to Sm. To cope with winter, Ng upregulated breakdown and transport of carbohydrates for energy production. Taken together, our transcriptome data reveal insights into adaptive seasonal responses of Sm and Ng important for biotechnological applications on the west coast of Sweden, but more work is required to decipher the molecular mechanisms behind these responses.
  •  
2.
  • Lindsay, Willow, 1980, et al. (författare)
  • Seasonal but not sex-biased gene expression of the carotenoid ketolase, CYP2J19, in the sexually dichromatic southern red bishop (Euplectes orix)
  • 2022
  • Ingår i: Royal Society Open Science. - : The Royal Society. - 2054-5703. ; 9:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Intense red colours in birds are often owing to ketocarotenoids (KCs). In many land birds, KCs are oxidized from dietary yellow precursors, presumably by the avian carotenoid ketolase CYP2J19, the regulation and constraints of which have important implications for condition-dependence and honest signalling of carotenoid colour displays. We investigated hepatic CYP2J19 gene expression in the seasonally and sexually dichromatic southern red bishop (Euplectes orix) in relation to season, sex, progression of the prenuptial moult, testis size, body condition, redness and circulating sex steroids. A coloration function of CYP2J19 is supported by a seasonal upregulation prior to and during the carotenoid-depositing stage of the male prenuptial moult. However, CYP2J19 expression was similarly high in females (which do not moult prenuptially), and remained high in males after moult, suggesting additional or alternative roles of hepatic CYP2J19 or its products, such as detoxification or antioxidant functions. In males, the CYP2J19 upregulation preceded and was unrelated to the rise in plasma testosterone, but was correlated with androstenedione, probably of adrenal origin and compatible with luteinizing hormone-induced and (in females) oestrogen-suppressed moult. Finally, contrary to ideas that carotenoid ketolation rate mediates honest signalling of male quality, CYP2J19 expression was not related to plumage redness or male body condition.
  •  
3.
  • Tarvainen, Lasse, 1977, et al. (författare)
  • Handling the heat - photosynthetic thermal stress in tropical trees.
  • 2022
  • Ingår i: The New phytologist. - : Wiley. - 1469-8137 .- 0028-646X. ; 233:1, s. 236-50
  • Tidskriftsartikel (refereegranskat)abstract
    • Warming climate increases the risk for harmful leaf temperatures in terrestrial plants, causing heat stress and loss of productivity. The heat sensitivity may be particularly high in equatorial tropical tree species adapted to a thermally stable climate. Thermal thresholds of the photosynthetic system of sun-exposed leaves were investigated in three tropical montane tree species native to Rwanda with different growth and water use strategies (Harungana montana, Syzygium guineense and Entandrophragma exselsum). Measurements of chlorophyll fluorescence, leaf gas exchange, morphology, chemistry and temperature were made at three common gardens along an elevation/temperature gradient. Heat tolerance acclimated to maximum leaf temperature (Tleaf ) across the species. At the warmest sites, the thermal threshold for normal function of photosystem II was exceeded in the species with the highest Tleaf despite their higher heat tolerance. This was not the case in the species with the highest transpiration rates and lowest Tleaf . The results point to two differently effective strategies for managing thermal stress: tolerance through physiological adjustment of leaf osmolality and thylakoid membrane lipid composition, or avoidance through morphological adaptation and transpiratory cooling. More severe photosynthetic heat stress in low-transpiring montane climax species may result in a competitive disadvantage compared to high-transpiring pioneer species with more efficient leaf cooling.
  •  
4.
  • Wittemann, Maria, et al. (författare)
  • Temperature acclimation of net photosynthesis and its underlying component processes in four tropical tree species
  • 2022
  • Ingår i: Tree Physiology. - : Oxford University Press (OUP). - 0829-318X .- 1758-4469. ; 42:6, s. 1188-1202
  • Tidskriftsartikel (refereegranskat)abstract
    • The effect of temperature change on leaf physiology has been extensively studied in temperate trees and to some extent in boreal and tropical tree species. While increased temperature typically stimulates leaf CO2 assimilation and tree growth in high-altitude ecosystems, tropical species are often negatively affected. These trees may operate close to their temperature optima and have a limited thermal acclimation capacity due to low seasonal and historical variation in temperature. To test this hypothesis, we studied the extent to which the temperature sensitivities of leaf photosynthesis and respiration acclimate to growth temperature in four common African tropical tree species. Tree seedlings native to different altitudes and therefore adapted to different growth temperatures were cultivated at three different temperatures in climate-controlled chambers. We estimated the acclimation capacity of the temperature sensitivities of light-saturated net photosynthesis, the maximum rates of Rubisco carboxylation (V-cmax) and thylakoid electron transport (J), and dark respiration. Leaf thylakoid membrane lipid composition, nitrogen content and leaf mass per area were also analyzed. Our results showed that photosynthesis in tropical tree species acclimated to higher growth temperatures, but that this was weakest in the species originating from the coolest climate. The temperature optimum of J acclimated significantly in three species and variation in J was linked to changes in the thylakoid membrane lipid composition. For V-cmax, there was only evidence of significant acclimation of optimal temperature in the lowest elevation species. Respiration acclimated to maintain homeostasis at growth temperature in all four species. Our results suggest that the lowest elevation species is better physiologically adapted to acclimate to high growth temperatures than the highest elevation species, indicating a potential shift in competitive balance and tree community composition to the disadvantage of montane tree species in a warmer world.
  •  
5.
  • Ankarberg-Lindgren, Carina, 1963, et al. (författare)
  • Determination of estrone sulfate, testosterone, androstenedione, DHEAS, cortisol, cortisone, and 17 alpha-hydroxyprogesterone by LC-MS/MS in children and adolescents
  • 2020
  • Ingår i: Scandinavian Journal of Clinical & Laboratory Investigation. - : Informa UK Limited. - 0036-5513 .- 1502-7686. ; 80:8, s. 672-680
  • Tidskriftsartikel (refereegranskat)abstract
    • Quantitation of endogenous steroids and their precursors is essential for diagnosis of a wide range of endocrine disorders. Usually, these analyses have been carried out using immunoassays. However, immunoassays often overestimate concentrations due to assay interference by other endogenous steroids, especially for low concentrations. Mass spectrometry based methods offer superior specificity, accuracy, and sensitivity. We therefore present a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method with automated sample preparation for determination of 17 alpha-hydroxyprogesterone (17OHP), cortisol, cortisone, dehydroepiandrosterone sulfate (DHEAS), androstenedione (A(4)), testosterone (T), and estrone sulfate (E1S). Samples were prepared using protein precipitation and 96-well filter plates, fully automated in a pipetting robot and analyzed by LC-MS/MS. Serum samples from 187 healthy children and adolescents aged 5-18 years were used to study hormone changes in relation to sex and pubertal stage. Lower limit of quantification for 17OHP was 0.7 nmol/L, for cortisol 11 nmol/L, for cortisone 2 nmol/L, for DHEAS 0.1 mu mol/L, and for A(4), T, and E1S, 0.2 nmol/L. This study showed a general increase in 17OHP, DHEAS, A(4), T and E1S in both genders during puberty. In boys, A(4)and T increased significantly throughout pubertal development. Girls had significantly higher A(4)and E1S concentrations, while boys had higher T concentrations. No sex- or puberty-specific differences were seen in cortisol or cortisone concentrations. To the best of our knowledge, this is the first presentation of changes in serum E1S concentrations during pubertal development in healthy children.
  •  
6.
  • Arnoldt, Sina, et al. (författare)
  • Mass spectroscopy reveals compositional differences in copepodamides from limnic and marine copepods
  • 2024
  • Ingår i: Scientific reports. - 2045-2322. ; 14
  • Tidskriftsartikel (refereegranskat)abstract
    • Marine copepods, the most abundant animals in the global ocean, imprint their surrounding waters with chemical cues, called copepodamides. Copepodamides induce defensive traits such as toxin production, bioluminescence, and colony size plasticity in a variety of marine phytoplankton. The role of copepodamides in freshwater ecosystems is, however, unknown. Here we report the consistent presence of copepodamides in copepods from six Swedish freshwater lakes. Copepodamide concentrations in freshwater copepods are similar to those of marine copepods, around 0.1ppt of dry mass in millimetre sized individuals. The composition substantially overlaps with marine copepodamides but is also distinctly different. Marine copepods commonly contain both subgroups of copepodamides, the copepodamides (CA) and the dihydro-copepodamides (dhCA), whereas freshwater copepods are dominated by the dhCAs. Taxonomic groups had consistent copepodamide profiles across sampling sites and timepoints, supporting the presence of species-specific copepodamide signatures. We describe 10 new copepodamide structures, four of which were found exclusively in freshwater copepods. The presence of copepodamides in limnic copepods also warrants studies into their potential function as predator alarm cues in freshwater systems.
  •  
7.
  • Cheregi, Otilia, et al. (författare)
  • Marine microalgae for outdoor biomass production - a laboratory study simulating seasonal light and temperature for the west coast of Sweden
  • 2021
  • Ingår i: Physiologia plantarum. - : Wiley. - 1399-3054 .- 0031-9317. ; 173:2, s. 543-554
  • Tidskriftsartikel (refereegranskat)abstract
    • At Nordic latitudes, year-round outdoor cultivation of microalgae is debatable due to seasonal variations in productivity. Shall the same species/strains be used throughout the year, or shall seasonal-adapted ones be used? To elucidate this, a laboratory study was performed where two out of 167 marine microalgal strains were selected for intended cultivation at the west coast of Sweden. The two local strains belong to Nannochloropsis granulata (Ng) and Skeletonema marinoi (Sm142). They were cultivated in photobioreactors and compared in conditions simulating variations in light and temperature of a year divided into three growth seasons (spring, summer and winter). The strains grew similarly well in summer (and also in spring), but Ng produced more biomass (0.225 versus 0.066 g DW L-1 d-1 ) which was more energy rich (25.0 versus 16.6 MJ kg-1 DW). In winter, Sm142 grew faster and produced more biomass (0.017 versus 0.007 g DW L-1 d-1 ), having similar energy to the other seasons. The higher energy of the Ng biomass is attributed to a higher lipid content (40 versus 16% in summer). The biomass of both strains was richest in proteins (65%) in spring. In all seasons, Sm142 was more effective in removing phosphorus from the cultivation medium (6.58 versus 4.14 mg L-1 d-1 in summer), whereas Ng was more effective in removing nitrogen only in summer (55.0 versus 30.8 mg L-1 d-1 ). Our results suggesting that, depending on the purpose, either the same or different local species can be cultivated are relevant when designing outdoor pilot studies. This article is protected by copyright. All rights reserved.
  •  
8.
  • Genva, M., et al. (författare)
  • Simple liquid chromatography-electrospray ionization ion trap mass spectrometry method for the quantification of galacto-oxylipin arabidopsides in plant samples
  • 2020
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • A simple and sensitive method to quantify five different arabidopsides by HPLC-ion trap mass spectrometry in complex plant samples was developed and validated. Arabidopsides are oxidized galactolipids first described in Arabidopsis thaliana but also produced by other plant species under stress conditions. External calibration was performed using arabidopsides purified from freeze-thawed Arabidopsis leaves. Lipids were extracted and pre-purified on an SPE silica column before HPLC-MS analysis. Arabidopsides were separated on a C18 column using a gradient of mQ water and acetonitrile:mQ water (85:15) supplemented with formic acid (0.2%) and ammonium formate (12 mM). The method was validated according to European commission decision 2002/657/CE. LOD, LOQ, linearity, intra-day and inter-day precision and accuracy, selectivity, matrix effects and recoveries were determined for the five metabolites. The established method is highly selective in a complex plant matrix. LOD and LOQ were, respectively, in the range 0.098-0.78 and 0.64-1.56 mu M, allowing the arabidopside quantification from 25.6-62.4 nmol/g fresh weight. Calibration curve correlation coefficients were higher than 0.997. Matrix effects ranged from -2.09% to 6.10% and recoveries between 70.7% and 109%. The method was successfully applied to complex plant matrixes: Arabidopsis thaliana and Nasturtium officinale.
  •  
9.
  • Hortensius, Lisa M., et al. (författare)
  • Serum docosahexaenoic acid levels are associated with brain volumes in extremely preterm born infants
  • 2021
  • Ingår i: Pediatric Research. - : Springer Science and Business Media LLC. - 0031-3998 .- 1530-0447. ; 90:6, s. 1177-1185
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Docosahexaenoic acid (DHA) and arachidonic acid (AA) are important for fetal brain growth and development. Our aim was to evaluate the association between serum DHA and AA levels and brain volumes in extremely preterm infants. Methods: Infants born at <28 weeks gestational age in 2013–2015, a cohort derived from a randomized controlled trial comparing two types of parenteral lipid emulsions, were included (n = 90). Serum DHA and AA levels were measured at postnatal days 1, 7, 14, and 28, and the area under the curve was calculated. Magnetic resonance (MR) imaging was performed at term-equivalent age (n = 66), and volumes of six brain regions were automatically generated. Results: After MR image quality assessment and area under the curve calculation, 48 infants were included (gestational age mean [SD] 25.5 [1.4] weeks). DHA levels were positively associated with total brain (B = 7.966, p = 0.012), cortical gray matter (B = 3.653, p = 0.036), deep gray matter (B = 0.439, p = 0.014), cerebellar (B = 0.932, p = 0.003), and white matter volume (B = 3.373, p = 0.022). AA levels showed no association with brain volumes. Conclusions: Serum DHA levels during the first 28 postnatal days were positively associated with volumes of several brain structures in extremely preterm infants at term-equivalent age. Impact: Higher serum levels of DHA in the first 28 postnatal days are positively associated with brain volumes at term-equivalent age in extremely preterm born infants.Especially the most immature infants suffer from low DHA levels in the first 28 postnatal days, with little increase over time.Future research is needed to explore whether postnatal fatty acid supplementation can improve brain development and may serve as a nutritional preventive and therapeutic treatment option in extremely preterm infants.
  •  
10.
  • Johansson, Karin S L, et al. (författare)
  • Genetic controls of short- and long-term stomatal CO2 responses in Arabidopsis thaliana
  • 2020
  • Ingår i: Annals of botany. - : Oxford University Press (OUP). - 1095-8290 .- 0305-7364. ; 126:1, s. 179-190
  • Tidskriftsartikel (refereegranskat)abstract
    • © The Author(s) 2020. Published by Oxford University Press on behalf of the Annals of Botany Company. BACKGROUND AND AIMS: The stomatal conductance (gs) of most plant species decreases in response to elevated atmospheric CO2 concentration. This response could have a significant impact on plant water use in a future climate. However, the regulation of the CO2-induced stomatal closure response is not fully understood. Moreover, the potential genetic links between short-term (within minutes to hours) and long-term (within weeks to months) responses of gs to increased atmospheric CO2 have not been explored. METHODS: We used Arabidopsis thaliana recombinant inbred lines originating from accessions Col-0 (strong CO2 response) and C24 (weak CO2 response) to study short- and long-term controls of gs. Quantitative trait locus (QTL) mapping was used to identify loci controlling short- and long-term gs responses to elevated CO2, as well as other stomata-related traits. KEY RESULTS: Short- and long-term stomatal responses to elevated CO2 were significantly correlated. Both short- and long-term responses were associated with a QTL at the end of chromosome 2. The location of this QTL was confirmed using near-isogenic lines and it was fine-mapped to a 410-kb region. The QTL did not correspond to any known gene involved in stomatal closure and had no effect on the responsiveness to abscisic acid. Additionally, we identified numerous other loci associated with stomatal regulation. CONCLUSIONS: We identified and confirmed the effect of a strong QTL corresponding to a yet unknown regulator of stomatal closure in response to elevated CO2 concentration. The correlation between short- and long-term stomatal CO2 responses and the genetic link between these traits highlight the importance of understanding guard cell CO2 signalling to predict and manipulate plant water use in a world with increasing atmospheric CO2 concentration. This study demonstrates the power of using natural variation to unravel the genetic regulation of complex traits.
  •  
11.
  • Nilsson, Anders K., 1982, et al. (författare)
  • Sphingolipidomics of serum in extremely preterm infants : Association between low sphingosine-1-phosphate levels and severe retinopathy of prematurity
  • 2021
  • Ingår i: Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids. - : Elsevier. - 1388-1981 .- 1879-2618. ; 1866:7
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Extremely preterm infants are at risk of developing retinopathy of prematurity (ROP) that can cause impaired vision or blindness. Changes in blood lipids have been associated with ROP. This study aimed to monitor longitudinal changes in the serum sphingolipidome of extremely preterm infants and investigate the relationship to severe ROP development.METHODS: This is a prospective study that included 47 infants born <28 gestational weeks. Serum samples were collected from cord blood and at postnatal days 1, 7, 14, and 28, and at postmenstrual weeks (PMW) 32, 36, and 40. Serum sphingolipids and phosphatidylcholines were extracted and analyzed by LC-MS/MS. Associations between sphingolipid species and ROP were assessed using mixed models for repeated measures.RESULTS: The serum concentration of all investigated lipid classes, including ceramide, mono- di- and trihexosylceramide, sphingomyelin, and phosphatidylcholine displayed distinct temporal patterns between birth and PMW40. There were also substantial changes in the lipid species composition within each class. Among the analyzed sphingolipid species, sphingosine-1-phosphate showed the strongest association with severe ROP, and this association was independent of gestational age at birth and weight standard deviation score change.CONCLUSIONS: The serum phospho- and sphingolipidome undergoes significant remodeling during the first weeks of the preterm infant's life. Low postnatal levels of the signaling lipid sphingosine-1-phosphate are associated with the development of severe ROP.
  •  
12.
  • Sjöbom, Ulrika, et al. (författare)
  • Modification of serum fatty acids in preterm infants by parenteral lipids and enteral docosahexaenoic acid/arachidonic acid: A secondary analysis of the Mega Donna Mega trial
  • 2023
  • Ingår i: Clinical Nutrition. - 0261-5614. ; 42:6, s. 962-971
  • Tidskriftsartikel (refereegranskat)abstract
    • Background & aim: Preterm infants risk deficits of long-chain polyunsaturated fatty acids (LCPUFAs) that may contribute to morbidities and hamper neurodevelopment. We aimed to determine longitudinal serum fatty acid profiles in preterm infants and how the profiles are affected by enteral and parenteral lipid sources. Methods: Cohort study analyzing fatty acid data from the Mega Donna Mega study, a randomized control trial with infants born <28 weeks of gestation (n = 204) receiving standard nutrition or daily enteral lipid supplementation with arachidonic acid (AA):docosahexaenoic acid (DHA) (100:50 mg/kg/day). Infants received an intravenous lipid emulsion containing olive oil:soybean oil (4:1). Infants were followed from birth to postmenstrual age 40 weeks. Levels of 31 different fatty acids from serum phospholipids were determined by GC-MS and reported in relative (mol%) and absolute concentration (mmol l-1) units. Results: Higher parenteral lipid administration resulted in lower serum proportion of AA and DHA relative to other fatty acids during the first 13 weeks of life (p < 0.001 for the 25th vs the 75th percentile). The enteral AA:DHA supplement increased the target fatty acids with little impact on other fatty acids. The absolute concentration of total phospholipid fatty acids changed rapidly in the first weeks of life, peaking at day 3, median (Q1-Q3) 4452 (3645-5466) mmol l-1, and was positively correlated to the intake of parenteral lipids. Overall, infants displayed common fatty acid trajectories over the study period. However, remarkable differences in fatty acid patterns were observed depending on whether levels were expressed in relative or absolute units. For example, the relative levels of many LCPUFAs, including DHA and AA, declined rapidly after birth while their absolute concentrations increased in the first week of life. For DHA, absolute levels were significantly higher compared to cord blood from day 1 until postnatal week 16 (p < 0.001). For AA, absolute postnatal levels were lower compared to cord blood from week 4 throughout the study period (p < 0.05). Conclusions: Our data show that parenteral lipids aggravate the postnatal loss of LCPUFAs seen in preterm infants and that serum AA available for accretion is below that in utero. Further research is needed
  •  
13.
  • Villanova, Valeria, et al. (författare)
  • Mixotrophy in a Local Strain of Nannochloropsis granulata for Renewable High-Value Biomass Production on the West Coast of Sweden
  • 2022
  • Ingår i: Marine Drugs. - : MDPI. - 1660-3397. ; 20:7
  • Tidskriftsartikel (refereegranskat)abstract
    • A local strain of Nannochloropsis granulata (Ng) has been reported as the most productive microalgal strain in terms of both biomass yield and lipid content when cultivated in photobioreactors that simulate the light and temperature conditions during the summer on the west coast of Sweden. To further increase the biomass and the biotechnological potential of this strain in these conditions, mixotrophic growth (i.e., the simultaneous use of photosynthesis and respiration) with glycerol as an external carbon source was investigated in this study and compared with phototrophic growth that made use of air enriched with 1–2% CO2 . The addition of either glycerol or CO2-enriched air stimulated the growth of Ng and theproduction of high-value long-chain polyunsaturated fatty acids (EPA) as well as the carotenoid canthaxanthin. Bioassays in human prostate cell lines indicated the highest antitumoral activity for Ng extracts and fractions from mixotrophic conditions. Metabolomics detected betaine lipids specifically in the bioactive fractions, suggesting their involvement in the observed antitumoral effect. Genes related to autophagy were found to be upregulated by the most bioactive fraction, suggesting a possible therapeutic target against prostate cancer progression. Taken together, our results suggest that the local Ng strain can be cultivated mixotrophically in summer conditions on the west coast of Sweden for the production of high-value biomass containing antiproliferative compounds, carotenoids, and EPA. © 2022 by the authors. 
  •  
14.
  • Waszczak, Cezary, et al. (författare)
  • Synthesis and import of GDP-l-fucose into the Golgi affect plant–water relations
  • 2023
  • Ingår i: New Phytologist. - 0028-646X .- 1469-8137. ; 241:2, s. 747-63
  • Tidskriftsartikel (refereegranskat)abstract
    • Land plants evolved multiple adaptations to restrict transpiration. However, the underlying molecular mechanisms are not sufficiently understood. We used an ozone-sensitivity forward genetics approach to identify Arabidopsis thaliana mutants impaired in gas exchange regulation. High water loss from detached leaves and impaired decrease of leaf conductance in response to multiple stomata-closing stimuli were identified in a mutant of MURUS1 (MUR1), an enzyme required for GDP-l-fucose biosynthesis. High water loss observed in mur1 was independent from stomatal movements and instead could be linked to metabolic defects. Plants defective in import of GDP-l-Fuc into the Golgi apparatus phenocopied the high water loss of mur1 mutants, linking this phenotype to Golgi-localized fucosylation events. However, impaired fucosylation of xyloglucan, N-linked glycans, and arabinogalactan proteins did not explain the aberrant water loss of mur1 mutants. Partial reversion of mur1 water loss phenotype by borate supplementation and high water loss observed in boron uptake mutants link mur1 gas exchange phenotypes to pleiotropic consequences of l-fucose and boron deficiency, which in turn affect mechanical and morphological properties of stomatal complexes and whole-plant physiology. Our work emphasizes the impact of fucose metabolism and boron uptake on plant–water relations.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-14 av 14
Typ av publikation
tidskriftsartikel (14)
Typ av innehåll
refereegranskat (14)
Författare/redaktör
Andersson, Mats X., ... (14)
Spetea, Cornelia, 19 ... (4)
Nilsson, Anders K., ... (4)
Hellström, Ann, 1959 (3)
Uddling, Johan, 1972 (3)
Ekendahl, Susanne (3)
visa fler...
Wallin, Göran, 1955 (2)
Kollist, Hannes (2)
Pivodic, Aldina, 197 ... (2)
Godhe, Anna, 1967 (2)
Ntirugulirwa, Bonave ... (2)
Sävman, Karin, 1960 (2)
Engelbrektsson, Joha ... (2)
Cheregi, Otilia (2)
Strömberg, Niklas (2)
Töpel, Mats H., 1973 (1)
Pourdanandeh, Milad, ... (1)
Engelbrektsson, Joha ... (1)
Björkman-Burtscher, ... (1)
Ley, David (1)
Smith, L. E. H. (1)
Brosché, Mikael (1)
Kangasjärvi, Jaakko (1)
Paulin, Lars (1)
Auvinen, Petri (1)
Dahlgren, Jovanna, 1 ... (1)
Ankarberg-Lindgren, ... (1)
Vanpee, M (1)
Aloysie, Manishimwe (1)
Mujawamariya, Myriam (1)
Wackernagel, D (1)
Kourtchenko, Olga, 1 ... (1)
Hellgren, Gunnel, 19 ... (1)
Pinder, Matthew I. M ... (1)
Heckemann, Rolf A. (1)
Andersson, Staffan, ... (1)
Meyer, Rhonda C (1)
Villanova, Valeria (1)
Arnoldt, Sina (1)
Spikkeland, Ingvar (1)
Selander, Erik (1)
Carter, Ross (1)
Lundgren, Pia, 1967- (1)
Strömberg, Niklas, 1 ... (1)
Groenendaal, Floris (1)
Lindsay, Willow, 198 ... (1)
Hellström, William (1)
Hansen-Pupp, Ingrid (1)
Löfqvist, Chatarina, ... (1)
Ström, Mikael (1)
visa färre...
Lärosäte
Göteborgs universitet (14)
RISE (3)
Lunds universitet (2)
Stockholms universitet (1)
Örebro universitet (1)
Karolinska Institutet (1)
Språk
Engelska (14)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (11)
Teknik (4)
Medicin och hälsovetenskap (4)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy